A Two-phase Process for Software Architecture Improvement

René Krikhaar*, André Postma*, Alex Sellink**, Marc Stroucken*, Chris Verhoef**

* Philips Research Laboratories, Prof. Holstlaan 4 (WLO01),
5656 AA Eindhoven, The Netherlands

**University of Amsterdam, Programming Research Group
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

{krikhaar,postmaa,strouckn}@natlab.research.philips.com, {alex|x}@wins.uva.nl

Abstract

Software architecture is important for large systems in
which it is the main means for, among other things, con-
trolling complexity. Current ideas on software architec-
tures were not available more than ten years ago. Soft-
ware developed at that time has been deteriorating from
an architectural point of view over the years, as a result
of adaptations made in the software because of changing
system requirements. Parts of the old software are nev-
ertheless still being used in new product lines. To make
changes in that software, like adding features, it is im-
perative to first adapt the software to accommodate those
changes. Architecture improvement of existing software is
therefore becoming more and more important.

This paper describes a two-phase process for software
architecture improvement, which is the synthesis of two
research areas: the architecture visualisation and analysis
area of Philips Research, and the transformation engines
and renovation factories area of the University of Amster-
dam. Software architecture transformation plays an im-
portant role, and is to our knowledge a new research topic.
Phase one of the process is based on Relation Partition Al-
gebra (RPA). By lifting the information to higher levels
of abstraction and calculating metrics over the system, all
kinds of quality aspects can be investigated. Phase two
is based on formal transformation techniques on abstract
syntax trees. The software architecture improvement pro-
cess allows for a fast feedback loop on results, without the
need to deal with the complete software and without any
interference with the normal development process.

Keywords: software architecture, software recovery,
software rearchitecting, software architecture transforma-
tion

1 Introduction

Royal Philips Electronics N.V. is a world-wide company
that develops low-volume professional systems (such as
communication systems and medical systems) and high-
volume consumer electronics systems (like digital set-top
boxes and television sets). Software plays an increasingly
important role in all these systems.

In the domain of high-volume electronics the point has
been reached at which it is no longer possible to develop
each new product from scratch. The software architec-
ture of new products is of great importance with respect
to satisfying the demands for increasing functionality with
decreasing time-to-market. Design for reuse and open ar-
chitectures are of the utmost importance with respect to
software architectures for product lines [BCK98].

In the domain of professional systems this turning point
was already reached more than ten years ago. At the time
when these large software systems were developed, most
of the current software architecture techniques were not
available. The old software is nevertheless still used in the
development of new products. Current products are more
and more feature-driven, and must therefore meet high
requirements with respect to the flexibility and maintain-
ability of the software.

Since we want to accommodate future changes in the
software in both domains, there is a need for software ar-
chitecture improvement. This paper describes a new soft-
ware architecture improvement process that combines two
research areas.

The main topic of this paper is the description of a
two-phase process for recovering and improving software
architectures, with a clear distinction between architec-
ture impact analysis (phase one) and software architec-
ture transformations (phase two). Architecture impact
analysis uses a model based on Relation Partition Alge-
bra (RPA [FO94, FK098, FO99, FK99]). Software archi-
tecture transformations use formal transformation tech-
niques, and aim at modifying the software to meet the

new architecture requirements [BKV96, BSV97, SV98,
BKV98, DKV99, SV99a, SV99b, SV99c, SV99d].

The paper is structured as follows. In Section 2 a gen-
eral description of the process for software architecture
improvement is given. Section 3 describes an example to
illustrate this process. In Section 4 issues related to ar-
chitecture impact analysis are discussed. Section 5 focuses
on the software architecture transformations and describes
ideas for a set of basic transformations that are of interest
for these kinds of software architecture improvements. Fi-
nally, related work is described and some conclusions are
given.

Acknowledgements

The authors would like to thank Reinder Bril, Loe Feijs,
Peter van den Hamer, Jaap van der Heijden and Joachim
Trescher for reviewing previous versions, and the fruitful
discussions that helped us to improve this paper.

2 Improvement Process

We need to address a number of questions related to the
type of software systems under investigation:

¢ How do we make software architectures of existing
systems explicit?

e How do we realise and measure improvement?

e How can we make changes in the software without in-
troducing new defects and without spending too much
time?

The process which in our opinion can answer these ques-
tions is depicted in Figure 1. Before we give a detailed
description of the steps, we will give some definitions and
assumptions on which this process is based. We adhere to
the terminology proposed by Chikofsky and Cross [CC90].

To improve software architecture we must first have a
described software architecture, which is an explicit de-
scription of requirements of the system from a software
architecture point of view [SNH95, Kru95]. For large soft-
ware systems a software architecture description is usually
not available. Software architecture recovery or reverse ar-
chitecting [Kri97, Kri99] is the process that extracts such
a description from the software.

