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Preface

Motivation

Over the past few years, software architecture has become a major topic

in embedded systems development. It is commonly agreed that a good

software architecture is indispensible for the development of product fami-

lies [BCK98] of software-intensive systems. Our company, the Royal Philips

Electronics, develops a large range of software intensive systems from med-

ical systems to television sets.

Originally, medical systems were hardware systems with a small amount

of software, but in recent years the software has acquired a much more

important place in the system, e.g. in the reconstruction of medical images

obtained with an X-ray camera. Similarly, at �rst, televisions did not

contain any software, but nowadays these systems are controlled mainly by

software, providing e.g. automatic tuning of TV channels.

From an industrial point of view, products containing similar functionalities

will have to be introduced on the market ever more rapidly (short lead

time). A high level of hardware and software reuse is hence a prerequisite

for survival in the competitive market. Di�erent customers want di�erent

products, each with their own characterics, which may even be expressed in

non-functional product means, for example the di�erent natural languages

as applied in the user interface.

Quality is always of great importance for products. The product's quality

must be continuously monitored and where possible improved. Software

is becoming a major part of all these products and quality activities are

consequently shifting from hardware to software. Short lead times of prod-

ucts and high quality are in fact conicting requirements which must be

carefully managed.



ii Preface

The software of many Philips' products is already undergoing changes as

indicated above (increased functionality implemented in software, increased

product diversity, decreased lead time and improved quality). At the time

of these product's initial development, in some cases decades ago, the soft-

ware architecture did not play the important role it has today. In those

days, the architecture was often not handled explicitly in the engineering

phase. At present, the software architecture is of major importance for

product development to be able to manage the changes listed above. The

spectrum of possible solutions to �ll the gap between the absence of an

explicit architecture and the need for such an architecture lies between:

� rebuilding the system from scratch and taking care of software archi-

tecture explicitly;

� reconstructing an architecture from the implicit architecture and im-

proving this architecture by re-architecting the system.

In this thesis, we focus on the latter side of this spectrum. Our ultimate

objective is to de�ne a method for reconstructing software architecture of

existing systems. Reconstruction of software architectures requires synergy

between tools and domain experts [Cor89, Kri97, SWM97, KC98]. There-

fore, we may conclude that there cannot be such a thing as a full-egded

architecture reconstruction tool, though tools that support reconstruction

are indispensable.

We propose to make a clear separation between extraction of information

from a system and the presentation of the extracted results by means of

a separate abstraction activity. In current research an abstraction activity

is often not recognised as a separate activity. During software architecture

analysis one often wants to query an existing system, e.g. which components

use the functionality of component DB? It is not possible to capture all such

queries in advance. A exible set of abstraction operators helps to formulate

such queries in a expressive way. In this thesis we will use Relation Partition

Algebra to express, amongst other things, such queries.

Research Contributions

In this thesis we present a framework for our software architecture recon-

struction (SAR) method. This framework consists of two dimensions: SAR

levels and views upon software architecture. We de�ne ArchiSpects and

InfoPacks as the components that �t in this framework. For all SAR lev-

els, each of the architectural views contain a number of ArchiSpects and
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InfoPacks. The applicability of this framework is demonstrated by the def-

inition of a number of ArchiSpects and InfoPacks.

By many people in the software community, formal methods are often con-

sidered as inapplicable especially for large real-world systems. Neverthe-

less, we believed in a formal approach to reconstruct software architec-

tures. Therefore, we developed Relation Partition Algebra (RPA) which is

an extension of relational algebra. We showed the applicability of RPA in

di�erent industrial settings, which resulted in several ArchiSpects that are

de�ned in terms of RPA.

Currently, a lot of research is performed on software architectures. This

research contributes to de�ne better software architectures in the di�erent

industrial settings. Besides de�ning a good architecture, one must, in the

various steps of software development, also take care of the proper appli-

cation of this architecture. A formal de�nition of a software architecture

makes it possible to automatically verify the results of software development

(e.g. design and source code) against the de�ned software architecture. Al-

though, currently, we are not able to de�ne the complete architecture in

a formal fashion, we recommend to introduce architecture veri�cation, as

much as possible, in any development process.

History of the Project

In the early nineties, a main research topic of our department was to inves-

tigate, develop and adapt software development methods to build embed-

ded systems (e.g. televisions). During the introduction of a new (formal)

method [Jon88a, Jon88b] for developing software for televisions the need

for information extraction arose. Small programs were written to retrieve

design information from the source code. In those days, visualisation of

software information was also needed. This has resulted in the propri-

etary tool Teddy-Classic (discussed in Appendix C). In fact, Teddy-Classic

was able to display a graph consisting of nodes and edges; nodes represent

modules and edges represent module imports. In a later stage, so-called

duppies (design update proposals) were implemented using shell scripts to

check the consistency of the software structure (an early form of architec-

ture veri�cation). But extraction and checking were still performed on an

ad-hoc basis. From this work arose the need for a mathematical foundation

for making abstractions upon software. This was the embryonic phase of

Relation Partition Algebra; see Chapter 3.
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In 1993, research was started to analyse a public telephony switching system

(Tele) developed according to a dedicated method. The analysis resulted

in a description of the Building Block method. During this research, again,

a need for extraction and abstraction mechanisms for software was recog-

nized. This time, it was needed mainly to identify the concepts behind

the design method. Later, the Building Block method, which we would

nowadays call an architecture method, was partially applied to another

communication system. This meant that we �rst had to analyse the archi-

tectural concepts of this system before we could select and apply the most

a�ecting concepts of the Building Block method.

In later projects, the focus shifted to the development of a uniform approach

or method (based on the extract-abstract-present paradigm) for analysing

the software architecture of existing systems.

Complexity of Systems

In this section we list a number of system's characteristics to give the reader

an impression of the variety of concerns a software architecture has to deal

with. Therefore, in Table 1, we summarize some of the characteristics of

three typical systems of Philips: two professional systems Telecommuni-

cation (Switch) and Medical Systems (Med) and a consumer electronics

system (Cons)1. All of these characteristics play their own role in almost

any architectural decision, or they are an outcome of such a decision (e.g.

the number of subsystems).

The number of customers and the number of di�erent products are given

in the Product View part of the table. In case of professional systems,

each customer gets his or her own dedicated system. But we have used the

de�nition that two products are di�erent only when they di�er signi�cantly

either in hardware or in software.

The Evolutionary View part shows �gures relating to the system's current

age and its expected total lifetime. The release cycle describes the aver-

age time between two major releases. The release footprint indicates the

percentage of �les that have been touched since the last release.

The number of code �les is given in the Code View part of the table.

1It is hard to normalise the data of the di�erent systems; we have handled the �gures in

a non-scienti�c fashion. The table is therefore meant mainly to illustrate the complexity

of systems.
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Switch Med Cons

Product View

# customers 103 103 106

# products 101 101 102

Evolutionary View

system's age/lifetime (years) 15/30 15/30 3/5

release cycle (years) 0:7 0:5 N/A

release footprint (% touched �les) - 60% N/A

Code View

# code �les 4� 103 7� 103 0:6� 103

# lines of code 1:4� 106 2:4� 106 0:4� 106

# programming languages 3 8 2

Module View

# subsystems 8 11 5

# �le imports 32� 103 70� 103 0:8� 103

# external components 0 5 0

Execution View

# operating systems 1 4 1

# (main) computing devices 1 5 3

# software processes > 1000 50 50

Table 1: Characteristics of Large Systems

One can argue about the way how the size of the source code should be

measured, but for our purpose the number of lines su�ces. The number

of programming languages indicates problems that could arise in merging

software parts and e.g. the required educational background of developers.

The Module View part of the table shows the number of subsystems into

which the system is decomposed. The number of �le includes gives an

indication of the interconnectivity between the various software parts. In

some cases parts of the software are built by external parties (external

components) with their typical integration di�culties.

The number of software processes listed in the Execution View deserves

some extra attention. For the Med system, these are software processes

with their own address space, but for the Cons system these are activi-

ties that can be compared with threads (i.e. sharing an address space).

The Switch system has its own operating system supporting light-weight

processes. In the last two systems, the processes are in fact created at

initialisation time, whereas in the Switch system processes are dynami-

cally created during system operation. The number of computing devices

describes the processing units in the system in which software runs.
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Related Work and Tools

In this thesis in appropriate sections, we will relate our work to work of

others. For the reader's convenience, in advance, we will briey discuss,

some closely related work. This short introduction is also meant for readers

who are familiar with that work, to put our work into perspective.

Rigi

Rigi [SWM97] is a tool that supports the extraction of information (e.g.

rigiparse extracts information from C source code) and the presentation

of extracted information (e.g. showing coloured line-box diagrams). After

the initial information has been presented, one can perform some simple

abstractions, e.g. the creation of composites and calculation of complexity

quality measures. Rigi is an open tool, which means that new functionality

can be easily added using the Rigi Command Language. The repository of

Rigi consists of a resource-ow graph, containing di�erent types of vertices

and edges, representing software entities and relations between software

entities.

Rigi can be very useful in the analysis of a system. The standard way

of presenting graphs (equally sized nodes and �xed points for connecting

edges to boxes) could, however, be a drawback. We think reconstructed

architectural information should be presented in a layout which is simi-

lar to the software architecture information as initially documented in the

development group concerned.

The extraction and presentation functionalities of Rigi can be easily com-

bined with our ideas of a separate abstraction activity. For example, the

user interface of Rigi can be extended with a menu and abstraction ma-

chinery to query software.

Reexion Models

Murphy et al. [MNS95, MN97] have described reexion models. A reex-

ion model shows the di�erences and agreements between the engineer's

high-level model and the model of the source code. An engineer de�nes

a high-level model and speci�es how this model maps to source code. A

tool computes a reexion model that shows where the engineer's high-level

model agrees with, and where it di�ers from the source model. A for-
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mal model is used to calculate convergences, divergences, and absences of

relations in the high-level model or the source model.

Reexion models show di�erences between the engineer's mental model of

the system and the as-built model of the system. We will use architecture

ver�cation, which is a process that makes explicit distinctions between the

as-built architecture of the system and the intended architecture of the

system (as de�ned in advance by architects). A similar approach, called

design conformance, is discussed in [MNS95].

Relational Algebra

Holt [Hol96, Hol98] suggests Tarski's Relation Algebra as a theoretical basis

for software manipulations (or in fact he considers manipulation of visual-

isation).

There is a remarkable correspondence between Holt's work and our own

work on Relation Partition Algebra [FO94, FKO98].

Software Bookshelf

The software bookshelf [FHK+97] is a framework for capturing, organiz-

ing, and managing information on the system's software. The bookshelf

framework is an open architecture, which allows a variety of tools to be

integrated, e.g. the Rigi presentation tool. Reverse engineering tools can

populate the bookshelf repository from which information can be retrieved

by other tools. All information transport within this framework is per-

formed via Web protocols.

The open architecture makes this framework interesting for integration with

other approaches, e.g. with our approach as described in this thesis. Web

technology incorporates many presentation and navigation techniques that

are useful for software reconstruction. The software bookshelf distinguishes

three di�erent roles: builder, patron and librarian. We experienced that

these three roles are useful in introducing reconstruction technology in an

organisation.

Dali

Dali [KC98] is an architecture analysis framework containing e.g. Rigi as

a presentation tool. It is based on view extraction, extraction of static and
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dynamic elements from the system, and view fusion. View fusion consists of

combining views in order to achieve new views that are richer and/or more

abstract. Dali contains an SQL database containing the various views. We

consider SQL less accurate for expressing software manipulations. We will

therefore introduce Relation Partition Algebra, which has more accuracy

(e.g. by means of the operations transitive closure and transitive reduction).

Outline of Thesis

In Chapter 1 we discuss the term software architecture. An overview of

some keynote papers is given, including models describing various views

on software architecture. Business goals, objectives and patterns for soft-

ware architecture are presented. The relations between these items are

illustrated in a so-called GOP (Goals, Objectives, Patterns) diagram.

In Chapter 2 we focus on the engineering aspects of software architecture.

We discuss aspects of reverse engineering in general and the aspects of re-

verse engineering software architectures in particular. The global design of

our software architecture reconstruction (SAR) method is discussed, includ-

ing an introduction to the notions of InfoPacks and ArchiSpects (modular

pieces of our method).

In Chapter 3 we discuss the mathematical foundation of our method: Re-

lation Partition Algebra (RPA). RPA is an extension of relation algebra

�ne-tuned for, but certainly not restricted to, software.

In Chapter 4 we focus on the comprehension of existing software architec-

tures. The baseline is a system, typically evolved over �fteen years, which

is not completely known by all of its current developers. A number of

InfoPacks and ArchiSpects are presented.

Chapter 5 addresses re-de�ning the software architecture of an existing

system. Before one can improve, one must clarify the current architecture

and one must de�ne the required architecture. Our reverse architecting

method supports the development of an improvement plan by analysing

the impact of certain changes.

In Chapter 6 a way of managing software architectures is presented: by

verifying whether the design/implementation satis�es the software archi-

tecture one achieves architecture conformance.

Chapter 7 gives recommendations for the application of software architec-
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ture reconstruction.

The appendices present extraction tools, abstraction tools and presentation

tools as referred to throughout the thesis. The last appendix presents all

the RPA operators in a nutshell.

The thesis contains many examples, which we have slightly modi�ed to

retain Philips' competitive edge. In my opinion, this does not a�ect the

illustrative value of these examples.
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Chapter 1

Software Architecture

In advance of discussing software architecture reconstruction, which is the

main topic of this thesis, we briey present, in this chapter, some issues

related to software architecture (amongst others de�nitions of architecture

and architectural view models).

1.1 Introduction

In this chapter we give an overview of de�nitions of software architecture

found in the literature. But we also discuss the importance of having a

good software architecture in a software intensive system.

A software architecture must satisfy requirements from a business point of

view. These business goals lead to certain objectives for software archi-

tecture, to be discussed in Section 1.4. A number of good architectural

patterns which may be useful in various software systems will be presented

in Section 1.5. Business goals, architectural objectives and architectural

patterns are related to each other. In Section 1.6 we derive from speci�c

business goals the related architectural objectives which, in turn, lead to

certain architectural patterns. A general view on this model is illustrated

in Figure 1.1.
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Business
Goals

Architectural
Objectives

Architectural
Patterns

Figure 1.1: Business Goals, Architectural Objectives and Patterns

1.2 De�nitions of Software Architecture

In recent years, many de�nitions of software architecture have appeared

in the literature. The need for modular structuring and explicit handling

of product families was �rst discussed in the late sixties [Dij68, Par76,

PCW85]. Since then, software in systems has grown tremendously in size

and complexity. Although these \old" structuring principles still hold, they

have to be transformed into principles for the products of today's sizes.

The term software architecture was introduced in the nineties to address,

amongst other things, the up-scaling of these structuring principles.

In 1992, Perry and Wolf [PW92] gave a de�nition of software architecture:

a set of architectural elements that have a particular form. The elements

may be processing elements, data elements or connecting elements.

According to Shaw and Garlan [SG96], the architecture of a software sys-

tem de�nes that system in terms of computational components and interac-

tions between those components. Examples of components include clients,

servers, �lters and layers of a hierarchical system. Interactions between

components may consist of procedure calls, shared variables, asynchronous

events or piped streams.

Jacobson, Griss and Johnsons [JGJ97] stated that a software architecture

describes the static organization of software in subsystems interconnected

through interfaces and de�nes at a signi�cant level how nodes executing

those software subsystems interact with each other.

Bass et al. [BCK98] gave an \often-heard" de�nition: architecture is com-
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Figure 1.2: The 4+1 View Model

ponents, connectors, and constraints. Connectors are a mechanism for

transfering control and data around the system. Constraints are de�ni-

tions of the behaviour of components.

Many di�erent structures are involved in an architecture of a software sys-

tem. In order to organize them, models have been de�ned that give a

certain view on software architecture. We found that the models developed

by Kruchten [Kru95] and Soni et al. [SNH95] are useful in industry. In

the next sections these so-called view models will be discussed, including a

model that combines both view models.

1.2.1 The 4 + 1 View Model

Kruchten distinguishes �ve di�erent views in his 4 + 1 View Model of

architecture [Kru95]. Each view addresses a speci�c set of concerns which

are of interest for di�erent stakeholders. Figure 1.2 (taken from [Kru95])

shows the views, the stakeholders and their concerns.
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The logical view supports the functional requirements: the services a system

should provide to its end users. The designers decompose the system into

a set of key abstractions of the domain, which results in a domain model.

Kruchten suggests to use an object-oriented style to de�ne the logical view.

The process view addresses non-functional requirements, such as perfor-

mance and availability of resources. It takes into account concurrency and

distribution, system integrity and fault tolerance. In this view, the control

of execution is described at several levels of abstraction.

The development view focuses on the organization of the actual software

modules in a software development environment (SDE). It concerns the

internal requirements related to ease of development and software man-

agement. The development view is represented by module and subsystem

diagrams that show the system's export and import relations.

The physical view also takes into account the system's non-functional re-

quirements. It maps the various elements identi�ed in the logical, process

and development view onto the various hardware elements. This mapping

should be highly exible and should have a minimal impact on the source

code itself.

The scenarios help to demonstrate that the elements of the four views work

together seamlessly. The scenarios are in some respect an abstraction of the

most important requirements. A scenario acts as a driver to help designers

discover architectural elements, and also helps to illustrate and validate the

architecture design.

An example of a scenario is the description of the activation of follow me in

a telephony switching system (activation of forward direction of incoming

calls to another speci�ed extension). Given this scenario, one can dis-

cuss how the involved processes communicate with each other via message

communication, which components of the system are running, and which

hardware devices are involved. The scenario view is in fact redundant with

the other views, hence the \+ 1".

The various views are not completely independent of each other. The char-

acterization of the logical elements helps to de�ne the proper process ele-

ments. For example, each logical element (object) is either active or passive

(autonomy of objects); elements are transient or permanent (persistency of

objects). The autonomy and persistency of objects have to do with the

process view. The logical view and development view are very close, but

address di�erent concerns. The logical elements do not necessarily map
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Figure 1.3: Relationships between the Software Architectures

one-to-one on development elements. Similar arguments hold for the rela-

tion between process view and physical view.

1.2.2 The SNH Model

Soni et al. [SNH95] have investigated a number of large systems (telecom-

munication, control systems, image and signal processing systems) to de-

termine the pragmatic and concrete issues related to the role of software

architecture. The structures they found in the investigated systems can be

divided in several broad categories. Soni et al. distinguished �ve di�erent

views on architecture:

� conceptual architecture: describing the system in terms of its major

design elements and relationships between them. Typical elements

are components and connectors.

� module (interconnection) architecture: functional decomposition and

layers, which are orthogonal structures. Typical terms are subsys-

tems, modules, layers, imports and exports.

� execution architecture: describing the system's dynamic structure.

Typical elements are tasks, threads, RPC and events.

� code architecture: describing how the source code, binaries and li-

braries are organised in the development environment. Code resides

in �les, directories and libraries.
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� hardware architecture: describing the hardware components and their

relations as far as they are relevant for making software design deci-

sions. Processors, memory, networks and disks are typical hardware

elements.

The architectural views have relations with each other as depicted in Fig-

ure 1.3 (taken from [SNH95]). A conceptual element is implemented by

one or more elements of the module architecture. Module elements are

assigned to run-time elements in the execution architecture. In addition,

each execution element is implemented by some module elements. Module

elements are implemented by elements of the code architecture. There is

also a relationship between run-time elements and executables, resource

�les (e.g. help texts in di�erent natural languages) and con�guration �les

in the code architecture.

1.2.3 The AV Model

Kruchten described a number of design principles for constructing elements

of the various views. The SNH model was de�ned after an analysis of ex-

isting systems, which comprised looking at an architecture from a di�erent

angle. Nevertheless, the 4 + 1 View model and the SNH model are pretty

similar. A logical decision (also suggested by [BMR+96]) is to combine the

good parts of the two into a new view model (see Figure 1.4). We have

taken the 4 + 1 View model as a basis and integrated it with good parts of

the SNH model. The new model has been baptized the Architectural View

model , abbreviated as the AV model .

The logical view and conceptual architecture are more or less similar. In

both cases, the end user is the main stakeholder. The execution archi-

tecture and process view di�er only in details. Soni et al. addressed the

hardware architecture concisely, but Kruchten stressed the physical view

more explicitly.

The module architecture and code architecture maps on Kruchten's develop-

ment view of Kruchten. In our new model, we divided Kruchten's develop-

ment view into two parts: module view and code view. The stakeholders of

the module view are the programmers. The main stakeholders of the code

view are people who are responsible for tool support. In the new model,

the source code is considered part of the code view.

Scenarios in the AV model support forward engineering as well as reverse

engineering of software architectures: scenarios play a role in de�ning ar-
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chitectural elements [Kru95], and they support the analysis of software

architecture [KABC96].

The precise contents of all these views have not been described explicitly.

In practice, one has to experience which elements are most important. In

this thesis we focus on the module view, but the code view is also required

in a supporting role. It is our intention to make the contents of the module

view and code view more explicit and tangible.

1.3 Business Goals

From a business perspective the following goals can be de�ned for products,

having impact on the software architecture within such a product [KW95,

JGJ97]:

� short time-to-market;

� low cost of product;

� high productivity of organisation;

� adequate predictability of process;

� high reliability of product;

� high quality of product.

Which goals must be emphasized depends very much on the type of product.

The quality of a product is very important especially for medical systems,

e.g. a patient must not be exposed to too much X-ray radation. Also

important is the quality of consumer products. It is for example impossible

to provide every one of the millions of television users an update of the

software in their television every six months1. In the currently booming

market of digital videocommunication systems it is more accepted to deliver

several software updates after the �rst release. In this business, time-to-

market has high priority as the aim is to remain ahead of one's competitors.

A software architect must be aware of such trade-o�s in making proper

architectural decisions.

1.4 Architectural Objectives

There are many architectural objectives that justify certain architectural

decisions. Bass et al. [BCK98] distinguished di�erent, called quality at-

1Although downloading of new software to a television set is foreseen in the near

future.
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tributes. These quality attributes are discernable at run-time (performance,

security, availability, functionality and usability) or they are not discern-

able at run-time (modi�ability, portability, reusability, integrability and

testability).

In this thesis we want to discuss architectural objectives in more abstract

terms. We distinguish the following architectural objectives, which are not

necessarily orthogonal:

� comprehension;

� reuse;

� evolution;

� product family.

1.4.1 Comprehension

Software changes many times during its lifetime. A developer must under-

stand the software well to be able to modify, extend or �x a bug in the

system. Approximately half of the time spent on maintenance activities

concerns comprehension [PZ93]. Improvement of comprehension therefore

increases a developer's productivity.

In many cases software changes are made by developers who did not origi-

nally create the part of the software concerned. This is due to the typical

lifespans of our systems, which may be decades. An original developer may

in the mean time have moved on to another position or may even have

left the organisation. Moreover, in view of a system's size and complexity,

several developers must often have access to the same part of the software.

The nature of today's systems makes it impossible to divide a system from

the start into disjunct parts of the software that can be assigned to a single

person. Comprehension of software written by other people is therefore

necessary.

1.4.2 Reuse

Reuse consists of the further use or repeated use of a software artifact.

Typically, reuse means that software artifacts are designed for use outside

their original contexts to create new systems [JGJ97]. Proper application of

reuse requires a number of precautions. Design for reuse must be explicitly

addressed in an organisation to be able to reuse software. Component reuse

is currently a hot topic in research and practice. In general, the number
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of reusable components greatly inuence productivity and quality. Reuse

of software is often hard to achieve (particularly due to the not-invented-

here syndrome); it requires a lot of investment and it must be managed

explicitly to be successful. The bene�ts of a reuse-oriented organisation

start at best, two years after introduction [JGJ97]. In a business context

return-on-investment times of two years are long, especially compared with

the length of time between two releases.

Reusable components can only be developed with a speci�ed architecture

in mind. For a functional equivalent component one may request di�erent

implementations depending on the architecture and/or satisfying di�erent

non-functional requirements. In the world of IC design it has long been

accepted that there are di�erent implementations for a component. In

the world of software this is less accepted. For example, a component in

a pipe-line architecture must behave di�erently from a component in an

event-driven system. In a pipe-line architecture a component continuously

reacts on new input data while in an event-driven system a component is

triggered before it processes data. It is impossible to combine any arbitrary

set of components into a new system. Garlan stressed this point as the

architectural mismatch [GAO95].

1.4.3 Evolution

From a business perspective, software has come to be the most pro�table

part of software-intensive systems. Product features of existing systems are

often related purely to software extensions. In the past, product require-

ments were often assumed to be stable. Today they are more dynamic and

evolutionary. Requirements rapidly change and product developers must

allow for this fact.

The evolution of hardware also has an impact on software. Take for example

software that controls image-processing units in a medical system. One

must be able to smoothly integrate a new hardware image-processing unit

into a new system release or one may even replace such a unit by software.

So the thought of possibly having new image-processing units in the future

causes this to be explicitly covered in the software architecture. Good

intuition of possible market trends helps to de�ne software architectures

that are future proof.
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1.4.4 Product Family

Product family architectures are architectures especially designed to man-

age (and enhance) many product variations needed for di�erent markets.

For example, in di�erent parts of the world there are di�erent television

broadcast standards, which a�ects the software embedded in a television. A

television's user interface is also language-dependend. Furthermore, prod-

ucts may also vary in the number of features they include. A television

may be packed with or without an Electronic Programming Guide (EPG).

One must be able to switch the EPG feature on or o� in a late stage of the

production process. Software architecture must be capable of facilitating

all such variations, i.e. it must be exible.

1.5 Architectural Patterns

Alexander et al. [AIS77] de�ned a pattern for buildings and towns as follows:

\A pattern describes a problem which occurs over and over

again in our environment, and then describes the core of the

solution to that problem, in such a way that you can use this

solution a million times over, without ever doing it the same

way twice."

These patterns are described in a consistent and uniform style.

The notion of patterns can also be applied in the construction of software.

Buschmann et al. [BMR+96] and Gamma et al [GHJV95] used schemes to

describe design patterns. Buschmann et al. categorized the patterns into

the following groups:

� Architectural Pattern

� Design Pattern

� Idiom (Code Pattern)

Conceptual integrity means that the same concept is always explicitly ap-

plied for similar problems. Conceptual integrity supports developers to bet-

ter understand a system and it leads to programmer independence [Bro82].

In the case of larger systems conceptual integrity is even more important.

The size of the development group is larger, which means that developers

spend more time communicating with each other. The application of gen-

eral concepts simpli�es internal communication. An architect's task is to

document these concepts, but he or she is also responsible for communicat-

ing these concepts to the development group.
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A concept may also be a typical solution to a certain problem. Concepts

must be de�ned for typical problems in each stage in the development pro-

cess. Design patterns are examples of typical solutions to design problems.

To illustrate the notion of patterns, we will informally discuss three ar-

chitectural patterns which are related to the module view: layering (Sec-

tion 1.5.1), generic and speci�c components (Section 1.5.2) and aspects

(Section 1.5.3). While analysing the Tele system we experienced the bene-

�t of applying these patterns. In Chapter 6 we will return to these patterns

to discuss architecture veri�cation.

1.5.1 Layering

A layer is a group of software elements. Layers are strictly ordered. Given

the ordering, higher layers may use only lower layers. We distinguish two

types of layering:

� opaque layering : a layer is restricted to use only the layer directly

below it. The idea behind opaque layering is that each layer makes

an abstraction of all the layers below it and adds some extra function-

ality. An example of this principle is the 7 layer OSI stack2 [Tan76],

illustrated in Figure 1.5.

� transparent layering ; each layer is allowed to access services of all the

layers below it see Figure 1.6. A layer abstracts functionalities in

lower layers where appropriate, but it does not encapsulate function-

ality that has already reached a proper level of abstraction in a lower

layer.

An advantage of opaque layering is that the user of a layer needs to know

only the layer below it. It does not have to have any knowledge of the low-

est layers. A disadvantage is that each layer must also provide functionality

from the lower layer when required by a higher layer. This often leads to

renaming of functions without adding any functionality. Another disadvan-

tage is that the lower layer must have knowledge of higher layers to be able

to provide proper functionality (to avoid the risk of all the non-exported

functionality of the lower layers being provided again).

A transparent layer provides functionality to the outside world, without

paying too much attention to the layers that use the functionality. A dis-

advantage is that when the interface of a layer changes, it may a�ect all

2In a new edition of his book Tanenbaum de�ned a hybrid reference model with only

�ve layers.
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the higher layers.

Layering generally makes it possible to test a system incrementally. Layers

can be tested one by one, starting at the bottom, i.e. when a layer of level

n passes the test, one can test layer n+ 1, assuming that layers 1 : : : n are

functionally correct. Layers also facilitate the control of the development

process and product releases.

Layers can be de�ned at di�erent levels of abstraction. The following exam-

ple of layering at the highest level of abstraction, i.e. subsystems, is taken

from telecommunication industry [KW94]. It is very common to distinguish

in a communication system the following layers, which we call subsystems

(from top to bottom):

� Service Management ; dealing with actual services of the system. In a

switching system e.g. it deals with redirecting a telephone call when

the follow me to another number feature is active.

� Logical Resource Management ; providing logical resources. These

resources are based on resources provided by Equipment Maintenance,

but they are made hardware-independent. At this level an operator

con�gures a communication system.

� Equipment Maintenance; dealing with the maintenance of peripheral

hardware. It provides virtually error-free peripheral hardware to the

higher subsystems (in a telecommunication system the functions of
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Figure 1.6: Tele Subsystems

failing hardware must be taken over by other hardware components).

Hardware speci�cs are hidden. This subsystem provides an abstract

representation of physical resources and their usability.

� Operating System; containing functionality provided by a normal op-

erating system. It also provides some general functionality to higher

subsystems, including e.g. software downloading, recovery and man-

machine interface procedures.

1.5.2 Generic and Speci�c Components

Software components are currently a hot topic in software architecture re-

search and practice. Szyperski used the following de�nition of software

component [Szy97]:

\A software component is a unit of composition with contractu-

ally speci�ed interfaces and explicit context dependencies only.

A software component can be deployed independently and is

subject to composition by third parties."

A component-based system consists of a number of components. One can

divide these components into two kinds: generic and speci�c. Generic

functionality, which resides in generic components, exists in almost all the

products in the family, and speci�c functionality, residing in speci�c com-

ponents, does not exist in all products.

Generic components represent the common part of all the products of a

family. A crucial task of an architect is to distinguish generic and speci�c

functionalities. It is not just a matter of factoring out the common func-

tionality, because (yet unknown) future enhancements must also be taken

into account.



1.5 Architectural Patterns 15

Specific A

Generic X

Specific P

Generic Y

Figure 1.7: Generics and Speci�cs

Generic components may already be bound at compile and link time with-

out the exibility of con�guration being adversely a�ected. The set of

generic components form the skeleton of all products. Speci�c components

can rely on the availability of this skeleton, but they are not allowed to rely

on the availability of speci�c components.

This also means that only generic components can be responsible for facil-

itating communication between speci�c components (see Figure 1.7). Dur-

ing the system's initialisation time, speci�c components announce them-

selves to the generics. Via a call-back mechanism the generic component

is able to access the speci�c component at run time. A speci�c compo-

nent can call a generic component's functionality, on its turn, this generic

component can call (via a call-back function) another speci�c component's

functionality.

Di�erent types of generic components can be distinguished. A re�nement

of generic component types has been discussed by Wijnstra [Wij96].

Example

A public telephone switching system communicates with several other swit-

ches using di�erent protocols and di�erent types of lines. Each customer

asks for his or her own set of hardware units and his or her own set of

protocols. The system must be con�gured according to the user's needs.

In a late stage of the development trajectory one must still be able to con-
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�gure a system. It must even be possible to extend such systems (when

they are running in the �eld) with new hardware and/or protocols. Ex-

plicit handling of generic and speci�c functionalities (combined with late

binding) satis�es this list of requirements [KW94].

1.5.3 Aspects

In addition to object-oriented system modelling [Boo91], one can also si-

multaneously address a functional view on the system. In the case of large

systems it is even necessary to apply another structuring mechanism for

comprehension reasons. We call the means used for this structuring ap-

proach aspects. Before developing the separate components, one must de-

�ne aspects which are in principle applicable to each component. Such a

set of aspects is �xed for the whole system.

As an example we give the aspects of a typical telecommunication system:

� normal operation;

� man-machine interface;

� recovery;

� con�guration management;

� fault handling;

� performance observation;

� test.

The notion of aspects is relevant in the various development phases. During

system testing the aspects can be used to structure the process and decide

on the (functional) completeness of the test. Aspects should explicitly

appear in all the software artifacts (design documents, source code). A

simple, but e�ective, implementation of aspects at source code level involves

the use of pre�xes (according to the aspect name) for functions, variables

and �les. Aspects must also be handled explicitly in design documents. For

example, a reader who is interested in a certain aspect should be guided

through the document in a natural fashion. This can e.g. be achieved by

prescribing obligatory (sub)sections.

The System Infrastructure Generics (SIGs) are special generic components,

which usually reside in the lowest subsystem. They deliver some basic

functionality of the system. One must de�ne (one or more) system in-

frastructure generics to implement the basic functionality of an aspect.

For example, the man-machine interface uses basic functionality (windows,

menus, etc.) which reside in SIGs. Another example is exception handling,
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the basic infrastructure for achieving exception handling (e.g. popping as

many return addresses from the call stack as required), is implemented in

an exception handling SIG.

1.6 Relating Goals{Objectives{Patterns

In the previous sections we have discussed business goals, architectural

objectives, and architectural patterns. Although the business goals are

very general and hold for (almost) any business, it is obvious that some

priority ordering is necessary per system (or market). Given the ordering

of business goals, we can derive an ordering of architectural objectives, as

illustrated in Figure 1.8. For example, the cost of product is related to

the amount of reuse that can be established. Furthermore, architectural

objectives can be mapped on architectural patterns. For example, when a

product family is concerned it is good to explicitly distinguish generic and

speci�c components.

Making an explicit Goals-Objectives-Patterns (GOP) diagram for your sys-

tem helps to make proper trade-o�s during the creation of software architec-

tures. The GOP diagram of Figure 1.8 (simpli�ed version of GOP diagram

in [KW95]) should therefore be seen as just an example; extra goals, objec-

tives and patterns and lines could be required for your system. The absence

of a line does not necessarily mean that there is not a relationship, but it

can be seen as a relative unimportant relation.

1.7 Final Remarks

Most of the discussed issues stem from the Building Block Method used in

Nuremberg for the development of telephony switching systems (Tele). The

Building Block Method and its application to large systems have been dis-

cussed in a number of reports [KW94, KL94, Kri94, Kri95, LM95, Wij96].

We have addressed only a few architectural patterns of the module view.

Other good architectural patterns for this view exist, but the other views

on architecture should also be covered with architectural patterns. In this

chapter it has been our intention to give a non-exhaustive overview of the

variety of issues relating to software architecture.
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Chapter 2

Overview of the SAR

Method

In the previous chapter we gave an overview of software architecture. In

this chapter we present a framework required for a method to reconstruct

a software architecture of an existing system.

2.1 Introduction

Here, we introduce a method to reconstruct an existing system's software

architecture: the Software Architecture Reconstruction (SAR) method. We

discuss a general framework for the SAR method, which is also used to

structure this thesis.

In general, all methods consist of four di�erent parts [Kro93]:

� an underlying model;

� a language;

� de�ned steps and ordering of these steps;

� guidance for applying the method.

In our software architecture reconstruction method, the underlying model

consists mainly of Relation Partition Algebra (to be elaborated in Chap-
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ter 3). Relation Partition Algebra consists of sets, binary relations, part-of

relations and operations on them. Besides a model, RPA is also a language

for expressing architectural information: we need graphical and textual no-

tations (graph diagrams, relation tables, lists) to present a reconstructed

software architecture.

The reconstruction of software architecture consists of performing the fol-

lowing kinds of steps: extraction, abstraction and presentation (see Sec-

tion 2.3). Extraction steps will be discussed as parts of InfoPacks (the

notion of an InfoPack will be discussed in Section 2.5.2); abstraction and

presentation steps are contained in ArchiSpects (the notion of an Archi-

Spect will be discussed in Section 2.5.2). A guidance describes the gaps

that are not completely covered by the steps or when the steps do not

perfectly �t in the situation at hand.

In this chapter we briey describe the engineering of software architec-

tures (called forward software architecting). Next, we will discuss reverse

software architecting, which is the counterpart of forward software archi-

tecting. As we will see, improvements in existing software architectures

demands both engineering disciplines. We will �nish this chapter with a

framework into which the software architecture reconstruction method can

be �tted.

2.2 Forward Software Architecting

Forward software architecting, or simply software architecting, is the dis-

cipline of engineering a software architecture from scratch, or, if an ar-

chitecture already exists, it consists in engineering the extensions of the

architecture. An example of a method dedicated to architecture is the

Building Block method [KW94, LM95].

In chapter 1 we have discussed a number of architectural patterns that are

related to the module view of software architecture. One can also de�ne

architecting as the process of selecting and applying proper patterns for

each of the architectural views. It is an engineering discipline that requires

a lot of experience, human sense, knowledge of a range of good architectural

patterns and the ability to de�ne new appropriate architectural patterns.
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2.3 Reverse Software Architecting

Reverse software architecting is the avour of reverse engineering that

concerns all activities for making existing (software) architectures expli-

cit [Kri97]. Reverse software architecting aims for: recovery of lost archi-

tectural information, updating of architecture documentation, supporting

of maintenance (comprehension) activities, provision of di�erent (other)

views on architecture, preparing for another platform and facilitating im-

pact analysis. Reverse engineering was de�ned as follows by Chikofsky and

Cross [CC90]:

\The process of analysing a subject system to identify the sys-

tem's components and their relationships and create represen-

tations of the system in another form or at a higher level of

abstraction."

Figure 2.1 (taken from [CC90]) presents a lot of terminology within a sim-

pli�ed software life-cycle. Requirements involves the speci�cation of the

problem, design is the speci�cation of a solution and implementation con-

cerns the creation of a solution which consists of coding, testing and system

delivery. Redocumentation is the simplest and oldest form of reverse engi-

neering. It concerns the creation or revision of a system's documentation.

However, many tools dedicated to redocumentation are only able to gener-

ate diagrams, print code in an attractive way, or generate cross-reference
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listings. Restructuring is the transformation from one representation form

into another, preserving the external behaviour. The �rst experiments in

this area concerned the removal of `goto' statements and their replacement

by control structures like `while' loops, `if-then-else' clauses and `for' loops.

Design recovery means that one identi�es meaningful higher levels of ab-

straction of software. For this activity one requires domain knowledge and

designer's knowledge to add the information required to be able to cre-

ate these abstractions. Reengineering is related to the modi�cation of an

original system to increase design quality.

Extract { Abstract { Present

The process of reverse engineering (depicted in Figure 2.2) in general con-

sists of three activities:

� extract : extracting relevant information from system software, system

experts and system history;

� abstract : abstracting extracted information to a higher (design) level;

� present ; presenting abstracted information in a developer-friendly

way, taking into account his or her current topic of interest.

Tools can be used to extract information from the system software, which

includes source code, design documentation, etc. The value of the tool's

output may depend on the availability of coding standards, and of course
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on whether these coding standards are satis�ed by the developers. For ex-

ample, many implementation languages do not explicitly support a module

concept (similar to modules in Modula-2 ), but one can force a pseudo-

module concept by prescribing certain coding rules. The extraction results

are stored in a database, which is called a repository. System experts can

be interviewed to obtain architectural information with the aid of di�erent

techniques, e.g. think-aloud sessions, structured interviews and brain-dump

sessions. History information can be extracted from the software archive or

documentation system, providing information about the system's evolution.

Because most of the extracted information is often at programming level,

one must abstract from this information and bring it to an architecture

level. In addition, some �ltering of information may be required for certain

views on the system. Developers need di�erent views on (parts of) the

system in their daily work. The requested view is to a great extent driven

by the problem at hand, so good navigation means are needed to retrieve

information.

The abstracted information can be presented in di�erent ways. Developers

may prefer diagrams and pictures, but more fancy media may be appli-

cable such as sound and vision, instead of textual descriptions, e.g. lists

of items. Hyperlinks should be added to textual descriptions to achieve

good navigation means. All these types of presentation types have already

been integrated in various Web browsers, which makes this medium a good

candidate for these purposes.

Extracted information may originate from di�erent tools, e.g. if multiple

implementation languages are used. Combining this information from dif-

ferent sources may result in incomplete or even conicting data. One must

allow for such situations, noting that incomplete data may appear complete

at higher levels of abstraction.

In the appendices we give an overview of the tools that proved to be use-

ful during our research. Extraction tools are discussed in Appendix A.

Abstraction tools based on Relation Partition Algebra are presented in

Appendix B. In Appendix C we discuss some proprietary presentation

tools.
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2.4 Architecture Improvement

One can improve a system by starting from scratch again and rebuilding

the complete system. However, this is hardly an option for systems contain-

ing software of hundreds of person-years' development. Another approach

starts with the existing system as a basis and incrementally improves (parts

of) the system.