Rearchitecting is the process of changing the software ar-
chitecture. Software architecture improvement is the pro-
cess that makes changes in the architecture in such a way
that it improves the software in one or more of its quality
aspects. Quality aspects are for instance the comprehensi-
bility of the software for the developers, the extensibility
of the software with new features and the reusability of its

parts. Quality aspects are usually accompanied by met-
rics. Using the proper metrics we can measure improve-
ment by comparing the values before and after the change.
Defining good metrics is a research topic beyond the scope
of this paper. To experiment with different kinds of met-
rics and changes we need a good process, supported by
tooling.

Changes can affect many parts of the software. Before a
change is executed, an architect must know exactly which
parts of the software will be affected. Also important is
the cost of implementing the change. Architecture impact
analysis is the process of calculating the consequences of
an architecture change before applying it to the software.
If the architect can track the impact of a change, then
it is also possible to automate the actual changing of the
software. Automation can help to increase the quality
and reduce the cost of implementing the change. Since we
do not want to keep modifying the software during each
experiment, it is better to use an abstract model of the
software.

At Philips we have many years of experience using Re-
lation Partition Algebra [FO94, FK098, F0O99, FK99],
which involves a mathematical model based on sets and
relations and has proven to be quite adequate for impact
analyses of this kind. Using a model of the existing soft-
ware allows for fast feedback of the impact without the
need to modify the software.

The software architecture improvement process that we
propose makes a distinction between architecture impact
analysis on the one hand and software architecture trans-
formations on the other. Figure 1 shows the software ar-
chitecture improvement process. Each of the steps in the
process (corresponding to the numbers in the figure) will
be described successively. An example using the process
will be described in Section 3.

Step 1: extract

The software architecture description is extracted from the
software (source code, implementation environment, nam-
ing and coding conventions, etcetera) and from the archi-
tects by conducting interviews. We first have to define
what such a software architecture description is. In gen-
eral, it describes the relations between so-called design en-
tities, for instance a use relation. Design entities are levels
of abstraction that constitute some form of hierarchy or
part-of relation, like layers, components, modules, func-
tions. Each software architecture has its own terminology.
The result of the extract step is an RPA model.

Reci P 3: submit
ecipe <

N

2a: evaluate 2b: change

AN

RPA
model

4: transform

1: extract

Software Architecture
Transformation

Architecture Impact
Analysis

Figure 1: Software Architecture Improvement

Step 2a: evaluate

The RPA model is evaluated. The evaluation gives an
image of the software architecture as it is reflected by
the RPA model of the software. Metrics corresponding
to quality aspects can be calculated. Also, structures can
be visualised, for instance using box-arrow diagrams. The
architect can now form ideas on how to change the RPA
model in order to improve one or more of the quality as-
pects. Although actions like calculating metrics and build-
ing structure diagrams can be automated, the actual de-
cisions must be made in an interactive process with the
architect.

Step 2b: change

Changes are made in the RPA model. Making changes in
an abstract model of the software (like RPA) makes it eas-
ier to try out ideas, rather than make the changes in the
software directly. The results are available more quickly
and the software is not corrupted in the process. The ar-
chitect can try different changes and use backtracking if
a change does not lead to the desired improvement of the
software architecture. A subsequent evaluate step results
in metrics or diagrams of the new model that can be com-
pared with the old model. Several changes can be stacked
by repetitively executing a change followed by an evaluate
step.

Step 3: submit

The changes that have been made in the RPA model are
now used to submit a recipe. A recipe is an ordered list
of transformations that have to be performed on the soft-
ware. Once we have developed a set of basic transforma-
tions for each useful change in the RPA model, the submit
step is rather trivial. Finding good basic transformations
will be a major topic of future research. The architect can
decide to submit several of these recipes, before starting
the transform step. However, eventually the recipes must
be executed in the order of their creation.

Step 4: transform

A recipe is used to transform the software. The ba-
sic transformations in the recipe are executed in the or-
der of their occurrence. In the implementation, each of
these basic transformations can be subdivided into sev-
eral language-dependent transformations. Automating
the transform step of the software architecture improve-
ment process eliminates errors otherwise caused by hu-
mans and is much faster.

Once the transform step has been completed for all
recipes, the software again reflects the RPA model in such
a way as if the RPA model had been extracted from the
changed software. The process for software architecture
improvement can start again, but the extract step can
now be skipped, on the assumption that the tool-chain is
error-free. Note that by logging the transformations made
in the software, the architect can present the changes to
the software crew responsible for maintenance.

3 Example

We want to clarify the process described in Section 2 with
an example that reflects aspects of a real system. Let us
consider a system that is hierarchically decomposed into
the following design entities: subsystems, modules and
units. In Figure 2 the decomposition is described in a
UML [Fow97] class diagram, which states that a subsys-
tem consists of one or more modules. We will use italics
for the names in the example and typewriter style for
filenames and code fragments.

The system consists of for instance 1518 units contain-
ing software, which are written in different programming
languages, to name a few: Fortran, Pascal, PL/M, Chill,
SDL, SQL, Prom, several assemblers, Make, RCS and
Script. Units use each other by for instance calling a func-
tion. An import statement reflects a use relation between

Figure 2: Example: Hierarchical Model

I e N B B N . B

Cl

archiving

|

printing

archiving printing

Old New

Figure 3: Module Use-Relation

units, for instance in the programming language C [KR8§]
unit7.c can contain a statement
#include "unit3.h".

This means that unit7 uses unit3. (In C a unit consists of
a header file, containing function declarations, and a body
file, containing function definitions.) The system decom-
position is expressed in a part-of relation, for instance the
pair <unit7, mod3> is a member of that relation, which
means that unit7 is contained in (part of) mod3.

Idea 1:

A unit U, containing archiving-related functionality, is
located in the printing module and the architect consid-
ers moving unit U to the archiving module. To simulate
the consequences of this change the architect modifies the
RPA model by updating the part-of relation: <U, print-
ing> is replaced by < U, archiving>. In Figure 3 we see
on the left the original use relation on module level and on
the right we see the new (simulated) view of the system.

After the evaluation of the result, the architect decides
to transform his or her idea into a recipe for changing

represents has
System (E--—————— Version F————————————————— 1

enerates

I a

PR N

v
‘ ObjectFile

BodyFile

HeaderFile
1 1

Figure 4: Build Description

Executable

Library ‘

the software. To explain the required modification in the
software we first have to discuss how the design entities
map onto the elements of the software archive, and explain
the build process.

Figure 4 shows a UML class diagram of the relationships
of the build description. A version of the software consists
of a number of directories in which files reside. Further-
more, a build description belongs to a version, which de-
scribes how objects, executables and libraries are created
from the software files.

We recall that in the programming language C a unit
consists of a header file and a body file. A module is not
explicitly available in the archive, but a filename prefix
refers to the module name. A subsystem is reflected by a
directory and a system maps onto a version. To move unit
U from the printing module to the archiving module, we
have the following recipe with changes.

Recipe 1:

1. Rename the files of unit U so that they get the proper
prefix.

2. Move the files of unit U to the directory (subsystem)
to which the archiving module belongs.

3. Change all import statements in all the units accord-
ing to the newly created name of the header file of
unit U.

4. Adapt the build description (change file names, adapt
include paths, etcetera).

It is possible to modify the software by hand by follow-
ing the recipe, but this is a tedious and error-prone task.
For large systems, the build description may consist of
dozens of makefiles, which must all be analysed and pos-
sibly adapted. Moreover, worst case 1518 units may need

to be adapted to include the proper import statements.
For this relatively simple architecture transformation we
already need tools to change the software.

Idea 2:

In legacy systems, functions may be organised in an
arbitrary unit. During construction, a developer is some-
times pressured by time constraints to put a specific func-
tion in one unit while semantically it would fit better in
another unit. The architect decides to move the function
to the correct unit, say function F' in unit U to unit X.
The detailed recipe for applying this idea to the software
depends heavily on for instance the implementation lan-
guages. Let us again take the programming language C
as an example, then more specifically the recipe contains
the following entries.

Recipe 2:

1. Move the declaration and definition of function F to
the header file and body file of unit X respectively.

2. Change the #include statements in files that use
function F.

3. Adapt the build description files.

Referring to step 1 in the recipe: moving the function
declaration and definition is not trivial, and the types
used in the function have to be within the scope of the
new location, which means relocating type definitions or
adding additional #include statements. The same holds
for global variables and macros that are being used. Al-
though idea 2 is similar to idea 1 (the same change but at
a different level of abstraction) the recipes are different.
Therefore we must consider these changes to be different.
In general we can say that changes are dependent on the
applied level of abstraction.

Idea 3:

Several units in the software contain identical functions
or so-called function clones. The architect considers re-
moving all but one, and changing the use relation of the
units accordingly. The architect uses metrics for cohesion
and coupling to determine which of the function clones
should remain in the software. Once he or she has deter-
mined which function is the best choice (by trying one and
using backtracking before trying the next), the following
recipe can be executed.

Recipe 3:

1. Change the #include statements in the files that use
one of the functions that will be removed.

2. Remove the function-clones.

3. Adapt the build description.

The impact analysis of a change of this kind has been exer-
cised and implemented in the Abstract-level Re-clustering
Tool (ART [Bro99]) developed at Philips Research, which
calculates the impact of clone elimination and re-clustering
based on the cohesion and coupling metrics.