Figure 2.3 (taken from [Kri97]) shows a process for the latter approach,

comprising three typical activities:

� forward architecting uses architectural objectives and functional re-

quirements as input for the de�nition of an ideal architecture.

� reverse architecting consists of creating explicit architectural models

of an existing system, the as-built architecture. Traditional reverse

engineering techniques can be applied to extract information from

software artefacts. Appropriate abstractions must be made to obtain

the information at an architectural level.

� re-architecting involves balancing an ideal architecture against the

existing architecture to prioritize a list of desired improvements. The
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next step is to implement a number of these improvements. The size

of the improvement steps depends on both business-related issues and

technological facts.

Besides software architecting experience (including knowledge of architec-

tural patterns), a lot of domain and system knowledge is required to de�ne

an ideal architecture. Reverse architecting can help in extracting domain

knowledge from the system, but it can also clarify existing architectural pat-

terns in the system. The recovered patterns may inuence choices made

during forward architecting. Of course, badly chosen patterns should not

be copied by the new ideal architecture, but should be seen as cautions.

The current system can give clues for de�ning a new architecture in a pos-

itive sense by recovering existing patterns. But it can also show the design

decisions that failed in the past, which must be avoided in the new system.

The whole process is iterative, in the sense that after improvements have

been implemented reverse architecting can help to make explicit the created

architecture, which may di�er from the initially de�ned architecture. This

process is in fact similar to any improvement activity: de�ne the current

situation (or check the previously realized improvement), de�ne the desired

situation, and de�ne the path to reach the desired situation and execute it.

2.5 The SAR Method

Relation Partition Algebra, architectural views, reconstruction levels, In-

foPacks and ArchiSpects are the key elements of our Software Architecture

Reconstruction (SAR) method. Architectural views have already been dis-

cussed in Section 1.2.3 and RPA will be presented in Chapter 3. Before

we can focus on the details of our SAR method, we have to present the

notion of reconstruction levels, InfoPacks, ArchiSpects, and a framework

in to which these notions can be �tted.

2.5.1 Software Architecture Reconstruction Levels

We introduce di�erent levels1 of software architecture reconstruction. Each

SAR level covers a range of architectural aspects that must be recon-

structed.

1We have been inspired by the levels in the Capability Maturity Model [Hum89].
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Consider a system which is hardly documented and whose software archi-

tecture is not known. Such systems are at the initial level of reconstruction.

By making the software architecture of such a system explicit (i.e. reverse

architecting the system), we reach the described level of SAR2. If the gap

between the ideal software architecture and the described software archi-

tecture is too big, one must improve it by rede�ning parts of it. Then,

by re-architecting the system, we reach the rede�ned SAR level. After

the architecture improvement, one must sustain the reached quality level.

Without any precautions, the architecture will certainly degenerate after a

while. If we can continuously preserve the software architecture in a con-

trolled way, we reach the managed level. Now that we have the software

architecture completely under control, we can optimise the architecture for

all kinds of future extensions, which is called the optimised level. So, the

following software architecture reconstruction levels exist:

� initial level;

� described level;

� rede�ned level;

� managed level;

� optimised level.

2.5.2 InfoPack and ArchiSpect

We introduce the terms InfoPack and ArchiSpect as the components of

our software architecture reconstruction method. An InfoPack3 is a pack-

age of particular information extracted from the source code, design docu-

ments or any other information source. An InfoPack contains a description

of the extraction steps to be taken to retrieve certain software informa-

tion. Alternative extraction techniques may exist for di�erent program-

ming languages, which are discussed as parts of the InfoPack. Sometimes

an InfoPack is speci�c to a certain (programming) language or class of

languages, e.g. InfoPacks working with the notion of inheritance are of in-

terest only for object-oriented languages. InfoPacks may also be domain- or

application-dependent, which makes them less widely applicable. Examples

are the Import InfoPack, import dependency extraction, and the Part-Of

InfoPack, extraction of the decomposition hierarchy. An ArchiSpect4 is a

2We may assume that each system (especially systems that exist for many years)

contains some notion of software architecture, although it has not been explicitly docu-

mented.
3The term InfoPack is an abbreviation of the phrase information package
4The term ArchiSpect combines the words architecture and aspect .
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view on the system that makes explicit a certain architectural structure. An

ArchiSpect is more abstract than an InfoPack and therefore more widely

applicable. Most ArchiSpects build upon the results of InfoPacks. A com-

plete set of ArchiSpects in fact describe a system's actual architecture; the

InfoPacks serve as supporting units to construct the ArchiSpects. Besides

abstraction of information, an ArchiSpect covers possible ways of present-

ing architectural information. Examples are the Component Dependency

ArchiSpect, recovery of dependency between the components of a system,

and the Layering Conformance ArchiSpect, verifying whether a system is

correctly layered.

In this thesis we describe InfoPacks and ArchiSpects according to a �xed

scheme:

� Name: the name of the InfoPack or ArchiSpect ;

� Context : the architectural view (see Section 1.2.3) to which it belongs

and the related InfoPacks and ArchiSpects (as will be clari�ed in the

description);

� Description: an introduction to the InfoPack and ArchiSpect;

� Example: typical example(s) from Philips' systems (as appeared after

the method had been applied);

� Method : a description of the steps that must be taken to construct

the InfoPack or ArchiSpect;

� Discussion: discussion of items not addressed in one of the above

sections (e.g. discussion of related work).

We can look at InfoPacks and ArchiSpects in di�erent ways. The method

view focuses on the description of steps and guidance. The tool view con-

cerns the tools required to support the application of ArchiSpects and In-

foPacks. The representation view contains the results of ArchiSpects and

InfoPacks. We will use the terms ArchiSpect and InfoPack for each of these

views; the context in which the term is used will clarify its actual meaning.

Software Architecture Reconstruction Framework

For each of the SAR levels (besides the initial level5), we can �ll out a

matrix as given in Table 2.1; the rows contain the various SAR levels and

the columns contain the architectural views. The cells have been �lled with

InfoPacks and ArchiSpects. InfoPacks are closely related to dedicated ex-

5The initial level refers to the situation that no reconstruction has taken place, so the

cells are empty.
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Architectural Views
Logical Module Code Execution Physical

SAR levels View View View View View

Optimized . . . . . . . . . . . . . . .

ArchiSpect ArchiSpect

Managed . . . InfoPack . . . . . .

ArchiSpect ArchiSpect

Rede�ned . . . InfoPack . . . . . .

ArchiSpect ArchiSpect

Described . . . InfoPack . . . . . .

Initial

Table 2.1: Software Architecture Reconstruction Framework

traction means and therefore they appear in the code view column. All

architectural views are in fact important, but in this thesis we will concen-

trate on the module view and code view (the non-dotted area in the SAR

matrix). In Chapter 7 we will �ll out the SAR matrix with the names of

discussed InfoPacks and ArchiSpects as we experienced to be useful for the

various SAR levels.



Chapter 3

Relation Partition Algebra

In the previous chapter we presented in general terms the SAR method.

The underlying model of the SAR method consists of Relation Partition

Algebra which is introduced in this chapter. In the succeeding chapters we

heavily use Relation Partition Algebra to describe the details of the SAR

method.

3.1 Introduction

In this chapter we introduce Relation Partition Algebra (RPA). RPA is

based on sets and binary relations. This chapter serves as a brief introduc-

tion to RPA, and it is also meant to introduce notations that will be used

throughout the thesis.

RPA has been de�ned in order to be able to formalise descriptions of (parts

of) software architectures. Furthermore, in the context of reverse engineer-

ing one often wants to query the software structure. RPA o�ers abilities

to express questions in a formal notation, which can be executed on the

actual (model of the) software. Throughout this thesis, we will see many

applications of RPA for reconstructing software architectures or beauty�ng

presentations of architectural information.

We will start this chapter by discussing sets and operations on sets. In

Section 3.3 binary relations and operations upon them will be presented.

The proofs of algebraic laws relating to RPA will not be given here, but we

will refer to published work [SM77, FKO98, FK99, FO99]. In Section 3.5

we will extend RPA with multi-sets and multi-relations. RPA formulas can
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also be executed; related issues will be discussed in Section 3.6.

3.2 Sets

3.2.1 Primitives of Set Theory

A set is a collection of objects, called elements or members. If x is an

element of S, given any object x and set S, we write x 2 S. The notion of

set and the relation is-element-of are the primitive concepts of set theory.

We rely on a common understanding of the meaning of these terms.

A �nite set can be speci�ed explicitly by enumerating its elements. The

elements are separated by commas, and the enumeration is enclosed within

brackets. So, the set which contains elements a, b, and c is denoted by

fa; b; cg. In�nite sets cannot be listed explicitly, so these sets are described

implicitly. A set can be described using a predicate with a free variable. The

set fx 2 U jP (x)g, for given U (another set playing the role of universe),

denotes the set S such that x 2 S if and only if x 2 U and P (x) holds.

We will use the logical operators _ and ^ to denote the logical (inclusive)

or and the logical and, respectively. a _ b holds if and only if a is true or b

is true or both a and b are true. a^ b holds if and only if a and b are true.

Furthermore, a) b holds if a is true then b is true. a () b holds if and

only if a) b ^ b) a.

At the end of each section we will illustrate the discussed operators with a

running example.

example

Subsystems = fOS ;Drivers ;DB ;Appg

Functions = fmain ; a; b; c; dg

InitFunctions = ff jf 2 Functions ^ f is called at initialisation timeg
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3.2.2 Operations on Sets

equal, subset, superset, size

Two sets S1 and S2 are equal, denoted by S1 = S2, if for each x it holds

that x 2 S1 () x 2 S2. A set S1 is contained in S2, or S1 is a subset

of S2 denoted by S1 � S2, if for each x it holds that x 2 S1 ) x 2 S2.

A similar de�nition holds for a superset, S1 � S2, which is an alternative

notation for S2 � S1. A strict subset (superset) is a subset (superset) from

which equality is excluded. It is denoted by � respectively �. The number

of elements in a �nite set is called the size, denoted by jSj.

union, intersection

The union of two sets S1 and S2, denoted by S1 [S2, is the set T = fxjx 2

S1 _ x 2 S2g. The intersection of two sets S1 and S2, denoted by S1 \ S2,

is the set T = fxjx 2 S1 ^ x 2 S2g.

di�erence, complement

The di�erence of two sets S1 and S2, denoted by S1 n S2, is the set T =

fxjx 2 S1 ^ x 62 S2g. It is also called the relative complement of S2 with

respect to S1. The complement of a set S, denoted by S, is the set T =

fxjx 62 Sg. Given that U is the universe, containing all elements, the

complement of a set S can be written as: S = U n S.

example

Subsystems = fOS ;Drivers ;DB ;Appg

InitFunctions � Functions

UpperLayers = fDB ;Appg

UpperLayers = fOS ;Driversg (with respect to Subsystems)



32 Relation Partition Algebra

3.3 Binary Relations

3.3.1 Primitives of Binary Relations

Besides the notion of sets, we need more to describe software structures.

Relationships between (software) entities play an important role in archi-

tecture and design. Binary relations can express such relationships. For

example, function-calls within a system can be seen as the binary relation

named calls.

A binary relation, or shortly a relation, from X to Y is a subset of the

cartesian product X � Y . It is a set of tuples hx; yi where x 2 X and

y 2 Y . Tuples of a binary relation R can be denoted in di�erent ways. The

following notations are used to refer to an element of a binary relation:

� in�x notation: xRy

� pre�x notation: R(x; y)

� tuple notation: hx; yi

In relational terms calls(main ; a) is an abstraction of the following program

fragment (written in the programming language C [KR88]):

void main () {

....

a(12, i, &ref);

....

}

Besides a textual representation of relations, one can also represent a re-

lation in a directed graph. A directed graph, or shortly digraph, consists

of a set of elements, called vertices, and a set of ordered pairs of these el-

ements, called arcs [WW90]. Assume a digraph G represents the relation

R � X �Y . The arcs of G represent the tuples of R; the vertices represent

elements of X [ Y . The vertices with outgoing arcs are elements of X

and vertices with incoming arcs are elements of Y . The calls relation of a

(�ctive) program is shown in Figure 3.1.

example

calls = fhmain; ai; hmain; bi; ha; bi; ha; ci; ha; di; hb; dig
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main

a b

c d

Figure 3.1: Directed Graph Representing calls Relation

3.3.2 Operations on Binary Relations

Relations are sets (of tuples), so we inherit the de�nitions of equality, con-

tainment, size, union, intersection, di�erence and complement from the

previous section.

converse

The converse of relation R, denoted by R�1, is obtained by reversing the

tuples of R: R�1 = fhy; xijhx; yi 2 Rg.

product, identity

The cartesian product of two sets X and Y , denoted by X � Y , is the

relation R = fhx; yijx 2 X ^ y 2 Y g. A special relation IdX , or just

Id if the set X is obvious, is called the identity relation. It is de�ned as

IdX = fhx; xijx 2 Xg.

domain, range, carrier

The domain of a relation R, denoted by dom(R), is the set S = fxjhx; yi 2

Rg. The range of relation R, denoted by ran(R), is the set S = fyjhx; yi 2

Rg. The carrier of a relation R, denoted by car (R), is de�ned as dom(R)[

ran(R).
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restriction

The domain restrict of a relation R with respect to a set S, denoted by

R �dom S, is a relation T = fhx; yijhx; yi 2 R ^ x 2 Sg. The range

restrict of a relation R with respect to a set S, denoted by R �ran S,

is a relation T = fhx; yijhx; yi 2 R ^ y 2 Sg. The carrier restrict of a

relation R with respect to a set S, denoted by R �car S, is a relation

T = fhx; yijhx; yi 2 R ^ x 2 S ^ y 2 Sg. The carrier restrict can also be

de�ned as: R �car S = (R �dom S) �ran S.

exclusion

A variant of restriction is exclusion. The domain exclude of a relation R

with respect to a set S, denoted byRndomS, is a relation T = fhx; yijhx; yi 2

R ^ x 62 Sg. The range exclude of a relation, denoted by RnranS, is a rela-

tion T = fhx; yijhx; yi 2 R ^ y 62 Sg. The carrier exclude of a relation R,

denoted by RncarS, is a relation T = fhx; yijhx; yi 2 R ^ x 62 S ^ y 62 Sg.

The carrier exclude can also be de�ned as RncarS = (RndomS)nranS.

top, bottom

The top of a relation R, denoted by >(R), is de�ned as dom(R) n ran(R).

Given a directed graph of relation R, the top consists of vertices that are a

root. A root is a vertex that has no incoming arcs. Similarly, the bottom of

a relation R, denoted by ?(R), is de�ned as ran(R)ndom(R). They are the

leaf vertices of a directed graph, which are the vertices with no outgoing

arcs.

projection

The forward projection of set S in relation R, denoted by S �R, is the set

T = fyjhx; yi 2 R^x 2 Sg. The backward projection of S in R, denoted by

R � S, is the set T = fxjhx; yi 2 R ^ y 2 Sg. Forward projection can also

be de�ned as S �R = ran(R �dom S) and the backward projection can be

de�ned as R� S = dom(R �ran S).

The left image of a relation R with respect to element y, denoted by R:y,

is the set T = fxjhx; yi 2 Rg. The right image of a relation R with respect

to element x, denoted by x:R, is the set T = fyjhx; yi 2 Rg.
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composition

The composition of two relations R1 and R2, denoted by R2 � R1, is the

relation R = fha; bij9x � ha; xi 2 R1 ^ hx; bi 2 R2g. R1;R2 is an alternative

notation of the composition R2 � R1. One should pronounce R2 � R1 as

\apply R2 after R1".

Composing a relation n times, R � R � : : : � R is denoted by Rn. Note

that composition is associative (proof is given in [FO99]), so we may omit

parentheses around each composition. Furthermore, by de�nition R0 = Id .

transitive closure

The transitive closure of a relation R, denoted by R+, is the relation T =S1
i=1R

i, i.e. the union of all Ri. The reexive transitive closure R� is

R0 [R+ = Id [R+.

Special algorithms have been developed to calculate the transitive closure
e�ciently. In 1962 Warshall [War62] described an O(n3) algorithm (where
n is the size of the carrier of the relation):

for i in S do

for j in S do

for k in S do

T[j,k] = T[j,k] + T[j,i] x T[i,k]

explanation

The array T represents the existence (boolean value) of tuples hi; ji in
the given relation. The set S equals the carrier of this relation. Each
of the for-loops enumerates the elements in the set. The + operation
is de�ned as the logical or operation and the x operation is de�ned as
the logical and. One should read the last statement as follows (having
a digraph representation in mind): if there is a path from j to i and
there is a path from i to k, then there exists a path from j to k.

As an example we present the transitive closure of the calls relation in

Figure 3.2.

reduction

A relation R is cycle-free if and only if Id \ R+ = ;, in other words, in

a graph representation of relation R, there is no path from any vertex to
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Figure 3.2: Transitive closure of calls
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Figure 3.3: Hasse of calls

itself that contains an arbitrary number n (n > 0) of edges.

The transitive reduction of a cycle-free relation R, denoted by R�, is a

relation containing all tuples of R except for short-cuts. For example, the

tuple hx; zi is a short-cut if R contains the tuples hx; yi and hy; zi. The

transitive reduction of R is also called the Hasse [SM77] of R, or the poset

of R. The transitive reduction of a cyclic-free relation R can also be de�ned

as R� = R n (R �R+).

The expression R � R+ represents all the pairs of elements in R that can

reach each other indirectly (so via another vertex in the digraph). When

we substract these tuples from the original relation R we retain the tuples

which are not a shortcut. The Hasse of the calls relation is illustrated in

Figure 3.3.

example

maincalls = fhmain; ai; hmain; big

maincalls � calls

calls nmaincalls = fha; bi; ha; ci; ha; di; hb; dig
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calls = fhmain ;maini; hmain ; ci; hmain ; di; ha;maini;

ha; ai; hb;maini; hb; ai; hb; bi; hb; ci;

hc;maini; hc; ai; hc; bi; hc; ci; hc; di; hd;main i;

hd; ai; hd; bi; hd; ci; hd; dig

(with respect to Functions � Functions)

>(calls) = fmaing

?(calls) = fc; dg

calls �dom fmaing = fhmain ; ai; hmain ; big

callsndomfmaing = fha; bi; ha; ci; ha; di; hb; dig

fmaing� calls = fa; bg

calls :b = fmain ; ag

calls+ = fhmain ; ai; hmain ; bi; hmain ; ci; hmain ; di;

ha; bi; ha; ci; ha; di; hb; dig

Hasse(calls) = fhmain ; ai; ha; bi; ha; ci; hb; dig

3.4 Part-Of relations

A partition of a non-empty set A is a collection of non-empty sets such that

the union of these sets equals A and the intersection of any two distinct

subsets is empty. We can see a partition as a division of a pie into di�erent

slices.

If we give each of these subsets a name we can construct a so-called part-of

relation which describes a partition. Assume that these names are de�ned

in a set T , then the part-of relation P is de�ned as follows: P = fhx; tijt 2

T ^ x is in the subset named tg. In source code, function de�nitions are

contained in a (single) �le, so the relation between Functions and Files is

an example of a part-of relation; see Figure 3.4.

Partitions and part-of relations are alternative views on the same concept:

decomposition. A third view on decomposition comprises equivalence rela-

tions. One can derive an equivalence relation E from a part-of relation P

as follows: E = fhx; yij9t hx; ti 2 P ^ hy; ti 2 Pg. The equivalence relation

can also be de�ned as E = P�1 � P .
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Figure 3.4: Partitioning Functions

example

T = fAppl ;DB ;Libg

partof = fhmain;Appli; ha;Appli; hb;DBi; hc; Libi; hd; Libig

eqrel = partof �1 � partof

= fhmain;maini; hmain; ai; ha; ai; ha;maini; hb; bi;

hc; ci; hc; di; hd; di; hd; cig

lifting, lowering

Given a relation R and a part-of relation P we can construct a new relation

Q by lifting R using P , denoted by R " P . The result is the relation

Q = fhx; yij9a; b ha; bi 2 R^ ha; xi 2 P ^ hb; yi 2 Pg. Note that the carrier

of relation R must be a subset of the domain of P .

We can also construct a new relation Q by lowering R using P , denoted

by R # P . The resulting relation is de�ned as Q = fhx; yij9 a; b ha; bi 2

R ^ hx; ai 2 P ^ hy; bi 2 Pg. The carrier of relation R must be a subset of

the range of P .