In the case of embedded systems we should also consider
the target system files (executables, dynamic libraries,
scripts). These files are generated during construction and
copied to the appropriate location on the target (for in-
stance an EPROM). In a first experiment we decided to
keep the target executables the same, i.e. not to change the
communication protocols between the executables (which
may occur if the architect moves a function from one target
to another). In a next experiment, it is possible to also
model the execution view of the systems, including the
communication, after which the impact of such changes
can also be viewed.

In this example we have given three ideas that are of
interest to an architect after inspecting the views of the
model (like the one presented in Figure 3). One can also
consider more automation by introducing algorithms that
try several changes using architectural metrics. Architec-
tural metrics also abstract from the details of the system
and can indicate some quality aspect of the system at some
level of abstraction.

4 Architecture Impact Analysis

Software architecture impact analysis is concerned with
measuring change on an architectural level. In our process,
this not only means visualising the parts of the architec-
ture that are affected by a change, but also comparing the
before and after situations. Impact analysis covers steps
2a and 2b of Figure 1. In these steps the software architect
interacts with the RPA model. If he or she sees possibili-
ties for improvements, changes can be made in the model
and the results can be evaluated and compared with the
original. Before the software architect can start interact-
ing with the RPA model, information has to be extracted
from the software. The extraction is mostly an automated
process.

Scripts can be used to extract information from the
software often in combination with commercial tools, like
QAC [Pro96], Sniff [Tak95] and the Microsoft BSC kit.
The type of information extracted is for instance the use
relation between functions, otherwise known as the call-
graph. The part-of relation for each level of abstraction
(Figure 2) can also be extracted. Following the example,

P57
A b
oo o :

Lifted Use-Relation

Use-Relation

Figure 5: (Multi) Use-Relation

the part-of relation between units and modules can be ex-
tracted by scanning the filenames of the units for their
prefix. Simpler is the part-of relation between modules
and subsystems, which relates to files in directories. Note
that the same module prefix may have been used in dif-
ferent directories, which in the example is considered an
architecture violation that needs to be corrected in a first
transformation.

Using RPA expressions, it is possible to add high-
level information to the RPA model. For instance, the
use relation between units can be calculated by lift-
ing the use relation between functions using the part-
RPA has a
rich set of operators to calculate the high-level informa-
tion [FO94, FKO98, FO99, FK99].

It is also possible to add accounting information by us-
ing multi-relations [FK99], so that the architect knows
how many static function calls exist from one unit to an-
other. Figure 5 shows an example. The left-hand side
shows a use relation of units. The right-hand side shows
the lifted use relation (module level) with accounting in-
formation.

One way of evaluating the recovered architecture is us-
ing architectural metrics for the different quality aspects.
Metrics are defined using an RPA expression, which can
be executed on the RPA model. An example of a metric is
the cohesion of a unit, which can be expressed as the quo-
tient of the number of internal static function calls and the
number of all possible internal static function calls. Some
other examples of metrics are listed below.

of relation between functions and units.

¢ A metric for coupling defines the rate of external con-
nections. The coupling metric, like the metric for co-
hesion, can be defined for different levels of abstrac-
tion.

e A metric for layering indicates the rate of up-calls in
a layered architectural model.

Another way of evaluating the recovered architecture is

by using box-arrow diagrams as in Rigi [SWM97], the
Software Bookshelf [FHK*97] and 3D visualisation [F.J98].
Figure 3 shows how the old and new situations of a sim-
ple use relation between modules are related. Restricting
views and zoom functions can be calculated on the RPA
model to let the software architect focus on the problems
at hand. Note that architecture impact analysis is a highly
interactive process that cannot be completely automated.
The final decisions have to be made by the architect. The
process can only show possible changes and their impact.
An example of a valuable change in the model is function-
clone elimination as described in the example of Section 3.

The process for software architecture improvement, sup-
ported by the proper tooling, gives us an appropriate
framework for investigating the impact of changes on an
architectural level, as well as a basis for defining new and
better metrics for the different quality aspects.

5 Software Architecture Transfor-
mations

The goal of impact analysis performed on a model of
the software architecture is to identify valuable architec-
ture changes, i.e. changes that lead to an improved soft-
ware architecture. Once one or more valuable architec-
ture changes have been identified in the model, we want
to adapt the software of the existing system accordingly.
For this purpose a recipe is used, which describes how to
translate changes performed in the model of the software
architecture into changes in the actual software.

A recipe is a generic description of a so-called architec-
ture transformation. An architecture transformation is a
transformation in the software, which has an impact on
the architectural model of the system.

An interesting property of architecture transformations
is that they can be combined, so larger architecture trans-
formations can be constructed as a sequence of smaller
architecture transformations (see the example below).