The given de�nition of lifting is in fact an existential lifting. An alternative

to the above de�nition of lifting is universal lifting, denoted by R "8 P . The

tuple hc1; c2i is an element of R "8 P if and only if for all x1 in c1 and for all

x2 in c2 it holds that hx1; x2i 2 R. We can now relate lifting and lowering

as follows: R = (R # P ) "8 P ). Very little use is made of universal lifting,

so this alternative de�nition of lifting will not be used after this section1.

1We will therefore write " instead of "
9
.
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DB

Lib

Appl

Figure 3.5: Lifting calls

example

Figure 3.5 shows the lifted calls relation, which is calculated as follows:

callsLift = calls " partof

= fhAppl;Appli; hAppl;DBi; hAppl; Libi; hDB;Libig

3.5 Introducing multiplicity in RPA

While reverse architecting the Med system, we discovered that it is also

useful to attribute a weight to the tuples of a relation. This leads to the

introduction of multiplicity into RPA, by means of multi-relations. In the

Chapter 5 we will see the importance of applying multi-relations which is

also illustrated by examples.

A multi-relation is a collection of tuples in which each tuple may occur more

than once. We will represent the tuples and their corresponding weights as

a triple hx; y; ni, where n is the number of occurrences of the tuple hx; yi. In

a running system the number of calls(a; b) may be of interest when looking

at e.g. recursion: f: : : ; ha; b; 7i; : : :g is the representation of a calls b seven

times.

Multi-relations compare to relations as bags (or multi-sets) compare to sets.

Multi-sets (or bags) can be represented as sets of tuples, with the second

argument being the number of occurrences of the �rst argument.
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3.5.1 Calculating with weights

We must �rst describe the basics for calculating with weights before we

can de�ne multi-sets and multi-relations and their operations. Weights are

natural numbers (the set f0; 1; 2; : : :g denoted by IN) extended with an

explicit value1. The arithmetic operations + and � work as usual if both

arguments are elements of IN . Their behaviour when applied to 1 is given

by the following rules that hold for all n 2 IN :

n+1 = 1+ n =1

1+1 = 1

0�1 = 1� 0 = 0

n 6= 0 ) n�1 =1� n =1

1�1 = 1

Substraction of weights is also special. Take for example the rule (n �

m) +m = n which only satis�es when n � m. If n < m, then we de�ne

n�m = 0; we must note that the algebraic law (n�m) + k = (n+ k)�m

does not hold. Furthermore, the following rules are given, for all n 2 IN :

n�1 = 0

1�1 = 0

1� n = 1

The minimum of two weights is denoted bymin(n1; n2), to which we add the

rules that min(1; n) = min(n;1) = n andmin(1;1) =1. Similarly, we

de�ne max (n1; n2), to which we add the rules max (1; n) = max (n;1) =

1 and max (1;1) =1.

By de�nition, elements that are not members of a multi-set or multi-relation

have a weight of 0. This simpli�es the de�nitions of operations on multi-sets

and multi-relations.
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3.5.2 Operations on Multi-Sets

mapping

The n-mapping of a set T to a multi-set S, denoted by dT en, is de�ned as

S = fhx; nijx 2 Tg. Furthermore, we de�ne dT e = dT e1. The mapping

of a multi-set S to a set T , denoted by bSc, is de�ned as T = fxjhx; ni 2

S ^ n > 0g.

equal, subset, superset, size

Two multi-sets are equal, denoted by S1 = S2, if for each e it holds that

he; ni 2 S1 () he; ni 2 S2. A multi-set S1 is a subset of S2, denoted by

S1 � S2 if for each e it holds that he; n1i 2 S1 ^ he; n2i 2 S2 ) n1 � n2. A

multi-set S1 is a superset of S2, denoted by S1 � S2 if for each e it holds

that he; n1i 2 S1 ^ he; n2i 2 S2 ) n1 � n2. The size of a multi-set S,

denoted by kSk, is de�ned as
P

hx;ni2S n.

union, addition, intersection, di�erence

The intersection of two multi-sets S1 and S2, denoted by S1\S2, is de�ned

as the multi-set T = fhe; nijhe; n1i 2 S1 ^ he; n2i 2 S2 ^ n = min(n1; n2)g.

The union of two multi-sets S1 and S2, denoted by S1 [ S2, is de�ned as

T = fhe; nijhe; n1i 2 S1 _ he; n2i ^ n = max (n1; n2)g.

The di�erence between two multi-sets, denoted by S1 n S2, is de�ned as

S = fhe; nijhe; n1i 2 S1 ^ he; n2i 2 S2 ^ n = n1 � n2)g. The addition

of two multi-sets, denoted by S1 + S2, is de�ned as S = fhe; nijhe; n1i 2

S1 ^ he; n2i 2 S2 ^ n = n1 + n2)g.

complement

The complement of a multi-set S1 with respect to the set S is de�ned as:

S1 = dSe1 n S1.
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3.5.3 Operations on Multi-Relations

mapping

The n-mapping of a relation R to a multi-relation M , denoted by dRen, is

de�ned as M = fhx; y; nijhx; yi 2 Rg. Furthermore, we de�ne dRe = dRe1.

The mapping of a multi-relation M to a relation R, denoted by bMc, is

de�ned as R = fhx; yijhx; y; ni 2Mg.

equal, subset, superset, size

Two multi-relations are equal, denoted by M1 = M2, if for each x and

y it holds that hx; y; ni 2 M1 () hx; y; ni 2 M2. A relation M1 is

contained in M2, denoted by M1 � M2, if for each x and y it holds that

hx; y; ni 2 M1 ^ hx; y;mi 2 M2 ) n � m. Similarly to binary relations �,

� and � are de�ned for multi-relations. The size of a multi-relation M ,

denoted by kMk, is de�ned as
P
hx; y; ni2M n.

union, addition, intersection, di�erence

The union of two multi-relations M1 and M2, denoted by M1 [M2, is the

multi-relation M = fhx; y; nij(hx; y; n1i 2 M1 _ hx; y; n2i 2 M2) ^ n =

max (n1; n2)g. The addition of two multi-relations M1 and M2, denoted by

M1+M2, is the multi-relationM = fhx; y; nij(hx; y; n1i 2M1 _hx; y; n2i 2

M2) ^ n = n1 + n2g. The intersection of two multi-relations M1 and M2,

denoted by M1 \ M2, is the relation M = fhx; y; nij(hx; y; n1i 2 M1 ^

hx; y; n2i 2M2)^min(n1; n2)g. The di�erence between two multi-relations

M1 andM2, denoted byM1nM2, is the relationM = fhx; y; nij(hx; y; n1i 2

M1 ^ hx; y; n2i 2M2) ^ n = n1 � n2g.

converse

The converse of relation M , denoted by M�1, is obtained by reversing the

�rst two arguments of the triples: M�1 = fhy; x; nijhx; y; ni 2Mg.
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product, identity

The cartesian product of two multi-sets X and Y , denoted by X � Y , is

the multi-relation M = fhx; y; nijhx; n1i 2 X ^ hy; n2i 2 Y ^ n = n1 � n2g.

A special multi-relation IdX;n, or just Idn if the set X is obvious, is called

the identity relation. The identity of a set X is de�ned as IdX;n = dIdXen.

When omitted, n must be considered to be 1.

domain, range, carrier

The domain of a multi-relation M , denoted by dom(M), is the multi-set

S = fhx; nijn =
P
hx; y;mi2Rmg. The range of a multi-relation M , de-

noted by ran(M), is the multi-set S = fhy; nijn =
P
hx; y;mi2Rmg. The

carrier of a multi-relationM , denoted by car (M), is de�ned as dom(M) +

ran(M).

restriction

The domain restrict of a multi-relationM with respect to a set S, denoted

by M �dom S, is a multi-relation T = fhx; y; nijhx; y; ni 2 M ^ x 2 Sg.

The range restrict of a multi-relation M with respect to a set S, denoted

by M �ran S, is a multi-relation T = fhx; y; nijhx; y; ni 2M ^ y 2 Sg. The

carrier restrict of a multi-relation M with respect to a set S, denoted by

M �car S, is a relation T = fhx; y; nijhx; y; ni 2 M ^ x 2 S ^ y 2 Sg. The

carrier restrict can also be de�ned as: M �car S = (M �dom S) �ran S.

exclusion

The domain exclude of a multi-relationM with respect to a set S, denoted

by MndomS, is a relation T = fhx; y; nijhx; y; ni 2 R ^ x 62 Sg. The range

exclude of a multi-relation M with respect to a set S, denoted by MnranS,

is a relation T = fhx; y; nijhx; y; ni 2 R ^ y 62 Sg. The carrier exclude of a

multi-relationM , denoted byMncarS, is a relation T = fhx; y; nijhx; y; ni 2

M ^ x 62 S ^ y 62 Sg. The carrier exclude can also be de�ned as MncarS =

(MndomS)nranS.
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top, bottom

The top of a multi-relation M , denoted by >(M), is de�ned as >(M) =

dom(M �dom >(bMc). The bottom of a multi-relationM , denoted by?(M),

is de�ned as ?(M) = ran(M �ran ?(bMc).

projection

The forward projection of a set S in a multi-relationM , denoted by S�M ,

is the multi-set T = fhy; nijn =
P
hx; y;mi2M^x2S

mg. The backward

projection of a set S in a multi-relation M , denoted by M � S, is the set

T = fhx; nijn =
P
hx; y;mi2M^y2S

mg. Forward projection can also be

de�ned as S � M = ran(MndomS) and the backward projection can be

de�ned as M � S = dom(MnranS).

The left image of a multi-relationM of y, denoted by M:y, is the multi-set

T = fhx; nijhx; y; ni 2 Mg. The right image of a multi-relation M of x,

denoted by x:M , is the multi-set T = fhy; nijhx; y; ni 2Mg.

composition

The composition two multi-relations M1, denoted by M2 �M1, is de�ned

as M = fhx; z; nijn =
P
hx; y; n1i2M1^hy; z; n2i2M2

n1 � n2g.

Given a matrix representation of M1 and M2, where the cells contain the

weight of a tuple hx; yi, the composition consists of the multiplication of

both matrices [FK99]. Given a representation of a directed graph with

weighted edges, the composition consists of the number of all possible paths

from x to z, by taking two steps: the �rst step in M1 and the second step

in M2.

transitive closure

The transitive closure of a multi-relation M , denoted by M+, is de�ned as

M+ =
S1
i=1M

i, i.e. the union of all M i. The reexive transitive closure,

denoted by M�, is de�ned as M0 [M+.

Warshall's algorithm for calculating transitive closures must be adapted a

bit. Here, we give the adapted Warshall algorithm, the proof of correctness

is given in [FK99].
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for i in S do

for j in S do

for k in S do

if T[i,i] == 0

then T[j,k] = T[j,k] + T[j,i] x T[i,k]

else T[j,k] = T[j,k] + INFTY x T[j,i] x T[i,k]

explanation

T represents the two-dimensional (associative) array which initially
contains the multi-relationm. After completion, T contains the multi-
relation m+. The value of T [i; j] represents the weight of tuple hi; ji.
The set S is the carrier of this multi-relation. Addition and multi-
plication work as de�ned in Section 3.5.1. Comparing this algorithm
with the original one, we see that the factor INFTY is introduced
when there is a path j � i and i� k and T [i; i] 6= 0. If there is a path
from j to i and from i to k and there are paths from i to i (expressed
by T [i; i] 6= 0), one can reach k 1 times from j.

reduction

The Hasse of a cycle-free multi-relation M , denoted by M+, is de�ned as

M n (M+ �M).

lifting, lowering

Given a relation M and a part-of relation P we can construct a new multi-

relation Q by lifting M using P , denoted by M " P . The result is the

multi-relation Q = fhx; y; nijn =
P

9a;b ha; b;mi2M^ha;xi2P^hb;yi2P
mg.

Given a relation M and a part-of relation P we can construct a new multi-

relation Q by loweringM using P , denoted byM # P . The resulting multi-

relation is de�ned as Q = fhx; y; nijha; b; ni 2M ^ hx; ai 2 P ^ hy; bi 2 Pg.

Lifting and lowering (for a relation R as well as for a multi-relation R) can

also be de�ned in terms of composition:

R " P = dP e � R � dP�1
e

R # P = dP�1
e � R � dP e
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Table 3.1: RPA Operator Precedences

3.6 RPA Formulas in Action

In the next chapters we will use RPA formulas to express e.g. abstractions

of software information. Before we can de�ne these (composed) formulas,

we have to explain how we must interpret these formulas: precedences of

operators, and the notations applied for sets, relations and multi-relations.

In this section we will also discuss how a given formula can be executed on

a computer.

3.6.1 Precedences of Operations

When we combine operators to construct larger expressions, we must say

something about the order in which the operators must be applied. Prece-

dence levels of operators indicate the way in which an expression is implic-

itly grouped into separate parts. In fact, precedence levels automatically

place parentheses around parts of the expression to prescribe the order in

which the operators are to be applied. In the case of equal precedence level,

we apply the left-associative rule, meaning that e.g. a+ b+ c = (a+ b)+ c.

The mapping, size, and complement operators already group expressions

by their notations. The precedence levels of the RPA operators are given

in Table 3.1 (at the top of the table are the operators with highest prece-

dence). In this thesis we will often use parentheses in formulas for reasons

of readability.
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3.6.2 Notational Aspects

We will use a special notation to distinguish various sets, multi-sets, re-

lations and multi-relations. For sets and multi-sets we will use the same

notation e.g. a set of functions will be denoted by Functions . A relation

representing function calls in a system, calls � Functions � Functions ,

will be denoted by callsFunctions;Functions . For multi-relations, we will use

a similar notation, except that we will emphasize multiplicity as follows

callsFunctions;Functions. Using this notation, we can immediately qualify

the relation's domain and range. Relations with the same base names,

but operating on di�erent domains and in di�erent ranges can be easily

identi�ed.

3.6.3 Execution of RPA formulas

We use many RPA formulas to describe the software architecture recon-

struction method. Each RPA formula can be easily transformed into an ex-

ecutable code. Sets, multi-sets, relations and multi-relations are expressed

in special formatted �les on the �le system. For example, the �le named

calls.Functions.Functions contains the callsFunctions;Functions relation.

The application of an operator to one or more operands consists in call-

ing the appropriate program or function given the proper input �les. A

discussion of some RPA implementations is given in Appendix B.

example

Consider the following formulas (copied from Section 4.10):

importsFiles;Comps = partof Files;Comps � importsFiles;Files

importsExtFiles;Comps = importsFiles;Comps n partof Files;Comps

UsingExts = dom(importsExtFiles;Comps)

usingFiles;Comps = partof Files;Comps �dom UsingExts

Initially, we have the following �les (representing relations), which are re-

sults of extraction tools:

� imports.Files.Files representing importsFiles;Files ;

� partof.Files.Comps representing partof Files;Comps .
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We can translate the above formulas straightforwardly into executable code

(e.g. executed in a Unix shell). We do not need any knowledge of the

semantics of the formulas to make this translation2.

rk_csh: rel_comp partof.Files.Comps imports.Files.Files \

> imports.Files.Comps

rk_csh: rel_diff imports.Files.Comps partof.Files.Comps \

> importsExt.Files.Comps

rk_csh: rel_dom importsExt.Files.Comps > UsingExts

rk_csh: rel_domR partof.Files.Comps UsingExts \

> using.Files.Comps

After we have performed the calculations we have the following �les:

� imports.Files.Files (importsFiles;Files);

� partof.Files.Comps (partof Files;Comps );

� imports.Files.Comps (importsFiles;Comps);

� importsExt.Files.Comps (importsExtFiles;Comps);

� UsingExts (UsingExts);

� using.Files.Comps (usingFiles;Comps ).

3.7 Discussion

Work relating to Relation Partition Algebra has already been discussed

in [FO94, FKO98]. From [FKO98] we pick out the work of Holt [Hol96,

Hol98], as it shows a remarkable correspondence to our work. Though RPA

has been developed independently, both approaches use binary relational

algebra (Tarski Relational Algebra [Tar41]) to describe rules in software

architecture and re-engineering applications. There are di�erences between

both algebra's. For example, Holt [Hol98] de�nes an induction operator; it

is de�ned as C�R�P ; C is a containment relation and P is a parent relation

(P = C�1). Holt does not de�ne containment relation as a representation of

a (hierarchical) partitioning. This means that a moduleAmay be contained

in component X as well as component Y. In RPA, the lift operator is more

carefully de�ned in this respect.

Furthermore, Holt treats a system's hierarchical decomposition as a single

containment relation, so he does not distinguish di�erent levels of contain-

2In this Unix shell the prompt is named rk csh:, the backslash informs the shell that

the command continues on the next line and the operator > means that the resulting

output is written into the named �le.
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ment. We distinguish di�erent partof relations to represent various levels

in a system's hierarchical decomposition. Holt does not de�ne transitive re-

duction, which is a useful operator for improving the presentation of graphs

with many (directed) edges.

The need for executing relational formulas (see Appendix B) is also recog-

nized by Holt. He calls his relational calculator grok.
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Chapter 4

Described Architecture

In the next three chapters we discuss three levels of the SAR method (re-

spectively described, rede�ned and managed level). In this thesis, as al-

ready mentioned, for each of these levels we focus on the code view and

module view of software architecture. Here, we start with the described

level of SAR.

4.1 Introduction

Figure 4.1 shows an abstract view on our software architecture reconstruc-

tion (SAR) method. The main and most explicit source of information

for reconstructing a software architecture is the source code. The source

code can be analysed and be reduced to manageable units of information,

which we call InfoPacks. Information that cannot be extracted from the

source code must be supplemented with information from e.g. software ar-

chitects. Relation Partition Algebra is the model underlying most of the

ArchiSpects. The results of InfoPacks are expressed in a simple notation,

namely the RPA-�le formats introduced in Section 3.6.3. InfoPacks yield

intermediate results that are used to construct ArchiSpects.

The described software architecture of an existing system consists of a set

of ArchiSpects, each containing a relevant aspect of the software architec-

ture. The main aim of the resulting described architecture is to support

comprehensability of software architecture for (new) software developers

and architects. In this chapter we will focus solely on ArchiSpects and

their required InfoPacks that are related to the module and code view of
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Figure 4.1: Software Architecture Reconstruction Method

architecture. The process of reconstructing the software architecture at a

described level is called reverse architecting [Kri97].

Figure 4.2 shows the InfoPacks (rectangles) and ArchiSpects (hexagons)

initially required to describe a software architecture. Solid lines between

InfoPacks and ArchiSpects (InfoPack) indicate that the output of the In-

foPack is input for the ArchiSpect (InfoPack). Dotted lines mean that there

is a relationship between the two, which is not expressed in terms of input

and output results (the relationship is clari�ed in the description of the

Infopack or ArchiSpect). In the SAR method, InfoPacks and ArchiSpects

are classi�ed per architectural view, which is indicated by the two large

boxes: code view and module view.

In this chapter we will discuss (see also Figure 4.2) the InfoPacks Files, Im-

port, Part-Of and Depend of the code view, the ArchiSpects Source Code

Organisation and Build Process of the code view and the ArchiSpects Soft-

ware Concepts Model, Component Dependency and Using and Used Inter-

faces of the module view. The InfoPacks and ArchiSpects will be discussed

according to the �xed scheme (context, description, example, method, dis-

cussion) introduced in Section 2.5.2. The InfoPacks and ArchiSpects will

be discussed in the order in which they should be applied to a system.

In recent years, we have applied these ArchiSpects to a number of real

systems; the results of some of this work will be used to illustrate these

ArchiSpects:

� in 1994/1995 we analysed the Tele system [KW94], which is a public
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telephony switching system;

� in 1996 we analysed the Med system [MK97], which is a medical

imaging system;

� in 1997/1998 we analysed the Switch system [Med98], which is a

private telephony switching system.

� in 1998 we analysed the Comm system [Kri98], which is a manage-

ment system for controlling digital video communication systems.

The modular approach of our SAR method makes it possible to apply those

ArchiSpects and InfoPacks which are relevant for your case. We will now

repeat how the di�erent sections of each ArchiSpect and InfoPack is organ-

ised: In the �rst section we present the relations with other ArchiSpects

and InfoPacks, which is also indicated in Figure 4.2 by means of lines. In

the second section, a general description is given including a motivation of

why we should apply this ArchiSpect (InfoPack). For the reader's conve-

nience, we illustrate these ideas with examples from practice. In the fourth

section, we describe the steps to be taken to reconstruct the ArchiSpect or

InfoPack. The last section discusses related issues or, where appropriate,

related work.

4.2 ArchiSpect: Software Concepts Model

4.2.1 Context

The Software Concepts Model belongs to the module view of software ar-

chitecture. The ArchiSpect Source Code Organisation (Section 4.3) and

InfoPack Part-Of (Section 4.7) are related to this ArchiSpect.