Our goal is to identify a set of useful architecture trans-
formations. This set will include basic architecture trans-
formations (i.e. architecture transformations that are not
described as a sequence of smaller architecture transforma-
tions) and composite architecture transformations. Com-
posite transformations consist of a number of basic trans-
formations, but have a right of existence of their own
(mostly because they are frequently used). We expect this
set of useful architecture transformations to grow in time
as we gain more insight into the kind of transformations
needed. The basic and composite architecture transforma-
tions can be seen as building blocks, from which recipes
can be constructed.

There are several advantages of constructing recipes as
sequences of architecture transformations over construct-
ing them by hand.

e An architecture transformation provides a standard
solution, which can be reused. Constructing a recipe
for a certain change, as a fixed sequence of architec-
ture transformations, guarantees that this change will
always be performed in the same way. This will prob-
ably makes it easier to understand the architecture of
the transformed software.

¢ Architecture transformations are building blocks, so
recipes can be composed as a sequence of architecture
transformations, which saves development time.

¢ Implementing small basic architecture transforma-
tions is much simpler than implementing complete
dedicated recipes.

We will now give some examples of possible architecture
transformations, both basic and composite, based on the
example given in Section 3.

CreateUnit transformation

This basic transformation creates the files for a new and
empty unit U. Since the unit is not yet used anywhere, cre-
ating it does not have an impact on the build description.
In the programming language C, a new body file U. c and
header file U.h are created.

DeleteUnit transformation

This basic transformation deletes the files of a unit U
given the precondition that the functions in unit U are
no longer being used. The build description need not be
altered. For the programming language C, the body file
U.c and the header file U.h are deleted.

RenameUnit transformation

This basic transformation renames the files of a unit
U to a unit V given the precondition that unit V does
not yet exist. If unit V does exist, it will be overwrit-
ten. Every unit X that uses functions of unit U needs to
import unit V instead. In the programming language C,
the #include "U.h" is replaced by #include"V.h" in the
files of unit X. In the build description, every occurrence
of unit U is replaced by unit V.

IsolateFunction transformation

This basic transformation isolates one function F' from
unit U and relocates it to an existing empty unit V. Every
unit X that uses function F' needs to import unit V. If unit
X does not use any other functions of unit U, the import

of unit U can be removed. In the programming language
C, the statement #include"V.h" is added to the files of
unit X. In the build description, a dependency with unit
V is added to unit X.

CombineUnits transformation

This basic transformation combines two units U and
V into an existing empty unit W (not equal to U and
V). Every unit X that uses functions from either unit
U or V needs to replace the imports with an import of
unit W. In the programming language C, the statements
#include"U.h" and #include"V.h" are removed from
the files of unit X, and a statement #include"W.h" is
added. In the build description, every occurrence of unit
U and unit V is replaced by unit W.

MoveFunction transformation

This composite transformation moves a function F from
unit U to unit V. It can be constructed using the previ-
ously defined basic transformations.

1. CreateUnit T}
. IsolateFunction F' from unit U in unit T}
. CreateUnit 15

. CombineUnits 77 and V into unit T5

2
3
4
5. DeleteUnit T}
6. DeleteUnit V
7

. RenameUnit T5 to unit V

Once the ideas have been evaluated and turned into
recipes, they can be expressed in architecture transforma-
tions as we have seen above. So in principle it is now clear
what has to be done in the software. Implementing the
transformations is another issue. In order to make auto-
matic changes in the complete software, we implement a
software renovation factory. This is an architecture that
enables rapid implementation of tools that are typical of
code changes. The construction of such factories is be-
yond the scope of this paper. The interested reader is re-
ferred to [BKV96, KV98, BKV98 DKV99, SV99b, SV99a,
BD99].

The systems we are dealing with are mixed-language ap-
plications. We have to construct a reengineering grammar
that understands all applied languages. [SV99a] describes
a process and tools generating a reengineering grammar
from the source code of compilers. In that paper, 20 sub-
languages play a role. When the grammar has been de-
fined, we can generate software that we call a software ren-
ovation factory; see [SV99b] for an overview and [BD99]

for applications. Setting up such a factory takes time for
systems containing dozens of different languages. The in-
dividual grammars of the compilers and scripting facilities
need to be reverse engineered. The actual generation of
the software factories is automatic.

To be able to carry out basic architecture transforma-
tions we can annotate some of the software with so-called
scaffolding information ([SV99c]). For example, when a
function is moved to another file, we can annotate all calls
to this function in the source files so that we know in a
later stage that we can turn those calls into other calls.
It will be clear that the architecture transformations are
implemented as complete assembly lines containing many
small steps.

To give an example of architecture transformations
using scaffolding, when we generate a software renova-
tion factory from a modular grammar, the entire sys-
tem consists of grammar files, and the transformation is
called Gen-Factory. The implementation parses the en-
tire grammar system using scaffolding and the transforma-
tion is effected throughout the entire system in about 200
different steps. Similar principles apply to the architecture
transformations for systems other than those consisting of
grammar files.