4.2.2 Description

System documentation includes many domain-speci�c (or system-speci�c)

terms. For example, in one system, a component will be just a term for a

group of smaller programming units, and, with another, it will refer to COM

components [Box98] (including its dynamic binding machinery). A good

understanding of these concepts is needed for almost any reconstruction

activity. The concepts help to classify functionality during discussions, e.g.

a subsystem is a far more important architectural notion than a method or

function.

The Software Concepts Model concentrates on the most important software
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concepts and their inter-relationships. Files, functions, types and relations,

such as function accesses data, function calls function and component con-

tains function, are often included. Furthermore, the various abstraction

levels of software parts (decomposition levels) are described in this Archi-

Spect. We will expound this ArchiSpect by providing a number of examples

from practice.

The result of this ArchiSpect consists of a UML class diagram [Fow97]

containing these concepts and their inter-relations.

The Part-Of InfoPack �lls out which of the system's entities belong to

the various decomposition levels plus the various partof relations between

these levels. The software concepts must be mapped onto real items in the

software code organisation, e.g. a subsystem resides in a directory, which is

discussed in the Software Code Organisation ArchiSpect.

4.2.3 Example

Tele

Figure 4.3 shows the concepts and relationships between software concepts

of the Tele telecommunication system in a UML class diagram.

The system consists of a number of subsystems. Each building block belongs

to exactly one subsystem. A building block is an aggregation of �les; each �le

addresses a single aspect (see Section 1.5.3). Furthermore, a product in the

product family is described as a parts list of building blocks (and hardware

elements). building blocks reside in layers which are strictly ordered (<);

see also Section 1.5.1. The concepts at the bottom of the class diagram

describe programming concepts and relationships between them.

Med

The Software Concepts Model of the Med system is depicted in Figure 4.4.

The system consists of a number of subsystems. Each subsystem is an

aggregation of components and a component is divided into several packages.

A number of �les are contained in a package. A few programming concepts

have been represented at the bottom of the diagram. An archive is a set of

subsystems; this notion was introduced at a later stage in Med 's life-cycle.
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4.2.4 Method

The creation of the Software Concepts Model is an iterative process. It

is important to read relevant system documentation, but often it is also

necessary to discuss various non-documented concepts. In particular, re-

lationships between concepts must be made explicit, which will involve

discussions with architects. The results of these activities can be presented

in a class diagram notation of the UML language [Fow97]. During this

iterative process, the class diagrams should serve as input for discussion.

4.2.5 Discussion

Software concepts play an important role in the de�nition of a software

architecture. If the software architecture has been properly de�ned, one

can easily obtain the software concepts from the documentation. As most

products usually have a long life-cycle, we may assume that new concepts

were not initially foreseen and they are consequently not completely and/or

properly applied in the software today. An example of a concept that was
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introduced only at a later stage is the archive in the Med system.

In particular, concepts that do not have a counterpart in a programming

language may become a subject of discussion. Di�erent architects may

think di�erently about the semantics of such a concept. For the overall

development it is of importance to make such fuzzy concepts more concrete.

This may even result in the introduction of new concepts to achieve a better

Software Concepts Model.

The UML associations aggregation and composition represent a special re-

lation; they describe the decomposition tree at a generic level. In the pre-

sented examples we do not have recursive de�nitions in the decomposition

tree. In practice, such recursions may exist, e.g. a component may contain

either a set of �les or a set of components.

4.3 ArchiSpect: Source Code Organisation

4.3.1 Context

The Source Code Organisation belongs to the code view of software archi-

tecture. The ArchiSpects Software Concepts Model (Section 4.2), Build

Process (Section 4.4), InfoPacks Files (Section 4.5) and Part-Of (Sec-

tion 4.7) are related to this ArchiSpect.

4.3.2 Description

The Source Code Organisation ArchiSpect consists of three parts: descrip-

tion of the way in which source �les are stored, the mapping of source code

onto software concepts and a description of the process of retrieving �les

from the con�guration management system [BHS80, Bab86].

Many deliverables (source code, design documents, etc.) are produced dur-

ing system development. These deliverables must be easily accessible to

all the developers. Sometimes, previous versions of documents may also

be requested. Di�erent people must be able to modify the same docu-

ments, but such concurrent access may not result in loss of information.

The functionality referred to above is o�ered by most of the con�guration

management systems, e.g. Continuus [Con] or ClearCase [Cle]. Most of the

con�guration management systems are based on a �le system (functional-

ity is implemented by locking �les, storing versions in di�erent directories,
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etc.).

Source code is one of the deliverables that is stored in the con�guration

management system; see also the Build Process ArchiSpect. A list of source

code �les that belong to a certain release is needed to be able to analyse

source code (see Files InfoPack). A more general description of the location

of �les, taking into account di�erent versions, is contained in Source Code

Organisation. Also included is the mapping of elements of this ArchiSpect

onto concepts of the Software Concepts Model .

During system development, �les occur in di�erent development states, e.g.

a �le is reserved by a developer who extends or modi�es it. After the

developer has �nished, he or she consolidates the �le by restoring it in

the archive. Describing these development states, their possible transitions

and the people who initiated these transitions provides insight into the

development process.

4.3.3 Example

Med

Figure 4.5 shows a model of the Source Code Organisation of the Med

system in a UML class diagram [Fow97]. In general, a software archive

contains various versions of the system. Each version consists of a number

of directories in which �les reside. Every time the system is released, a

copy of the current version is created.

Table 4.1 shows how some concepts of the Software Concepts Model, (see

Figure 4.4) are reected in the Source Code Organisation (Figure 4.5).

A system is reected onto a version and a component onto a directory.

Filenames start with a special pre�x of four characters which refers to

the package name. The concepts subsystem and archive are not explicitly

reected in the Source Code Organisation.

Figure 4.6 shows the development states of �les and possible transitions in a

state diagram (UML). The developer (integrator) is in control of the states

and transitions with a bold (italic) font style. For example, a developer

decides to grab a �le from the archive. When he or she has �nished modi-

fying the grab-ed �le, he or she preptake-s the �le which becomes ready for

archiving. The integrator take-s the �le and tries to build an alpha version

of the system. In the event of problems he or she may reject the �le; the

reject-ed �le must be accept-ed by the (latest preptaking) developer who
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Software Concepts Source Code

Model Organisation

system version

component directory

package + �le �le

Table 4.1: Software Concepts Model vs. Source Code Organisation of Med
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has to correct the �le. If the integrator decides that the �le satis�es, he or

she consolidate-s the �le in the archive.

4.3.4 Method

The Source Code Organisation is often well described in documents. The

documentation of the con�guration management system (CMS) contains

additional information. The �rst reconstruction activity to be performed

consists of reading CMS documentation and �ltering the proper informa-

tion. Additionally, one can interview system integrators and people con-

cerned with con�guration management. The Source Code Organisation can

be described using class diagrams of the UML language [Fow97]. The next

step is to describe the mapping from software concepts onto the entities of

this ArchiSpect and identify the gaps in this mapping scheme.

The development states and a development transition diagram can also be

extracted by interviewing system integrators and/or reading the appropri-

ate documentation. State diagrams of the UML language can be used to

document it.

4.3.5 Discussion

The top-level concepts (e.g. subsystems) in the Software Concepts Model are

often not reected on any tangible item of the Source Code Organisation.

There is a risk of the meaning these concepts, which exist only at a more

conceptual level, degenerating with time.
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Mapping between software concepts, Software Concepts Model , and source

code items, Source Code Organisation, as depicted in e.g. Table 4.1, is rele-

vant for analysing a system. The results of extraction tools must be mapped

onto software concepts to be able to ascend in the system's decomposition

hierarchy.

Some steps of the SAR method can be automated, but also integrated in the

development process. Knowledge of the development states and transitions

is required for integrating SAR steps in the development process.

4.4 ArchiSpect: Build Process

4.4.1 Context

The Build Process ArchiSpect belongs to the code view of software ar-

chitecture. This ArchiSpect is related to the Source Code Organisation

(Section 4.3) and the Depend InfoPack (Section 4.8).

4.4.2 Description

The Build Process ArchiSpect includes a description of how various pieces

of code (see also Source Code Organisation ArchiSpect) must be processed

to derive all the executables that comprise the system. This process can be

split into a number of smaller build activities, each describing how to create

a (intermediate) result from inputs. The di�erent intermediate results are

input for new build activities. In Figure 4.7 the cascade of smaller build

activities has been divided into four categories: pre-compile, compile, link

and post-process.
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The pre-compile category consists of code generation activities, e.g., gener-

ation of scanners and parsers from higher-level descriptions. The compile

category consists of source-code-compilation activities. Each input is ei-

ther a result of a pre-compile activity or it is created by hand. The link

category consists of linking the results of the compile activities into one or

more executables. The post-process activities consist of gathering all the

required �les (executables, resource �les, bitmaps, help texts, etc.) and

loading them on the target system.

If a �le changes (as indicated by a �le's modi�cation date), all its derivatives

must be rebuilt. To rebuild an entire system, this rebuild process must

be recursively applied, so derivatives of modi�ed derivatives must also be

rebuilt, and so on. There are several tools for supporting this mechanism,

of which the make [Fel79] utility is probably the best-known. All these tools

work with a build description �le that contains the dependencies between

the various �les and a description of how to create the results by de�ning

commands which must be executed, e.g. CC -I../finance ajax.c. After

some modi�cation a build tool will update all the (intermediate) derivatives

by executing the proper commands.

4.4.3 Example

Med

The Build Process of the Med system is depicted in Figure 4.8. A build de-

scription has been distributed amongst di�erent �les (e.g. acq.opt, acq.od

and acq.tgt), each of which is responsible for a certain task. The dotted

arrows indicate how these build description �les a�ect the various build

activities. With this system the pre-compile activities have been merged

with the compile activities and they are therefore not explicitly depicted.

The imports relation is in fact part of a compile activity (a pre-processor

of a compiler). The post-process activity consists of target-ing various �les

on the system.

Every night all the �les that are in the archive or alpha development states

(see Figure 4.6) are built. The system integrator is responsible for starting

the whole build procedure, which is in fact completely automated, every

evening. Early in the morning, after a successful build process, the system's

main features are briey tested. This test lasts approximately half an hour.

It is executed just before most of the developers arrive at work. After the

test, some �les are marked as reject-ed while others are stamped archive.
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This process of building and testing a system is similar to Daily Build and

Smoke Test [CS95].

4.4.4 Method

The build process is well documented for most systems. One should there-

fore read the appropriate documents including discussions with developers.

The main task is to develop an abstract model of this process. In addi-

tion, consulting the build description �les may also be of help in modelling

build process; see also the Depend InfoPack. We experienced that coop-

eration with integrators during the integration test helps in shaping this

ArchiSpect.

4.4.5 Discussion

In one of the systems we investigated the build process is described in a

generic way. For most of the �les a similar command must be executed to

compile the source code. In fact, one can de�ne such a generic command

per programming language. Similar statements hold for determining the

dependencies between the various �les. Per language, a tool can determine
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the �les on which the compilation of a �le depends; see also the Import

InfoPack. Deviations from the standard way of compilation can be de�ned

per �le. The �lename, the generic command, the programming language

and the deviations from the generic compile command can be stored in

a database. A dedicated program can generate a build description �le

from the records in this database. A build tool can then execute it. An

advantage of this approach is that new compilers can be introduced simply

by changing a single generic compile command.

4.5 InfoPack: Files

4.5.1 Context

The Files InfoPack is part of the code view of architecture. Knowledge of

the Source Code Organisation ArchiSpect (Section 4.3) is needed and the

Depend (Section 4.8) and Import (Section 4.6) InfoPacks use the results of

this InfoPack.

4.5.2 Description

The Source Code Organisation ArchiSpect discusses the organisation of

�les in general terms. The Files InfoPack extracts all the source �les (all

the �les created by humans) required to construct a system. The results of

this InfoPack serve mainly as input for other InfoPacks. These �les can be

classi�ed in di�erent categories:

� Files , the �les of a (version of the) system created by humans;

� HeaderFiles , �les that specify functions, variables, etc.;

� BodyFiles , �les that de�ne functions, variables, etc.;

� ResourceFiles , �les that de�ne help texts, pictures, etc.;

� BuildFiles , �les that de�ne (part of) the build process;

� Exts, extensions of �le-names, e.g. java, cpp;

� Cats , categories of �les, e.g. C-source;

� PhFiles , physical �le-names, i.e. the complete name of the �le on the

�le system, e.g. //dev8/ist9/user/krikhaar/med/ver8/ajax.c.

and the following relations:

� typedExts;Cats , a relation that maps elements of Exts onto elements of

Cats ;



66 Described Architecture

� typedFiles;Exts , a relation that maps elements of Files onto elements

of Exts ;

� locatedFiles;PhFiles , 1-to-1 mapping of Files onto their physical loca-

tions (PhFiles) in a �le system (and vice versa).

4.5.3 Example

In view of their sizes, we are unable to give the sets and relations of this

InfoPack of existing systems. However, for two systems, we present some

related information.

Switch

For the Switch system it was easy to determine the system's �les involved.

All the �les created by humans of each version are located in a single

directory in the �le system. The source �les consist of C and C++ �les

having the extensions .h and .hpp, respectively, for the header �les and .c

and .cpp, respectively, for the body �les.

Med

The Med system consists of thousands of �les (Files). Over 60 di�erent

�le extensions were found in the system (Exts). Some of them exist only

because of the system's history (legacy). The whole list of extensions can

be grouped into ten types of extensions (Cats).

4.5.4 Method

The method for extracting the results of this InfoPack depends very much

on the system at hand. The Files set consists of all the �les in the con�gu-

ration management system which belong to a single release and which were

created by humans. In terms of con�guration management, these are all

�les that can be checked in and checked out. How we can construct such a

list will depend on the con�guration management system Other techniques

consists of analysing directories and using �le-name extensions to determine

whether a �le was created by human.

The extension of a �le name often indicates the type of information con-

tained in the �le. One can derive the relation typedFiles;Exts , which describes
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Exts Cats

c C-source

h C-source

java Java-source

txt Help-text

hlp Help-text

gif Picture

jpeg Picture

bmp Picture

Table 4.2: typedExts;Cats

the relation between �les and their extensions. The �le-exts program (listed

in Section A.1) creates this relation from the set of Files .

The Files can be partitioned into a number of sets: HeaderFiles , BodyFiles ,

ResourceFiles and BuildFiles . The �rst three sets are the �les that eventu-

ally appear in some (derived) way in the running system. The BuildFiles

are di�erent in the sense that they indirectly belong to the source code:

they are the build description �les discussed in Section 4.4. One can cal-

culate the various sets on the basis of �le-name extensions. For example,

given that all HeaderFiles have the extension .h or .hpp, we can calculate

as follows in RPA:

HeaderExts = fh; hppg

HeaderFiles = dom(typedFiles;Exts �ran HeaderExts)

Table 4.2 gives an example of the typedExts;Cats relation. Each extension is

assigned to a single category. This relation must be constructed by hand,

in cooperation with an architect.

For the purpose of readability, it is convenient to use short �le names instead

of full �le names (i.e. a device name plus directory name plus base name of

a �le). It is important to ensure that the resulting �le names are unique,

but one must also be able to �nd the �le in question in the �lesystem at

any requested time (i.e. physical �le name). The relation locatedFiles;PhFiles
is a function from the (unique) �le name to the physical �le name. This
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relation can be derived by removing the �le name's �rst part of the full �le

name as much as possible and preserving the �le name's uniqueness.

We can partition all the �les according to the categories (Cats). The part-

of relation (typedFiles;Cats) that describes this relation can be calculated as

follows in RPA:

typedFiles;Cats = typedExts;Cats � typedFiles;Exts

4.5.5 Discussion

It is important to carefully check the extraction results, especially when

they are based on heuristics and/or line-oriented Perl [WCS96] scripts (see

also discussion in Section 4.6.5). An example of a heuristic is that all �les

with the extension .hlp belong to the set of ResourceFiles .

Some checks can be performed at an early stage of analysis already. For

example, one can check whether each existing �le extension (Exts) belongs

to some category (Cats). We can express this in an RPA formula:

ran(typedFiles;Exts) � dom(typedExts;Cats)

4.6 InfoPack: Import

4.6.1 Context

The Import InfoPack belongs to the code view of software architecture.

The Files InfoPack (Section 4.5) is used as input and the Component De-

pendency (Section 4.9) and Using and Used Interfaces (Section 4.10) Archi-

Spects use the results of this InfoPack.

4.6.2 Description

To be able to manage large systems, one must divide the software into

several separate compilation units. These units use each other by e.g. calling

functions, so they require knowledge of each other. A generally accepted

concept is to distinguish two parts for each unit: a header part, containing
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declarations of e.g. variables and signatures of functions, and a body part,

containing the implementation of the names declared in the header. If one

unit wants to use another unit, it will import the unit's header information.

In the programming language C [KR88] (C++ [ES90]), header information

and source code are reected in di�erent �les. Historically, the �les have the

su�xes .h and .c, but, strictly speaking, any �le extension may be used.

Although not required, it is preferable to ensure a one-to-one correspon-

dence between the header and the body �le, so that champion.h contains

declarations of names that are implemented in champion.c; nothing less

and nothing more than that. For clarity one should de�ne such rules in the

coding standards (as this will ensure more conceptual integrity).

Although not absolutely demanded by C/C++-compilers, a header �le

should contain only the following information:

� macro declarations

� type declarations

� class declarations (C++ speci�c)

� function (method) declarations, i.e. signatures of functions (methods)

� variable declarations

Such concepts exists for other languages too. A �ne example is the Modula-

2 programming language [Wir83], which explicitly handles the notions of

de�nition modules and implementation modules. The syntax of this lan-

guage ensures that the de�nition module and the implementation module

both contain the right type of information.

This InfoPack results in the relations importsFiles;Files and partof Files;Units .

The imports relation contains tuples hFileX ;FileY i, where FileX imports

FileY . The partof Files;Units relation groups a header �le and a body �le into

a single entity, named unit. The latter relation is of use in reconstructions

only if the notions of header and body �le have been properly applied (as

described above).

4.6.3 Example

We give a fragment of a C/C++ source �le (ajax.c) as an example.

#include "champion.h"

#include <string.h>

#include "../finance/stock.h"
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Files Files

ajax.c champion.h

ajax.c string.h

ajax.c stock.h

. . . . . .

Table 4.3: importsFiles;Files

In this example there are three #include statements, each with its own

speci�cs. The three header �les are literally included before the compiler

starts compiling the ajax.c �le. The compiler1 searches for the included

�les in the �le system using an include-path. An include-path is an ordered

list of directories (in the �le system). The compiler searches for an include

�le by looking for it in the directories (in the given order) as de�ned in the

include-path. The order of the directories in the include-path is relevant

when a �le occurs more than once in the �le system.

The �rst #include statement refers to champion.h. The compiler searches

for this �le, at �rst in the current directory, and secondly via the include-

path. In the second #include statement, the �le-name is enclosed by angles

(< >). The compiler consequently searches for it only via the include-path

(ignoring �les in the current directory). In the third #include statement,

the �le-name is preceded by a relative path (../finance/). This is in fact

similar to the �rst statement, except for the relative path which is taken

into account during searching.

The results of the import extraction of this example are given in Table 4.3.

Table 4.4 shows the partof Files;Units relation.

4.6.4 Method

The method in constructing this InfoPack comprises the following steps:

� starting with a list of �les belonging to the system; this list is a result

of the Files InfoPack;

� determining the include-path per �le; the Build Process ArchiSpect

describes where one can �nd this information;

� extracting the include statements per �le and determining the in-

cluded �le (using the include-path);

1In fact, a pre-processor of the compiler searches the �les and literally includes them.
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Files Units

champion.c champion

champion.h champion

ajax.c ajax

ajax.h ajax

stock.c stock

stock.h stock

. . . . . .

Table 4.4: partof Files;Units

� reecting the information in the importsFiles;Files relation �le;

� determining the units and constructing partof Files;Units .

In practice, many peculiarities make extraction slightly more di�cult than

described above. For example, di�erent operating systems have di�erent

�le systems with their own �lename conventions (e.g. Windows NT , does

not distinguish cases in �le names, Unix , however, is case-sensitive with

respect to �le names). When di�erent �le systems are used, case sensitivity

problems must be solved �rst (e.g. by converting cases).

In the following sections we will discuss the extraction of an imports relation

from source code written in di�erent programming languages: C/C++,

Java, Objective-C and CHILL. Many parts of the systems we investigated

have been implemented in these programming languages. The discussion

of the extraction will also serve to illustrate how an imports relation can

be extracted from source code written in other languages.

C and C++

The C++ language [ES90] is an object-oriented version of the C lan-

guage [KR88]. The import mechanisms of the two languages are the same.