6 Related Work

In Chapter 19, Software Architecture in the Future, of
the textbook [BCK98] architecture migration technology
is mentioned. Our paper is a first step towards this migra-
tion technology of the future, and to our knowledge this
is a new subject. Of course, parts of the subject of archi-
tecture transformations already exist. To mention a few
efforts to analyse software architectures: Rigi [SWM97],
The Software Bookshelf [FHK'97], Dali [KC99], and
efforts at Philips Research Labs [Kri97, KPZ99]. A
lot of work has been done on code level; we mention
Sneed’s Reengineering Workbench [Sne98], the TAMPR
system [BHW96], TXL [CHHP91], REFINE [Rea92],
COSMOS [Eme98], RainCode [Rai98], the ASF+SDF
Meta-Environment [K1i93], Elegant [Aug93, Phi93].

The combination of architecture analysis tools and tools
that work on the code level is an issue that gained at-
tention at SEI under the name of CORUM [WOL"98,
KWC98]. This effort aims at the interoperation of tools
by a common format. Our approach differs from theirs
in that we do not focus on interoperability, like sharing a
parser both for architecture impact analysis and for code
transformations. Instead of reusing parser output, we fo-
cus on reusing the source code of the parser, so that we
can change the parser into a parser appropriate for reengi-

neering [SV99a].

Our approach is more in line with the COSMOS ap-
proach for solving the Y2K problem. After analysis, COS-
MOS returns a prescription of what needs to be done to
the code. This prescription can be carried out by hand,
or in some cases it can be executed automatically. A dif-
ference is that we focus on the transformation’s impact on
the architecture, which is mostly not the case with Y2K
repair engines.

In the impact phase (phase one) we adapt our RPA
model in order to evaluate the effect of modifications of
the architecture beforehand. This is comparable to the
Software Architecture Analysis Method or SAAM [BCK98,
Ch. 9]. The mathematical foundations of RPA [FO94,
FKO98, FO99, FK99] are similar to the mathematical
foundations of [Hol98].

7 Conclusions

The process for software architecture improvement that we
have proposed in this paper is completely implementation-
independent. The techniques that we combine still leave
room for other possibilities. =~ We have chosen Rela-
tion Partition Algebra as an abstract model of the soft-
ware because we have had good experiences with the
model and its usefulness in many applications. Re-
lated work as in [Hol98] can also be used. The archi-
tecture transformations are implementation-independent
themselves. Only at the lowest level they are expressed
in small programming-language-specific transformations.
Any kind of compiler technology can be used for the imple-
mentation of these programming-language-specific trans-
formations. We named a few in Section 6. We have chosen
the software factory technology with its assembly lines be-
cause it comes close to our views on decomposable trans-
formations.

We have shown that the process for software architec-
ture improvement is flexible in experimenting with new
metrics and changes, in order to find those best suited
for the systems we investigate. By forming ideas and try-
ing them out in the model we can perform an early impact
analysis. The changes made in the model are submitted as
recipes containing high-level architecture transformations,
which themselves consist of basic and composite transfor-
mations.

The process for software architecture improvement sepa-
rates architecture impact analysis from architecture trans-
formations, which presents the following advantages from
making changes in the software directly.

e During idea generation there is no interference with
the daily work of the software developers.

e Impact analysis is performed on an abstract view of
the system, which greatly reduces the amount of in-
formation. We can gain the insight we need, without
being distracted by the details of the software.

e Making changes in a model gives us the opportunity
to backtrack in the flow of ideas.

¢ The feedback of the changes is almost immediate.

e Last but not least, the process is open to future re-
search results relating to finding appropriate architec-
tural metrics and changes.

The feasibility of the approach has already been proven
in [Bro99] for clone elimination. In our future work we
intend to test and implement this process for software ar-
chitecture improvement. Our work will comprise the fol-
lowing steps.

e Development of an impact analysis system on top of
existing RPA functionality.

e Implementation of a framework for logging and back-
tracking changes.

e Definition of proper basic architecture transforma-
tions.

e Implementation the basic architecture transforma-
tions.

e Evaluation of the process for a real-world system.

References

[Aug93] L. Augusteijn. Functional Programming, Program
Transformations and Compiler Construction. PhD the-
sis, Eindhoven University of Technology, 1993.

[BCK98] L. Bass, P. Clements, and R. Kazman. Software Archi-
tecture in Practice. Addison-Wesley Publishing Com-
pany, 1998.

[BD99] J. Brunekreef and B. Diertens. Towards a User-
controlled Software Renovation Factory. In P. Nesi and
C. Verhoef, editors, Proceedings of the Third European
Conference on Maintenance and Reengineering, pages

83-90, 1999.

[BHW96] J.M. Boyle, T.J. Harmer, and V.L. Winter. The TAMPR
Program Transformation System: Design and Applica-
tions. In The SctTools’96 Electronic Proceedings, 1996.
http://www.oslo.sintef.no/SciTools96 / Contrib/boyle/
scitlpap.912.ps.

[BKV96] M.G.J. van den Brand, P. Klint, and C. Verhoef. Core
Technologies for System Renovation. In K.G. Jeffery,
J. Kral, and M. Bartosek, editors, SOFSEM’96: Theory
and Practice of Informatics, volume 1175 of LNCS,
pages 235-255. Springer-Verlag, 1996.

[BKV98]

[Bro99]

[BSV97]

[CC90]

[CHHP91]

[DKV99)]

[Eme98]

[FHK197]

[FJ98]

[FK99]

[FKO98]

[FO94]

[FO99)

[Fow97]

[Hol98]

Available at: http://adam.wins.uva.nl/"x/sofsem/sofsem.html.

M.G.J. van den Brand, P. Klint, and C. Verhoef. Term
Rewriting for Sale. In C. Kirchner and H. Kirchner,
editors, Second International Workshop on Rewriting
Logic and its Applications, Electronic Notes in Theoret-
ical Computer Science. Springer-Verlag, 1998. Available
at: http://adam.wins.uva.nl/"x/sale/sale.html.

J.W. Brook. Design and Implementation of a Tool for
Re-clustering. Master’s thesis, Eindhoven University of
Technology, department of Mathematics and Computer
Science, 1999.

M.G.J. van den Brand, M.P.A. Sellink, and C. Ver-
hoef. Generation of Components for Software Ren-
ovation Factories from Context-free Grammars. In
I.D. Baxter, A. Quilici, and C. Verhoef, editors, Pro-
ceedings of the Fourth Working Conference on Re-
verse Engineering, pages 144-153, 1997. Available at
http://adam.wins.uva.nl/"x/trans/trans.html.

E. Chikofsky and J. Cross. Reverse Engineering and
Design Recovery: A taxonomy. IEEE Software, pages
13-17, January 1990.

J.R. Cordy, C.D. Halpern-Hamu, and E. Promislow.
TXL: A Rapid Prototyping System for Programming
Language Dialects. Computer Languages, 16(1):97-107,
1991.

A. van Deursen, P. Klint, and C. Verhoef. Research
Issues in the Renovation of Legacy Systems. In J.-P.
Finance, editor, Fundamental Approaches to Software
Engineering, LNCS. Springer-Verlag, 1999.

Available at: http://adam.wins.uva.nl/"x/etaps/etaps99.html.

Emendo Software Group, the Netherlands.
Emendo Y2K White paper, 1998. Available at

http://www.emendo.com/.

P. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogian-
nis, H. Muller, J. Mylopoulos, S. Perelgut, M. Standley,
and K. Wong. The Software Bookshelf. IBM Systems
Journal, 36(4):564-593, 1997.

L.M.G. Feijs and R.P. de Jong. 3D Visualization of
software architectures. Communications on the ACM,

41(12):73-78, December 1998.

L.M.G. Feijs and R.L. Krikhaar. Relation Algebra with
Multi-Relations. International Journal Computer Math-
ematics, 70:57-74, 1999.

L.M.G. Feijs, R.L. Krikhaar, and R.C. van Ommering.
A relational approach to Software Architecture Analysis.
Software Practice €& Ezperience, 28(4):371-400, April
1998.

L.M.G. Feijs and R.C. van Ommering. Theory of Re-
lations and its Applications to Software Structuring.
Philips internal report, Philips Research, 1994.

L.M.G. Feijs and R.C. van Ommering. Relation Parti-
tion Algebra — mathematical aspects of uses and part-of
relations —. Science of Computer Programming, 33:163—
212, 1999.

M. Fowler. UML Distilled - applying the standard object
modeling language. Addison-Wesley Publishing Com-
pany, 1997.

R.C. Holt. Structural Manipulations of Software Archi-
tecture using Tarski Relational Algebra. In A. Quilici
and C. Verhoef, editors, Proceedings of Fifth Work-
ing Conference on Reverse Engineering, pages 210-219.
IEEE Computer Society, 1998.

[KC99]

[K1i93]

[KPZ99)]

[KR8S]

[Kri97)

[Kri99]
[Kru95]

[KV98]

[KWC98]

[Phi93]

[Pro96]
[Raio8]
[Rea92]

[Sned8]

[SNHO5]

[SV98]

R. Kazman and J. Carriére. Playing Detective: Re-
constructing Software Architecture from Available Ev-
idence. Journal of Automated Software Engineering,
6(2):107-138, April 1999.

P. Klint. A meta-environment for generating program-
ming environments. ACM Transactions on Software En-
gineering and Methodology, 2(2):176-201, 1993.