First, we strip comments from the source �les (the comment-strip program

is presented in Section A.3). Secondly, we extract the inclusion of �les (the

C-imports program is presented in Section A.4). The #include statement

contains the �le name of the included �le. This �le name is enclosed be-

tween a pair of quotes (") or between angles (< and >). The extraction

program uses these facts to �lter the proper information, which results in

an importsFiles;Files relation.
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One can also construct the partof Files;Units relation on the basis of �le

names. The relation is based on a naming convention: the names of header

and body �les are the same except for their su�xes, .h and .c, respectively

(the program is given in Section A.2).

Java

The Java language [Jav, Web96] supports an import statement enabling the

use of other classes. The Java compiler searches for the imported classes

via the CLASSPATH environment variable. The mechanism is similar to the

include-path mechanism of C/C++.

We give an example (ajax.java) to illustrate various import statements of

Java:

import Player;

import traffic.transport;

import car.*;

import java.awt.Button;

class ajax

The �rst import statement asks for the Player class, which means that

the compiler searches for a Player.class2. This �le must reside in one of

the directories de�ned in the CLASSPATH.

The second import statement de�nes that the transport class from the

traffic package is imported. The compiler searches for transport.class

in a traffic/ sub-directory of one of the directories in the CLASSPATH.

In the third import statement, all the classes of the car package are im-

ported (they are present in CLASSPATH's car/ sub-directory) by using a

wildcard (*). The fourth import statement imports from the java.awt

package the Button class. The compiler searches for a Button class in a

java/awt/ sub-directory of CLASSPATH.

The Java language also contains a class-grouping mechanism called pack-

ages. The �rst statement of a Java source �le may be a package declaration,

which means that all the classes de�ned in the �le belong to that de�ned

package.

2In Java a class �le is the compiled version of the accompanying java source �le.
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Classes+ Classes

MyPackage.ajax Player

MyPackage.ajax tra�c.transport

MyPackage.ajax car.*

MyPackage.ajax java.awt.Button

. . . . . .

Table 4.5: importsClasses;Classes

Classes+ Classes

MyPackage.* MyPackage.ajax

MyPackage.ajax MyPackage.ajax

car.* car.door

car.* car.wheel

car.* car.gear

. . . . . .

Table 4.6: de�nesClasses+;Classes

An extraction program is much simpler when comments have already been

removed from the source. Java comments are equivalent to C++ com-

ments, so they can be stripped with the strip-comment program (presented

in Section A.3). An importsClasses;Classes+ relation (an example is given in

Table 4.5) is the result of the J-imports extraction program (presented in

Section A.5). The Classes+ refers to an extended set of classes; the wild-

card notation has not yet been resolved. The J-package extraction program

(presented in Section A.6) generates a de�nesClasses+;Classes relation (an ex-

ample is given in Table 4.6). So, given the class de�nitions per package, we

are able to resolve the wildcard notation resulting in an imports3 relation:

importsClasses;Classes = importsClasses;Classes+ � de�nesClasses+;Classes

3Public classes and �le names are in fact interchangeable in Java, so we can see it as

an importsFiles;Files relation.



74 Described Architecture

Objective-C

Objective-C [CN91] is an object-oriented version of the programming lan-

guage C. It is possible to translate Objective-C code into C code with the

aid of a relatively simple translator; the resulting C �le can then be com-

piled by a C-compiler. Various Objective-C compilers use this strategy4.

Objective-C units can use functionalities of other units by importing the

corresponding header �le (as in C). We give an example:

#import <ReportGenerator.h>

#import <ReportDefinitions.h>

The ObjC-imports extraction program (presented in Section A.7) is an

adapted version of C-imports. It �lters #import instead of #include state-

ments.

CHILL

The programming language CHILL [ITU93, SMB83], CCITT HIgh Level

Language, is used particularly to build telecommunication systems. The

language contains state-oriented constructs. There are several dialects of

this language, but, fortunately, these derivatives do not di�er in their im-

port mechanisms. We give a CHILL example:

Subscriber: MODULE

GRANT

counting, connect_me;

SEIZE

make_connection;

SEIZE

PortHandler ALL;

END Subscriber;

A module can export names (such as functions, types and variables) with a

GRANT statement (counting, connect me). A module can only use names

4The �rst C++ compilers also used this strategy to compile C++ �les.
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(make connection) of another module by importing them with a SEIZE

statement. It is also possible to import ALL the (exported) names of a

module (PortHandler).

If strict coding standards are applied, one may be able to extract informa-

tion with a Perl [WCS96] program, otherwise a dedicated parser is required.

4.6.5 Discussion

We have given extraction programs for import statements in C/C++, Java

and Objective-C programs. For systems that mix a number of program-

ming languages one can concatenate the results of the various programs.

While analysing di�erent systems, we found that the extraction programs

sometimes had to be changed a bit. For example, when operating sys-

tem environment variables are used within C include statements, one must

interpret these variables.

#include "BAS_ENV:string.h"

In the above example, the environment variable BAS ENV must be resolved

�rst to determine the physical location of the �le that is imported. In this

particular case it was fairly easy because this environment variable name

leads directly to the directory involved (i.e. BAS/).

The given extraction programs are implemented in Perl [WCS96]. A Perl

program is interpreted (by a Perl interpreter); one can easily modify it.

Therefore, it is very handy during the process of analysing software. On the

other hand, these programs are based on many assumptions concerning the

layout of the input, which makes them error-prone. One should therefore

carefully check the results of these programs.

Reverse engineering tools are able to extract a fair amount of source-code-

related information (e.g. function calls, variable access, but they do not

analyse function pointers). We can process the output of these tools to

obtain, e.g. an import relation. For example, the (intermediate) output of

QAC [Pro96] (a commercial tool that checks the quality of C programs) can

easily be translated into RPA-formatted �les. The QAC-imports program

(presented in Section A.8) �lters appropriate statements from QAC output

and generates an importsFiles;Files relation.

There is a major di�erence between the Perl approach and the QAC (or

any other reverse engineering tool) approach. QAC parses the complete
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source code, taking into account all kinds of pre-processor settings (like

#define). This means that for certain compiler settings parts of the code

are not parsed (e.g., code between #ifdef and #endif statements. This

may also result in skipping of the inclusion of header �les. Note that the

various products in a product family are often distinguished by including

product-dependent header �les (using the #ifdef construct). For a com-

plete analysis of the di�erent products we have to extract all the included

�les.

4.7 InfoPack: Part-Of

4.7.1 Context

The Part-Of InfoPack belongs to the code view. It is related to the Software

Concepts Model (Section 4.2) and Source Code Organisation (Section 4.3)

ArchiSpects. The results are input for the Component Dependency (Sec-

tion 4.9) and Using and Used Interfaces (Section 4.10) ArchiSpects.

4.7.2 Description

Each large system is decomposed into various parts; these parts can in

turn be decomposed into smaller parts; see also the Software Concepts

Model ArchiSpect. This form of decomposition is applied a number of

times until the level of statements is reached. Programming languages o�er

only a few levels of decomposition: statements are grouped in functions and

functions reside in classes or �les5. We could imagine a counterpart for each

software concept in a programming language concept. For example, layers

(see Section 1.5.1) are often applied for large systems, but programming

languages do not support this concept.

All decomposition levels should be reected in the system's code view in

some way, as already indicated in Section 4.3. For example, one can use

directories in the �le system to reect the decomposition hierarchy. Special

comments in the headers of source �les can also be used to reect the

decomposition level(s). This may easily lead to the introduction of errors

because developers may forget to maintain headers.

5Some languages o�er more grouping possibilities Java e.g. includes the concept of

packages.
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Figure 4.9: Implementation of Decomposition Levels Med

/*

* Subsystem: Operating System

* Component: Event Handling

*/

4.7.3 Example

Med

The subsystem and component decomposition levels of the Med system

(e.g. Est and Acq, respectively) map onto directories in the source code

organisation; see Figure 4.9. The Package level is reected in the applied

�le name convention of source code �les (encoded in the pre�x of the �le

name).

Tele

The source code �les appear in a single directory. The decomposition hierar-

chy is reected in the documentation structure (which can be automatically

extracted by analysing directories on the �le system).

4.7.4 Method

The result of this InfoPack consists of a number of partof relations, ac-

cording to the part-of levels generally described in the Software Concepts
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Model. If the Source Code Organisation reects parts of the decomposition

hierarchy, one can derive the partof relations by inspecting the directories

(a program is presented in Section A.9). Comments in the headers can

moreover be analysed by simple Perl [WCS96] programs.

The other partof relations must be created by hand with the help of soft-

ware architects. After that, we have all the partof relations already dis-

cussed at an abstract level in the Software Concepts Model ArchiSpect.

The set of partof relations embodies a system's decomposition hierarchy.

4.7.5 Discussion

For reverse engineering purposes one should be able to reconstruct the de-

composition hierarchy from source code and/or from source code organisa-

tion. In fact one should take provisions, already during the initial creation

of a system in order to make it easier to extract information from the sys-

tem's source code. Otherwise, extra information will have to be obtained by

interviewing architects and/or dedicated heuristics will have to be applied

during reconstruction.

4.8 InfoPack: Depend

4.8.1 Context

The Depend InfoPack belongs to the code view. It is related to the Build

Process ArchiSpect (Section 4.4). It uses the results of the Files InfoPack

(Section 4.5). The result is used by the Component Dependency ArchiSpect

(Section 4.9).

4.8.2 Description

The build description �le contains knowledge relating to how to construct

the entire system is to be created. How �les depend on each other is

described in the build description �les. With large systems, the whole

build process often consists of executing a number of build description �les.

Figure 4.7 shows a general view on the Build Process. For this InfoPack

we make explicit the various activities in this build process in terms of �les

and a depends relation between �les: dependsFiles;Files .
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Figure 4.10: dependsExts;Exts

This InfoPack also results in the relation dependsExts;Exts . This relation

describes dependencies at a more abstract level. It is based on �le name

extensions, e.g. a .o �le depends on .c and .h �les. It is interesting to

analyse this relation because some curious tuples may be found in the

case of legacy systems. These curiosities often originated in the past when

di�erent (or no) coding standards were used. In Figure 4.10 a .exe depends

on .lib and .o �les, a .lib �le depends on .o �les, and a .o �le depends

on .c and .h �les.

4.8.3 Example

Med

With the Med system, MMS [VAX96] is used as the language for describing

the dependencies between the various �les. It contains the commands to

be executed to build the system. We give a fragment of an MMS �le:

COMP:main.exe : ,-

SUBCOMP:string.obj, -

SUBCOMP:finance.obj, -

COMP:main.obj, -

link COMP:main.obj SUBCOMP:string.obj SUBCOMP:finance.obj -

-out COMP:main.exe

The terms COMP and SUBCOMP are VMS environment variables that refer to a

certain directory belonging to components COMP and SUBCOMP, respectively.

main.exe is created by executing the speci�ed link command. It depends

on two object �les of SUBCOMP and one object �le of COMP.



80 Described Architecture

4.8.4 Method

We will start with the BuildFiles created by the Files InfoPack. The next

step is to parse the build description �les and extract the dependencies

between the �les. The last step is to combine the extracted information in

a single relation: dependsFiles;Files .

For MMS we built a simple parser in Lex [LS86] and Yacc [Joh75]. The de-

pendencies were written to a relation: dependsFiles;Files . A similar strategy

can be used for make [Fel79] �les.

The relation dependsExts;Exts can be calculated as follows in RPA:

dependsExts;Exts = dependsFiles;Files " typedFiles;Exts

4.8.5 Discussion

In practice, the build description �les are often (partially) generated. In-

formation about the import relation between �les is required for the gen-

eration of these �les. Additional information is required to determine

the proper link commands to construct the executables. To extract the

importsFiles;Files relation (outcome of the Import InfoPack (Section 4.6))

one may tap information from this process. However, this will be the rela-

tion for a single product in the family (see also Section 4.6.5).

With legacy systems there may be a discrepancy between the �les as dis-

covered in a dependsFiles;Files relation and the �les in a system (see the Files

InfoPack). The results of this InfoPack may also help to discover references

to �les that are a user's proprietary, i.e. a �le in a user directory which may

suddenly disappear when he or she leaves the organisation. The results

of the Depends InfoPack should be carefully compared (e.g. by executing

RPA expressions) with the results of the Files InfoPack in order to check

the correctness of the extraction results.

4.9 ArchiSpect: Component Dependency

4.9.1 Context

The Component Dependency ArchiSpect is part of the module view. It uses

the results of the Import (Section 4.6), Part-Of (Section 4.7) and Depend
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(Section 4.8) InfoPacks.

4.9.2 Description

A system's build time consists of the time consumed by the various ac-

tivities of the Build Process (pre-compiling, compiling, linking and post-

processing). The compilation of a single-source �le consists of parsing all

the imported header �les and the source �le itself. Typically, each header

�le is parsed as many times as it is imported in source �les6. Usually, after

a modi�cation, the system is rebuilt by compiling the directly or indirectly

changed source �les. When a header �le is changed, all the source �les

that include this header �le must be recompiled. Recompilation should

be minimised by minimising the import system's dependency. This Archi-

Spect can help to estimate the average time to recompile the system after

a change. This may a�ect procedures of building a system (e.g. the nightly

built should better start at 05.00 PM).

Modifying or extending part of the system requires knowledge of its con-

text (e.g. `neighbouring' modules). A developer must understand all the

implications of a change and he or she should therefore consider the conse-

quences outside the a�ected source, too. With fewer import dependencies

a developer need understand less a modi�cation's context.

During development and maintenance a developer spends a lot of time

learning to comprehend the system, sometimes up to 50% of the time spent

on maintenance [PZ93]. It is hard to forecast the time needed for such com-

prehension activities, and therefore it is hard to plan modi�cation activities.

Locality of a change is inversely proportional to the unpredictability of the

required modi�cation time. A modi�cation in one part may result in other

modi�cations in other parts, which is also known as the ripple-e�ect.

When software is modi�ed, the system should always be tested again. One

can focus on the modi�ed source, but one must always carefully consider

any software that uses a modi�ed functionality. Component Dependency

can help in determining the parts that have to be tested again.

6Some software development environments reduce the parsing time by saving pre-

compiled header �les in a binary format.
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4.9.3 Example

Subsystems use each other's functionality to operate properly. This usage

can be presented with box-arrow diagrams (here created by the Teddy-PS

tool; see Section C.3, but there also exist commercial and non-commercial

tools, e.g. Rigi [SWM97]), but we must be explicit about the semantics of

the boxes and arrows. A box represents a piece of software, e.g. a subsys-

tem; an arrow from one box (importing entity) to another box (imported

entity) represents an import dependency. The table diagram (created by

the TabVieW tool; see Section C.5), shows marks (I) in those cells for

which an import dependency exists. If there is a mark, the entity given in

the leftmost column imports the entity given in the top row.

Med

The component dependency of Med is given in Figure 4.11 at subsystem

level (note that arrows from a box to that same box, i.e. the identity rela-

tion, have not been depicted). The same information is also given in another

form in Table 4.7 (here, the identity relations appear in the diagonal of the

table).

Comm

The component dependency of the Comm system is depicted in Figure 4.12.

4.9.4 Method

We will start the reconstruction of Component Dependency with the results

of the following InfoPacks and relations:

� Import ; importsFiles;Files
� Part-Of ; a chain of partof relations starting at Files level and �nish-

ing at Subs level. More generally, we need partof relations at all the

levels in the decomposition hierarchy: partof Files;LN , partof LN ;LN�1 ,

. . . , partof L2 ;L1

Knowledge of the results of the Software Concepts Model ArchiSpect is

needed to be able to correctly interpret the various partof relations, namely

the \chain" of decomposition levels versus the \chain" of partof relations.
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Figure 4.11: Component Dependency Med
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Figure 4.13: Lifting importsFiles;Files

The next step is to make proper abstractions of the given import informa-

tion. A chain of lift operations must be executed to derive the component

dependency at the requested level. One can derive this, in RPA, as follows,

given the decomposition hierarchy Files-Packs-Comps-Subs :

importsPacks;Packs = importsFiles;Files " partof Files;Packs

importsComps ;Comps = importsPacks;Packs " partof Packs;Comps

importsSubs;Subs = importsComps;Comps " partof Comps ;Subs

explanation

As illustrated in Figure 4.13: if a �le X in package A imports a �le Y
from package B then package A imports package B (arrow 1). This
principle has been applied in the above RPA expression by means of
the " (lift) operator. Information that �le X is part of package A and
�le Y is part of package B is described in the relation partof Files;Packs .
We have lifted the imports relation at Packs level to the Comps level
by lifting again (arrow 2). By lifting a third time we reach the Subs
level (arrow 3).

The last step is to present the information; a typical form of representation

is a graph. A number of graph visualisors are discussed in Appendix C.

We prefer to use a layout and format that will be familiar to the develop-

ers. So we have applied the notation used in the system's documentation.

For example, the layout of boxes drawn in Figure 4.11 is the same as in

pictures in the Med documentation. The Teddy-PS visualisation tool (see

Section C.3) can be used to create this diagram.

Another form of presentation is a table or matrix; the using subsystems are

listed in the �rst column and the used subsystems in the �rst row. A mark

appears in the cells where a using subsystem imports a used subsystem.
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Div Top Est Sens Pres Util Netw UTX Bot Bas

Div I I

Top I I I I I I I

Est I I I I I I I

Sens I I I I

Pres I I I

Util I I I I

Netw I I I

UTX I I

Bot I I I I

Bas I

Table 4.7: Component Dependency of Med

The TabVieW visualisation tool (see Section C.5) can be used to create a

similar table in a Web browser.

4.9.5 Discussion

The order in which the subsystems appear in Table 4.7 has been carefully

chosen. The subsystems at the top of the system (see Figure 4.11), Div

and Top, are listed �rst, and those at the bottom, Bot and Bas, appear in

the last row and the last column, respectively. In the case of a system with

a layered structure as discussed in Section 1.5.1, one may expect marks in

the upperright corner of the table (i.e. above the diagonal). An opaque

layered system may have marks only in the diagonal cells and in exactly

one cell above these cells.

Assume that a dependency between subsystem A and subsystem B is cu-

rious. We will then want to investigate the reasons for its existence. For

example, we might want to �nd out which imports at component level are

responsible for it. The following RPA formulas can be used for this purpose:

CompsA = partof Comps;Subs :A

CompsB = partof Comps;Subs :B

suspectsCA;B = (importsComps ;Comps �dom CompsA) �ran CompsB
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explanation

The CompsA (CompsB ) set contains all the components that belong to
subsystem A (B), i.e. the left image of partof Comps;Subs with respect
to A (B). Taking the relation importsComps;Comps , we must look at
the tuples that start (i.e. domain) from components of A and end (i.e.
range) with components of B.

Analogously, we can descend the decomposition hierarchy to obtain more

speci�c information:

PacksA = partof Packs ;Comps �ran CompsA

PacksB = partof Packs ;Comps �ran CompsB

suspectsPA;B = (importsPacks ;Packs �dom PacksA) �ran PacksB

We have discussed this ArchiSpect by taking the imports relation as a

starting point. It is however also possible to start with the depends relation,

which will result in a slightly di�erent interpretation of the diagrams.

Reexion Models

We will �nish this discussion by relating Component Dependency to the

reexion models introduced by Murphy et al. [MNS95]. A so-called source

model is extracted from the source code. This model contains a use relation

between source model entities (smentities), e.g. �les. Additionally, there

is a mapping which describes how source model entities are to be mapped

onto high level model entities) (hlmentities). We give an example of a

mapping table:

[ file=*string*\.[ch] mapTo=StringHandling ]

[ file=tcpip/ip*\.[ch] mapTo=IPServices ]

All source model entities must be mapped onto high level model entities.

In fact, this mapping de�nes a partof SMEs;HLMEs making use of regular

expressions to reduce the number of entries in the mapping table. From

these pieces of information a mappedSourceModel can be constructed which

is a set of tuples of tuples:

mappedSourceModel = f hhh1; h2i; hs1; s2iij
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hs1; s2i 2 SourceModel ^mapping(h1; s1) ^

mapping(h2; s2) g

The domain of the mappedSourceModel describes the use relation at a high

level. This is similar to the result obtained on lifting an importsFiles;Files
relation to a subsystem level.

4.10 ArchiSpect: Using and Used Interfaces

4.10.1 Context

TheUsing and Used Interfaces ArchiSpect belongs to the module view. The

results of the Import (Section 4.6) and Part-Of (Section 4.7) InfoPacks are

used as input.