R.L. Krikhaar, M.P. Pennings, and J. Zonneveld. Em-
ploying Use-cases and Domain Knowledge for Compre-
hending Resource Usage. In P. Nesi and C. Verhoef,
editors, Proceedings of the Third European Conference
on Maintenance and Reengineering, pages 14-21, 1999.

B. Kernighan and D.M. Ritchie. The C programming
Language. Prentice Hall, second edition, 1988.

R.L. Krikhaar. Reverse Architecting Approach for Com-
plex Systems. In M.J. Harrold and G. Visaggio, editors,
Proceedings of the International Conference on Soft-
ware Maintenance, pages 4-11. IEEE Computer Society,
1997.

R.L. Krikhaar. Software Architecture Reconstruction.
PhD thesis, University of Amsterdam, 1999.

P. Kruchten. The 4 + 1 View Model of Architecture.
IEEE Software, pages 42-50, November 1995.

P. Klint and C. Verhoef. Evolutionary software engi-
neering: A component-based approach. In R.N. Hor-
spool, editor, IFIP WG 2.4 Working Conference: Sys-
tems Implementation 2000: Languages, Methods and
Tools, pages 1-18. Chapman & Hall, 1998. Available
at: http://adam.wins.uva.nl/"x/evol-se/evol-se.html.

R. Kazman, S.G. Woods, and J. Carriere. Requirements
for Integrating Software Architecture and Reengineer-
ing Models: CORUM II. In M.H. Blaha, A. Quilici,
and C. Verhoef, editors, Proceedings of the Fifth Work-
ing Conference on Reverse Engineering, pages 154-163,
1998.

Philips Electronics N.V., the Netherlands. The Elegant
Home Page, 1993.

[SV99a]

[SV99b]

[SV99c]

[SV99d]

[SWM97]

[Tak95]

[WOL198]

http://www.research.philips.com/generalinfo/special /elegant /

elegant.html.

Programming Research Ltd. QAC Version 3.1 User’s
Guide, 1996.

RainCode, Brussels, Belgium. RainCode, 1.07 edition,
1998. ftp://ftp.raincode.com/cobre.ps.

Reasoning Systems, Palo Alto, California. Refine User’s
Guide, 1992.

H.M. Sneed. Architecture and functions of a commer-
cial software reengineering workbench. In P. Nesi and
F. Lehner, editors, Proceedings of the Second Euromicro
Conference on Maintenance and Reengineering, pages
2-10, 1998.

D. Soni, R. Nord, and C. Hofmeister. Software Architec-
ture in Industrial Application. In Proceedings of the In-
ternational Conference on Software Engineering, pages
196-207, 1995.

M.P.A. Sellink and C. Verhoef. Native patterns. In M.R.
Blaha, A. Quilici, and C. Verhoef, editors, Proceedings of
the Fifth Working Conference on Reverse Engineering,
pages 89-103. IEEE Computer Society, 1998. Available
at http://adam.wins.uva.nl/“x/npl/npl.html.

M.P.A. Sellink and C. Verhoef. An Architecture
for Automated Software Maintenance. In D. Smith
and S.G. Woods, editors, Proceedings of the Seventh
International Workshop on Program Comprehension,
pages 38-48, 1999.

Available at http://adam.wins.uva.nl/“x/asm/asm.html.

M.P.A. Sellink and C. Verhoef. Generation of Software
Renovation Factories from Compilers. In H. Yang and
L. White, editors, Proceedings of the International
Conference on Software Maintenance, 1999. Elsewhere
in this volume.

Available at http://adam.wins.uva.nl/“x/com/com.html.

M.P.A. Sellink and C. Verhoef. Scaffolding for Software
Renovation. Technical Report P9904, University of Am-
sterdam, Programming Research Group, 1999. Available
via http://adam.wins.uva.nl/ "x/scaf/scaf.html.

M.P.A. Sellink and C. Verhoef. Towards Auto-
mated Modification of Legacy Assets. In N. Callaos,
editor, Proceedings of the Joint Third World Mul-
ticonference on Systemics, Cybernetics and In-
formatics and the Fifth International Conference
on Information Systems Analysis and Synthesis
(SCI/ISAS’99). International Institute of Informat-
ics and Systemics, 1999. To appear. Available at
http://adam.wins.uva.nl/ x/aml/aml.html.

M.D. Storey, K. Wong, and H.A. Mueller. Rigi: A Visu-
alisation Environment for Reverse Engineering. In Pro-
ceedings of International Conference on Software Engi-

neering, pages 606-607, 1997.

TakeFive Software. SNiFF+ — User’s Guide and Refer-
ence, 1995.

S.G. Woods, L. O’Brian, T. Lin, K. Gallagher, and
A. Quilici. An Architecture for interoperable Program
Understanding Tools. In S. Tilley and G. Visaggio, ed-
itors, Proceedings of the Sixth International Workshop
on Program Comprehension, pages 5463, 1998.