4.10.2 Description

The interface provided by a class consists of the methods and data which

are not private. A class can be (re-)used in a proper way when one is aware

of at least its interface (both syntax and semantics). This principle can be

applied at each decomposition level, so to reuse components one must be

aware of the component's interface.

The Component Dependency ArchiSpect shows the interconnectivity of

components. It is relevant to know the constituents of a used component

that are used by other components. When a component must be replaced

by another component one should at least know the connection points of

that component with the outside world.

Good software architectures explicitly describe the interfaces of all the com-

ponents. It is also possible to reconstruct the interfaces of components. The

using interface of a component consists of the component's elements that

are using (elements of) other components. The used interface of a compo-

nent consists of the component's elements which are used by (elements of)

other components.

Figure 4.14 shows the using interface and used interface. The rounded

boxes represent �les; the square boxes represent components. In this ex-

ample we will show the Files interface of component K. We must note that
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Figure 4.14: Using and Used interfaces

interfaces can be calculated at various decomposition levels, e.g. the Func-

tions interface of subsystems. The Files interface of a component consists

of the set of �les that are using (being used-by) other components.

A poor design creates a single global include �le per subsystem, which

includes all the header �les of the subsystem. This minimises the used

interface of a subsystem, but it is not considered a good design decision,

because a modi�cation of this global include �le will necessitate recompila-

tion of all the source �les that use this subsystem. We introduce the notion

of the used+ interface to overcome this problem. The used+ interface, at

Files level, consists of all the directly or indirectly included �les. Note that

the used+ interface is most relevant when we are investigating the Files

interface. At higher abstraction levels we will often obtain all the entities

of the system when we consider indirect usage. At �le level the (in)direct

inclusion of �les always \starts" and \stops" at header �les.

4.10.3 Example

Med

We reconstructed the Files interface of subsystems for the Med system.

In Figure 4.15 the using and used interfaces are expressed as ratios of a

subsystem's full set of �les. Boxes represent the subsystems; the upper

(shaded) part of the box represents the ratio of the �les that belong to the

used interface, the lower (shaded) part of the box represents the ratio of
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Figure 4.15: Using and Used Interfaces of Med

the �les that belong to the using interface. Note that some �les may form

part of the using interface as well as the used interface. The using and used

interfaces can also be presented in a tabular format as given in Table 4.8.

4.10.4 Method

The results of the Import and Part-Of InfoPacks are required for this Archi-

Spect. Knowledge of the Software Concepts Model ArchiSpect is needed to

understand the way partof relations are organised.

To be able to calculate the Files interface of components we need the fol-
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Subsystem # # using ratio # used ratio

Files Files using Files used

Div 13 4 0.308 0 0.000

Top 151 80 0.530 0 0.000

Est 4015 1191 0.297 52 0.013

Sens 489 105 0.215 11 0.022

Pres 326 147 0.451 46 0.141

Util 411 188 0.457 43 0.105

Netw 448 193 0.431 71 0.158

UTX 50 27 0.540 0 0.000

Bot 586 193 0.329 177 0.302

Bas 802 0 0.000 234 0.292

Table 4.8: Using and Used Interfaces Ratios of Med

lowing relations: importsFiles;Files and partof Files;Comps . In general, to be

able to calculate the LX interface of LY we need the relations: partof LX ;LY
and importsLX ;LX . For clarity, we will adhere to the Files interface of

components. We will de�ne, in RPA, the using interface step-by-step.

importsFiles;Comps = partof Files;Comps � importsFiles;Files

importsExtFiles;Comps = importsFiles;Comps n partof Files;Comps

explanation

We construct a relation importsExtFiles;Comps , that de�nes an im-
port relation containing tuples as indicated by the arrows from �les
(rounded boxes) to components (square boxes) in Figure 4.14. For
each �le we calculate which components it uses: importsFiles;Comps .
We are only interested in relations that pass the boundaries of com-
ponents, so from this relation we subtract the relation that contains
all the internal imports expressed by the partof Files;Comps relation.

The second step consists of the following RPA formulas:

FilesUsingExt = dom(importsExtFiles;Comps )
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usingFiles;Comps = partof Files;Comps �dom FilesUsingExt

explanation

The using interface of component K consists of the �les of component
K residing in the importsExtFiles;Comps relation. The FilesUsingExt
set contains all the �les that are used by components other than their
containers. The usingFiles;Comps relation assigns the FilesUsingExt

set to the components to which they belong. This is a subset of the
partof relation, so we restrict this relation to its domain with respect
to FilesUsingExt .

The next step consists of the following RPA formulas:

importsComps ;Files = importsFiles;Files � partof
�1

Files;Comps

importsExtComps ;Files = importsComps ;Files n partof
�1

Files;Comps

FilesUsedExt = ran(importsExtComps;Files)

usedFiles;Comps = partof Files;Comps �dom FilesUsedExt

explanation

The importsExtComps;Files relation represents the arrows from �les
(rounded boxes) to components (square boxes) indicated in Figure 4.14.
In this case we have to lift the domain part of the importsFiles ;Files ,
which is performed by composing it with the conversed partof re-
lation. We calculate the rest in a similar manner as for the using
interface.

The ratio of the using and the used interfaces of components, i.e. the number

of �les in the interface related to the total number of �les in a component,

can be calculated in RPA for each component C 2 Comps :

UsingC =
jusingFiles;Comps :Cj

jpartof Files;Comps :Cj

UsedC =
jusedFiles;Comps :Cj

jpartof Files;Comps :Cj
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explanation

The number of �les of component C that use \something" from out-
side that component is given in the numerator part. The total number
of �les of component C is given in the denominator part. The used
interface ratio is calculated in a similar manner.

The formulas of the used+ interface are the same as those of the used

interface except that we start with the transitive closure of imports . So we

arrive at the following RPA formulas:

importsPlusComps ;Files = imports+Files;Files � partof
�1

Files;Comps

importsPlusExtComps ;Files = importsPlusComps ;Files n partof
�1

Files;Comps

UsedPlusExts = ran(importsPlusExtComps;Files)

usedPlusFiles;Comps = partof Files;Comps �dom UsedPlusExts

explanation

The direct or indirect use of a �le is expressed by the transitive clo-
sure of the imports relation: imports+Files;Files . The rest of the cal-
culations are carried out in a similar manner as those for the used
interface.

As already mentioned, the above formulas can be applied at various decom-

position levels. Instead of two consecutive levels (Files and Components)

one can also select two non-consecutive levels (Functions and Subsystems).

For two non-consecutive levels LX and LY we have to compose a partof

relation from existing ones:

partof LX ;LY = partof LY�1 ;LY � partof LY�2 ;LY�1 � : : : � partof LX ;LX+1

4.10.5 Discussion

The signi�cance of addressing ratios of using and used interfaces is also

recognized in Lagu�e et al. [LLMD97, LLB+98]. In this work information

is extracted from the source code by �ltering the #include statements

from the C(++) source code (probably similar to the Import InfoPack as

discussed in Section 4.6). From this information the authors constructed

di�erent sets (not further discussed in their paper). Each set belongs to a

layer i; it contains certain types of �les:
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� F (i) : all �les

� IF (i) : all header �les

� IM (i) : all body �les

� D(j; i) : all �les that use �les from layer j

� S(j; i) : all �les that are used by layer j

They calculated the used interface ratio of layer i with respect to layer j

as follows:

UR(j; i) =
jD(j; i)j

jIF (i)j

And the used interface ratio of layer i as follows:

UR(i) =

j
S

j 6=i

D(j; i)j

jIF (i)j

They calculated the using interface and the used+ interface ratios in a

similar manner.

Lagu�e et al. used the number of header �les as the denominator in their

formulas. We used the total number of �les, i.e. the header and body �les.

In practice the number of header �les will correspond to the number of

body �les. So our ratios will be half the ratio of Lagu�e et al. It is however

possible to rewrite our using and used formulas to obtain the same ratios:

UsingComp =
jusingFiles;Comps :Compj

j(partof Files;Comps :Comp) \HeaderFiles j

UsedComp =
jusedFiles;Comps :Compj

j(partof Files;Comps :Comp) \HeaderFiles j

Large ratios for using and used interfaces means that hardly any informa-

tion is hidden. One should therefore strive to create small interfaces. In

fact, this holds for each level of abstraction. It is however more important

to have small interfaces at the higher levels of abstractions than lower ones.

In general, the system is more comprehensable when all the interface ratios

are small.
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4.11 Concluding Remarks

In this chapter InfoPacks and ArchiSpects of the module view and code

view at the described level have been discussed. These InfoPacks and

ArchiSpects and their relations are represented in Figure 4.2. Reconstruct-

ing ArchiSpects from existing systems is a very useful way of learning to

comprehend the system. The results of these ArchiSpects can be used to

enhance (or up-date) the software architecture documentation.

Over the years we have reverse architected a number of module views of

systems [Kri97]. For many of these systems we were able to reconstruct

the Component Dependency ArchiSpect in a few days with the help of an

architect. The results of this ArchiSpect helped to feed discussions about

the system's software architecture. We experienced that it is best to have

a �rst step of de�ning improvement activities relating to the module view.

Software changes with time, so the software architecture may change, too.

Indeed, ArchiSpects have to be reconstructed every time a system is mod-

i�ed. Most InfoPacks extract information from the source code which are

therefore most accurate. After an initial reconstruction, one can think

about automating this process. The various reconstruction activities must

then be integrated somewhere in the Build Process. In this way, one can

every day obtain an up-to-date set of ArchiSpects, which may serve as part

of the system documentation. We have applied this strategy to three de-

velopment sites at Philips (Med, Switch, and Comm). Every night, the

Component Dependency is reconstructed and, the next day, it is presented

to developers (on request).

Results of ArchiSpects can be presented in a Web browser. The information

to be presented must be stored on the Web server. The developers will then

have easy access to this information by means of a browser tool with which

they are already familiar. Besides just presenting ArchiSpects in a Web

browser, one can also provide user interaction. Consider the Component

Dependency ArchiSpect which can be reconstructed at di�erent levels in

the decomposition hierarchy. A developer may want to zoom-in and zoom-

out on information by clicking on boxes and arrows in diagrams (as shown

in e.g. Figure 4.12) or on entries in tables (as shown in e.g. Table 4.7).

This can be easily achieved using standard Web technology [SQ96]: hot

spots to click on boxes or arrows in diagrams and cgi scripts to calculate

more detailed (or more abstract) information on request. TabVieW (see

Figure 4.16 and Section C.5) is a presentation tool that uses cgi scripts to
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Figure 4.16: Comm Table Viewer

calculate new tables7 on request of an architect or developer (by clicking

on a hyperlink).

We will �nish this chapter with a brief comparison of our approach with

the Software Bookshelf and Dali.

Software Bookshelf

The Software Bookshelf [FHK+97] is a Web-based approach for present-

ing software-related information. A kind of bookshelf captures, organizes,

manages and delivers comprehensive information of a software system. It is

an integrated suite of code analysers and visualisation tools. The authors

distinguish three roles: builders, librarians and patrons. The builder devel-

ops the bookshelf's framework and all kinds of tools to support a librarian.

A librarian populates the bookshelf with meaningful information of the

software system. A patron is the system's end user (developer, manager,

architect). Web technology is very suitable for presenting architecture in-

formation due to its multi-media nature. Therefore, our approach could be

7One can store any table a developer may ask for on the server, but in the case of large

systems this will be many tables. Besides consuming a lot of cpu time for generation,

these tables will take a lot of disk space on the Web server.
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combined with the Software Bookshelf, especially in view of this system's

open architecture. For example, the Software Bookshelf uses Rigi as its

presentation tool, but that could be replaced by our presentation tools. It

would also be possible to extend Rigi [SWM97] with our RPA-based ab-

straction techniques to improve presentations, e.g. by applying transitive

reductions to remove edges from graphs.

Dali

In their Dali system, Kazman and Carri�ere [KC98] distinguish view ex-

traction and view fusion to support software architecture understanding.

By combining di�erent extraction views, one can, through fusion, arrive at

more appropriate views. For example, a pro�ler extracts the actual calls

of a system; a static analyser extracts the potential calls of a system relat-

ing to the modules containing these calls, which can be fused into a view

that shows actual relations between modules. Unlike our tools, Dali uses

a SQL database to store information and SQL operators to fuse informa-

tion. The authors found the expressive power of SQL operations su�cient;

but transitive closure, for example, cannot be expressed in a single SQL

query or a �xed set of queries. Note that, it is possible to map most RPA

operators on standard SQL queries; this work is discussed in Appendix B.

The need for an operator like transitive closure is indispensable in the �eld

of reconstructing software architectures (as shown in di�erent parts of this

thesis). Therefore, we prefer the RPA approach to reconstruct software

architectures.
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Chapter 5

Rede�ned Architecture

In the previous chapter we have discussed the described level of software

architecture reconstruction. The next level of the SAR method concerns

the improvement of existing software architectures: the rede�ned level.

5.1 Introduction

A described architecture consists of the explicit description of the software

architecture of an existing system. This is for example useful for helping

developers comprehend that system. The improvement of an existing soft-

ware architecture is logically the next subject in our discussion. Improving

an existing software architecture may be of great help in simplifying a sys-

tem's maintenance and its extensions. The realization of improvements

results in a rede�ned architecture which will be discussed in this chap-

ter [KPS+99]. The process of improving a software architecture is called

(software) re-architecting.

Changing a software architecture may a�ect many parts of the software.

Before a change can be introduced, an architect must know exactly which

parts will be a�ected but also the cost of implementing the change. Im-

pact analysis is a technique for calculating the consequences of a change in

advance, without realizing it in the actual source code. An architect can

quietly consider all the pros and cons of a change before he or she decides

to implement it.

Figure 5.1 shows the various activities involved in architecture improve-

ment. A software model containing the ArchiSpects as discussed in e.g.
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Chapter 4 is derived from the source code, documentation and information

obtained from system experts. This software model is subjected to impact

analysis: an architect has an idea (e.g. moving a function to another mod-

ule by means of changing the partof relation) that can be simulated (e.g.

by means of recalculating certain ArchiSpects). This results in a modi-

�ed software model. This new model must be evaluated by the architect,

which may inuence the original idea, resulting in an adapted or new idea.

After some iterations, the re�ned idea may be accepted or discarded. Ac-

cepted ideas must be transformed into a prescription of modi�cation for

the implementation. This prescription can be applied to the source code

and documentation, resulting in a new system. Note that when we extract

information from the modi�ed system, we obtain the same software model

as we had constructed after simulating the accepted idea.

The advantages of this approach are clear. An architect can apply his or

her ideas to a software model and �gure out the consequences without in-

volving many people and without a�ecting the actual system. Note that we

have described a purely architecture-driven analysis, which does not take

into account business, organisation or process-related issues. For example,

the implementation of an improvement may be bene�cial from a software-

engineering point of view, but it may have disastrous consequences for the

product's time-to-market. Besides the impact analysis described above,

considerations of the latter kind must also be taken into account in a com-
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Figure 5.2: Overview of Rede�ned Architecture

mercial setting.

In this chapter we will discuss some ArchiSpects that are helpful in per-

forming impact analysis aimed at improving the software architecture of an

existing system; see Figure 5.2. The following ArchiSpects will be discussed

in an arbitrary order:

� Component Coupling, the quanti�ed dependencies between the soft-

ware parts of a system;

� Cohesion and Coupling, metrics that describes connectivity between

various software parts;

� Aspect Coupling (using the Aspect Assignment InfoPack), quanti�ed

dependencies between various parts, taking into account a certain

aspect.
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5.2 ArchiSpect: Component Coupling

5.2.1 Context

The Component Coupling ArchiSpect belongs to the module view. The

results of the Import (Section 4.6) and PartOf (Section 4.7) InfoPacks are

required. The Component Dependency (Section 4.9) and Using and Used

Interface (Section 4.10) ArchiSpects are closely related.

5.2.2 Description

The Component Coupling ArchiSpect quanti�es dependencies as depicted

in the resulting diagram of the Component Dependency ArchiSpect, e.g. see

Figure 4.11. Quanti�cation is useful for example when we want to remove

a dependency between X and Y . The size of a relation can be of help

in estimating the amount of e�ort that will be involved in removing that

dependency. Assume that components consist of �les that import each

other. Then, the number of import statements is a measure (or weight) of

the intensity of dependency between the components. But, a relation can

be quanti�ed in di�erent ways. We de�ne the following weights:

� size-oriented weight, meaning that the number of relations at the

lower level is reected in the weight of the lifted relation at the higher

level;

� fan-in-oriented weight, meaning that the number of entities (e.g. �les)

used by a component is reected in the weight;

� fan-out-oriented weight, meaning that the relation is quanti�ed by

the number of a component's using entities.

To illustrate this, consider the use relation depicted in Figure 5.3. Compo-

nent CompHigher uses component CompLower because High1 uses Low1,

amongst other relations. According to the above de�nition, we obtain the

following weights:

� size-oriented: 4 (the number of dashed arrows)

� fan-in-oriented: 3 (the number of �les a dashed arrow points to)

� fan-out-oriented: 2 (the number of �les at which one or more dashed

arrows start)

A combination of the three weights helps to re-architect a system. As-

sume we want to remove a dependency between two components. The size-

oriented weight indicates how many import statements must be removed to
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Figure 5.3: Lifting with Multiplicity: 2{3{4{case

achieve this. On the other hand, the fan-out-oriented weight indicates how

many �les of the including component will be a�ected. So, it de�nes the

number of �les that have to be changed to remove the dependency between

the components.

If we want to replace a component, then the component's interface with

other components must be known. The fan-in-oriented weight de�nes the

number of �les that will be used by the including component.

5.2.3 Example

The reconstruction of Component Dependency of two systems has been dis-

cussed in Section 4.9. In this section we present the Component Coupling of

these systems. The resulting diagram of this ArchiSpect, created by Teddy-

PS, contains the same arrows as the diagram of Component Dependency,

but the arrows are of di�erent thicknesses. The thickness of an arrow1 is

a measure of the weight of the relation. For the corresponding relation, a

tuple with a large (small) weight is represented by a thick (thin) arrow.

The cells in the table representation of Component Coupling contain the

three di�erent weights of the various tuples, i.e. the fan-in-oriented, size-

oriented and fan-out-oriented weights.

1We have used a logarithmic function to map the weight onto an arrow width of a few

points.
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Figure 5.4: Component Coupling Med

Med

The (size-oriented) Component Coupling of Med is presented in Figure 5.4.

The corresponding diagram of Component Dependency is depicted in Fig-

ure 4.11.

A table representation of Med is given in Table 5.1 (with its related Ta-

ble 4.7). Each a�ected cell contains three �gures, i.e. the fan-in-oriented,

size-oriented and fan-out-oriented weights. Note that the table represen-

tation explicitly shows the identity relation (if applicable) in contrast with

the diagram representation. Furthermore, all the variants of quanti�cation
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are presented in a single table.

Comm

TheComponent Dependency of the Comm system is depicted in Figure 4.12.

Figure 5.5 shows the (size-oriented) Component Coupling of this system.

5.2.4 Method

The steps to be executed are similar to those of the Component Dependency

method (described in Section 4.9). The required input consists of2:

2For clarity, we will still use the Files and Comps decomposition levels in the descrip-

tion, but any other pair of levels could be used.
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fan-in

size

fan-out Div Top Est Sens Pres Util Netw UTX Bot Bas

9 34

Div 9 39

2 4

66 11 2 41 18 59 119

Top 151 11 2 52 25 204 719

75 9 2 16 16 52 80

1301 11 39 4 23 117 186

Est 8220 41 75 6 55 1623 9324

1170 34 43 6 29 522 1191

32 117 4 11 124

Sens 144 333 4 52 968

27 98 2 23 105

151 57 119

Pres 611 257 1483

147 96 147

20 193 43 144

Util 75 899 105 1773

41 188 41 188

236 108 149

Netw 1028 901 1957

193 156 193

23 32

UTX 55 197

27 27

2 46 227 147

Bot 4 98 860 1626

4 27 193 193

393

Bas 3725

338

Table 5.1: Component Coupling (fan-in, size, fan-out) of Med
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� importsFiles;Files, a multi-relation that can be constructed by map-

ping the imports relation: dimportsFiles;Filese;

� partof Files;Comps , a part-of relation which may be the result of a com-

position of a chain of partof relations, for example (Med):

partof Files;Comps = partof Packs;Comps � partof Files;Packs

The three variations of weight are calculated as follows (note that we in-

troduce two new lift operator notations "� and "�):

size-oriented:

importsComps;Comps = importsFiles;Files " partof Files;Comps

fan-in-oriented:

importsFIComps;Comps = importsFiles;Files "� partof Files;Comps

= dpartof Files;Compse �

dbimportsFiles;Files � dpartof
�1
Files;Compsece

fan-out-oriented:

importsFOComps;Comps = importsFiles;Files "� partof Files;Comps

= dbdpartof Files;Compse � importsFiles;Filesce �

dpartof �1Files;Compse

explanation

In the �rst de�nition, the importsFiles;Files multi-relation is lifted to
component level. The lift operator for multi-relations takes into ac-
count the number of dependencies at �le level in constructing the
dependency at component level (as de�ned in Section 3.5).

To explain fan-in-oriented and fan-out-oriented lifting, we must con-
sider an alternative formula for the lifting of relations: U " P �

P � U � P�1. This alternative formula also exists for multi-relations:
U " P � dP e � U � dP�1e. Note that we must �rst map the partof

relation (which is always a binary relation) onto a multi-relation. Fur-
thermore, dP�1e � dP e�1.

Figure 5.6 shows the various steps of fan-in-oriented lifting (this �gure
is an alternative to the view presented in Figure 5.3). In the last part



108 Rede�ned Architecture

CompLower

Low1

Low3

Low2

CompHigher

High1

High2

importsFIComps,Comps

importsFiles,Files

partof-1
Files,Comps

importsComps,Files
partofFiles,Comps

3

Figure 5.6: Fan-in-oriented lifting

of the given formula (i.e. the second composition), part of the lift oper-
ation is performed (\lifting in its domain"). This intermediate result
describes a relation from Comps to Files (represented in Figure 5.6
as importsComps;Files). We are interested in the �les imported by a
component; we are not interested in the number of times these �les
are imported. So the intermediate result is normalised, i.e. setting its
weight is set to 1 by mapping it �rst to a normal relation and then
back to a multi-relation. The �rst part of the fan-in-oriented formula
performs the rest of the lift operation (\lifting in its range"). The
number of �le dependencies is thus taken into account in obtaining a
fan-in-oriented weight.

The fan-out-oriented lift is de�ned in a similar manner. We start
with the �rst part of the formula: the intermediate result contains
the normalised multi-relation importsFiles;Comps. The last step is to
lift the domain of this intermediate result to the component level, to
obtain the relation importsFOComps;Comps with a fan-out-oriented
weight.

5.2.5 Discussion

We have discussed an ArchiSpect which is useful in the context of re-

architecting. This ArchiSpect should be part of the software model (as

depicted in Figure 5.1).
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Undesired component dependencies are intuitively considered less harmful

when they have a small weight and more harmful when they have a large

weight. An architect may use this information to detect weak spots and to

analyse these spots. A large size-oriented weight between two components

and a small fan-in-oriented weight may indicate that a �le is located in the

wrong component. To check whether this is true for the system at hand we

will modify the partof relation (idea) and will recalculate the Component

Coupling ArchiSpect (simulate).

There exists a relation between the various weights described above. Let's

call the three kinds of weights (size-oriented, fan-in-oriented and fan-out-

oriented) s, � and fo, respectively. We will explain that the following

inequation holds: max (� ; fo) � s � � � fo. Consider all the tuples in the

importsFiles;Files relation that are responsible for the dependency between

two components. The number of tuples in this restricted imports relation

(let's call it imp) corresponds to the size-oriented weight s. The size of the

range of the imp relation describes the fan-in-oriented weight � . The size

of the domain of imp describes the fan-out-oriented weight fo. The largest

possible imp relation consists of the cartesian product of the domain and

the range, which has a size of � � fo. The smallest possible imp relation

contains at least the set of tuples that span the domain (which is sized

�) and the range (which is sized fo). Therefore, the imp relation has a

minimum size being the maximum of � and fo.

5.3 ArchiSpect: Cohesion and Coupling

5.3.1 Context

The Cohesion and Coupling ArchiSpect belongs to the module view. It re-

quires the results of the Import (Section 4.6) and PartOf (Section 4.7) In-

foPacks. It is related to the Component Coupling ArchiSpect (Section 5.2).

5.3.2 Description

The complexity of a system highly a�ects the system's comprehensibil-

ity, maintainability and testability. Cohesion and coupling play important

roles in expressing complexity. Topics relating to module cohesion and

module coupling were discussed by Yourdon and Constantine in the seven-

ties [YC79, SMC74]. These measures have also been used to develop tools
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that automatically cluster parts of software, e.g. [MMR+98].

A system's cohesion describes the connectivity of entities within the part

comprising them. It is de�ned as the ratio of the number of actual depen-

dencies between these entities and the number of all possible dependencies

(this agrees with the de�nition of intra-connectivity given in [MMR+98]).

Coupling describes the connectivity between two di�erent entities in terms

of their comprising parts (in [MMR+98] this is called inter-connectivity).

It is de�ned as the ratio between the number of actual dependencies of

these entities and the number of all possible dependencies. A general rule

of thumb (and not more than that) for achieving, amongst other things, a

high degree of comprehensibility, is that a system should minimize coupling

in favour of maximising cohesion.

Consider the system depicted on the left side of Figure 5.7. The components

CompLeft , CompRight and CompLow contain some �les that import each

other (dotted arrows). The components CompLeft and CompRight import

each other (solid arrow) by means of �le Y . By moving this �le Y from

CompRight to CompLeft , we obtain the situation depicted on the right

side of this �gure. As we can see in the diagram, the degree of coupling

between the components has decreased and the degree of cohesion between

the �les vof CompLeft has increased. Without having any knowledge of the

system's semantics we may conclude that the structure has been improved

and that the new system is easier to understand. We must note that a good

software architecture cannot be created simply by optimizing the cohesion

and coupling quality measures; many other aspects also play a role (e.g.

decomposing a system into parts that semantically belong together).

5.3.3 Example

Comm

The Cohesion and Coupling of Comm at subsystem level are presented in

Table 5.2 (� means that there is no cohesion/coupling). In this example

we have chosen �les as the constituents of a subsystem (we can take other

entity levels, too, e.g. modules). We conclude that for all subsystems the

degree of cohesion is low. Files are small units with respect to subsystems

and therefore we may expect a low degree of cohesion. We may even state

that a high degree of cohesion would be suspect in the case of this system.

For the same reason the coupling �gures are also low. This discussion shows

that a proper understanding of the system is required to be able to draw
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CompLeft CompRight

Y

Original Situation Final Situation

 CompLow

CompLeft CompRight

Y

 CompLow

Figure 5.7: Re-clustering

Coupling

Man LQry SQry Qry Cil Cnl Con Std Com

Man - - - 0.058 0.205 - 10.0 36.9

LQry - - - 0.045 - - - 147.6

SQry - - - - 0.509 - - 138.0

Qry - - - - - - - 145.2

Cil 0.058 0.045 - - 0.087 - 3.28 13.5

Cnl 0.205 - 0.509 - 0.087 0.082 9.8 26.5

Con - - - - - 0.082 - 42.2

Std 10.0 - - - 3.28 9.80 - 118.7

Com 36.9 147.6 138.0 145.2 13.5 26.5 42.2 118.7

Coh 30.7 2.04 2.15 8.90 5.06 11.6 29.4 66.4 0.000

Table 5.2: Cohesion and Coupling (�10�3) of Components of Comm

proper conclusions from metrics.

5.3.4 Method

In this section we will discuss the calculation of Cohesion and Coupling,

given the imports and partof relations. For clarity in the discussion we will

use only two decomposition levels, namely Files and Components.

The Dominating Ratio (DR) between two components X and Y relates

the actual �le imports to all possible �le imports between these two com-

ponents. For example, in Figure 5.8, component X imports �le y1 twice,
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Figure 5.8: Dominating

indicated by the solid arrows. The dashed and solid arrows (6 in total)

indicate all the possible imports between the �les of component X and

those of component Y . Therefore, in this example, the dominating ratio is

DRX;Y = 2

6
= 0:333.

We de�ne the Dominating Ratio of component X with respect to compo-

nent Y , denoted as DRX ;Y , as follows:

Files = dom(partof Files;Comps)

importsComps;Comps = dimportsFiles;Filese " partof Files;Comps

impAllComps;Comps = dFiles � Filese " partof Files;Comps

DRX ;Y =
kimportsComps;Comps �dom fXg �ran fY gk

kimpAllComps;Comps �dom fXg �ran fY gk

explanation

The size-oriented weight of the multi-relation importsComps;Comps
refers to the number of �le import statements in the code. The multi-
relation impAll describes all the possible imports between compo-
nents. The imports multi-relation is restricted in its domain with X
and it is restricted in its range with Y , resulting in a multi-relation
fhX;Y;wig. The weight w refers to the number of �le imports be-
tween components X and Y . The size of this singleton multi-relation
is equal to w. Analogously, the number of possible imports is cal-
culated by starting with the multi-relation impAll . We obtain the
dominating ratio DRX ;Y by dividing both sizes of doubly restricted
relations.
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X

x1

x2 x3

Figure 5.9: Cohesion

cohesion

The cohesion of a component indicates the degree of connectivity between

its comprising �les. One way of interpreting connectivity is to look at the

imports relation. Cohesion is de�ned as follows:

CohesionX =
kimportsComps;Comps �car fXgk

kimpAllComps;Comps �car fXgk

=
kimportsComps;Comps �dom fXg �ran fXgk

kimpAllComps;Comps �dom fXg �ran fXgk

= DRX;X

explanation

The numerator de�nes the number of imports between �les within
component X (solid arrows in Figure 5.9). In fact, the restriction re-
sults in a singleton relation fhX;X;wig, where w indicates the number
of actually imported �les. The denominator contains the number of
possible imports inside X , as we have seen above (solid and dashed
arrows in Figure 5.9). This corresponds to the dominating ratio of X
with respect to X .

The cohesion of component X, as illustrated in Figure 5.9, is 4

6
= 0:667.

coupling

Coupling is a measure of the degree of connectivity between two compo-

nents. Given the imports relation as a connectivity artefact we de�ne cou-

pling as:
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impX;Y = importsComps;Comps �dom fXg �ran fY g

impY;X = importsComps;Comps �dom fY g �ran fXg

impAllX;Y = impAllComps;Comps �dom fXg �ran fY g

impAllY;X = impAllComps;Comps �dom fY g �ran fXg

CouplingX ;Y =
kimpX;Y [ impY;Xk

kimpAllX;Y [ impAllY;Xk

=
kimpX;Yk+ kimpY;Xk

kimpAllX;Yk+ kimpAllY;Xk

=
kimpX;Yk+ kimpY;Xk

2� kimpAllX;Yk

=
1

2
� (

kimpX;Yk

kimpAllX;Yk
+

kimpY;Xk

kimpAllY;Xk
)

=
DRX ;Y +DRY ;X

2

explanation

The numerator of CouplingX ;Y counts the number of �le import state-
ments of component X importing �les from component Y and vice
versa (solid arrows in Figure 5.10). As in the cohesion de�nition, the
denominator contains the number of all possible imports (solid and
dashed arrows in Figure 5.10). The ratio is a measure of the degree of
coupling, which can be rewritten in terms of dominating ratios. Be-
cause X 6= Y , and therefore impX;Y\ impY;X = ;, we can rewrite the
numerator by adding the sizes of the two multi-relations. Analogously,
the denominator can be written as the sum of two multi-relations.
Furthermore, these latter two multi-relations are both of the same size
(due to the construction of impAll it holds that: impAll � impAll�1).

We note that the degree of coupling between X and Y is equal to
the degree of coupling between Y and X (due to the associative +
operator).

The degree of coupling between components X and Y , illustrated in Fig-

ure 5.10, is 1

2
� (2

6
+ 3

6
) = 0:417.
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Figure 5.10: Coupling

5.3.5 Discussion

Given a set of entities and relations between them (e.g. the imports relation

between Files), one can cluster these entities by applying the heuristic

\maximise cohesion and minimise coupling". Note that it makes no sense

to increase cohesion simply by arti�cally creating extra relations between

entities within a cluster. Therefore we should consider the above heuristic

more carefully. By creating various clusters one in fact divides the set of

existing tuples of the relation, e.g. imports , into two parts: a set of tuples

that do not cross a cluster's border and a set of tuples that do cross a

cluster's border. So it is better to de�ne the heuristic as: \maximise the

number of tuples in the cohesion part and minimise it in the coupling part".

Clustering of software parts at di�erent levels in the decomposition hier-

archy is a task which can indeed not be performed automatically [Wig97,

MMR+98]. Cohesion and coupling metrics can help an architect to make

the right decisions about clustering (a tool for software reclustering, based

upon these metrics, has been implemented by Brook [Bro99]). Note that

clustering can never be driven by optimising the value of two metrics. Many

factors play a role in the clustering process, but only a few can be expressed

in metrics.
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5.4 InfoPack: Aspect Assignment

5.4.1 Context

The Aspect Assignment InfoPack belongs to the code view. We may need

the results of the PartOf InfoPack (Section 4.7). The results are used by

Aspect Coupling (Section 5.5).

5.4.2 Description

The notion of aspects has already been discussed in Section 1.5.3. Aspects

are a design concept, but they should also be reected in the implementa-

tion in some way. This can be realized in various ways. For example, a �le

addresses only a single aspect of the system: the aspect to which the �le

belongs can be encoded in the �le name.

The main result of this InfoPack consists of the addressesFiles;Asps relation

and the Aspects set.

5.4.3 Example

The Tele system explicitly engineers the notion of aspects during system

development in all its phases (i.e. in the forward-architecting process). A

�le, having an aspect-related name, addresses exactly one aspect.

We will illustrate this with an example of a system that did not initially

consider aspects.

Med

During our re-architecting activities we introduced aspects into the Med

system. Although it was not possible to apply it precisely in its full mean-

ing, it helped us to construct a new view on the system. We were able to

identify the following aspects:

� Clinical : all the software that is sent to a hospital along with the

medical system;

� Test : the software needed to test the system during its development;

� Development : the software that comprises all the dedicated tools that

are required to develop the system (e.g. for code generation).
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We re�ne the �rst aspect into:

� Operational : software activated by an operator in the hospital;

� Research: software prepared for academic hospitals for clinical re-

search purposes;

� Diagnostic: software relating to all the service operations performed

by a service mechanic;

� Installation: software required only to install the system at a (new)

site.

So the Aspects set and the ClinicalAspects subset are de�ned as follows:

Aspects = fOperational ;Research ;Diagnostic;

Installation ;Test ;Developmentg

ClinicalAspects = fOperational ;Research ;Diagnostic; Installationg

5.4.4 Method

The �rst step is to determine the various aspects of the system. This

task is easy when aspects have been used already during architecture de-

sign. If not, we will have to discuss the notion of aspects with architects

and designers. The second step consists of identifying these aspects in the

software. Although the notion of aspects may not have been explicitly

identi�ed so far, it may be possible to determine aspects in code. For ex-

ample, an aspect like Logging may express itself in the naming of functions

(WriteLogMessage) and/or the naming of �les (LogUtilities). Given

such naming conventions, one can assign an aspect to most of the functions

(or �les). Because of the heuristic nature of extraction, the results of this

extraction should be carefully checked. The functions (or �les) that cannot

be assigned to an aspect in this way must be assigned by hand.

With the Med system, we used the names of the packages to assign aspects.

So we were able to extract the addressesPacks;Asps relation by analysing the

package name. We can lower this relation to the Files decomposition level:

addressesFiles;Asps = addressesPacks;Asps # partof Files;Packs
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5.4.5 Discussion

This InfoPack may be hard to construct in the case of systems in which

aspects are not handled explicitly. To reconstruct Aspect Assignment , one

should take the decomposition level that �ts such an assignment best. The

partof relation can be used to bring the assignment to any requested level.

For example, if it is possible to reconstruct aspect assignment at Func-

tions level (addressesFuncs;Asps), one can bring it to a Files level (using

composition). In that case, the resulting addressesFiles;Asps relation is not

necessarily functional.

If aspects appear only at statement level, it is practically impossible to

obtain a useful addresses relation. Sometimes the notion of aspects must

be relaxed somewhat to realize aspect assignment. Although this particular

result does not comply precisely with the de�nition of aspects, it may be

helpful in re-architecting a system.

5.5 ArchiSpect: Aspect Coupling

5.5.1 Context

The Aspect Coupling ArchiSpect belongs to the module view. The results

of the Import (Section 4.6), PartOf (Section 4.7) and Aspect Assignment

(Section 5.4) InfoPacks are required as input. This ArchiSpect is related

to the Component Coupling ArchiSpect (Section 5.2).

5.5.2 Description

Consider a programmer who is working on message logging. He is not

interested in all the code, but only in the parts concerning statements

about logging. If we can o�er the programmer a reduced logging view on

the system, it will be easier for him to perform his logging task.

Aspects structure a system in addition to e.g. functional structuring. Both

structuring means are more or less orthogonal, which helps to create two

completely di�erent views on the system. Aspect structuring plays the

most important role during certain development activities, e.g. when deal-

ing with message logging while functional structuring is important e.g. when

adding a new feature to a system (e.g. Follow Me into a telecommunication

switching system).
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Design decisions relating to aspects should also be reected in source code.

For example, an aspect can be reected as a set of �les, which means that

a single �le belongs to exactly one aspect.

A structuring mechanism is e�ective only when properly applied. This

will be apparent from e.g. low degree of connectivity between the parts

that result from structuring. A rule of thumb for aspect connectivity is:

an aspect A may only use functionality that belongs to aspect A. Other

dependencies between aspects could be de�ned by an architect, but, for

clarity, they should be minimal.

5.5.3 Example

Med

The Aspect Coupling of the Test aspect is presented in Figure 5.11 (cre-

ated by the Teddy-PS tool). This diagram is of the same type shown for

Component Coupling. In fact, it is a subset3 of the diagram depicted in

Figure 5.4 on page 104. The dependency between aspects is represented in

Figure 5.12.

5.5.4 Method

We will start with the imports multi-relation at the proper decomposition

level, which corresponds to the decomposition level of the domain of the

addresses relation. For each aspect we construct a diagram or table similar

to the diagram shown for Component Coupling. Assume we want to con-

struct the diagram for an Asp aspect, then we have to restrict the imports

multi-relation for this aspect:

FilesAsp = addressesFiles;Asps :Asp

importsAspFiles;Files = importsFiles;Files �dom FilesAsp

explanation

The FilesAsp set contains all the �les assigned to the Asp aspect. We
reduce the imports relation by looking only at the �les that belong to

3An arrow can occur in the aspect diagram only if it occurs in the component diagram,

with the same or greater weight.
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this set. This means that we have to restrict the imports relation in
its domain using FilesAsp.

The dependencies between aspects yield an alternative abstract view on the

system. Given the imports relation, we can derive the dependency between

the aspects as follows:

dependsAsps;Asps = daddressesFiles;Aspse �

importsFiles;Files �

daddresses�1 Files;Aspse

explanation

If the addresses relation de�nes a partition, we can lift the imports

relation to the level of Aspects . But we may not assume this, so we
must bring both the domain and the range of the imports relation to
the aspect level through composition.

The last step of the method consists of presenting this information. We use

the same presentation techniques as used for Component Dependency, e.g.

by means of the Teddy-PS tool.

5.5.5 Discussion

The proper application of aspects results in a clear division of a system

into slices (each belonging to a single aspect) that make virtually no use

of each other. The Aspect Cohesion and Aspect Coupling metrics can be

de�ned in a similar manner to the description in Section 5.3. The con-

tainment relation is de�ned by the addressesFiles;Asps relation (although it

is not necessarily a partition). Furthermore, the importsFiles;Files relation

represents the dependencies between �les. We de�ne the dominating ratio

(DRA;B) between aspect A and B as follows:

importsAsps;Asps = daddressesFiles;Aspse � importsFiles;Files �

daddresses�1 Files;Aspse

impAllAsps;Asps = daddressesFiles;Aspse � dFiles � Filese �
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daddresses�1 Files;Aspse

DRA;B =
kimportsAsps;Asps �dom fAg �ran fBgk

kimpAllAsps;Asps �dom fAg �ran fBgk

So, as with cohesion and coupling, we de�ne aspect cohesion and aspect

coupling as follows:

CohesionA = DRA;A

CouplingA;B =
DRA;B +DRB ;A

2

5.6 Concluding Remarks

Improving a software architecture often involves a lot of questions and de-

ducing more precise questions from the answers or de�ning improvements.

Relation Partition Algebra o�ers a exible way of asking these questions in

a formal manner; the answers are obtained by executing the RPA formulas.

Impact analysis (see Figure 5.1 on page 100), or what-if analysis, con-

sists of an iterative process of de�ning an idea, simulating it on a software

model and evaluating the results. For example, an idea could be to move

a function from one �le to another. The simulation of this idea consists of

changing the appropriate sets, relations and multi-relations of the software

model (including re-calculating the derived relations to retain a consistent

model). We have also presented a number of quality metrics (cohesion, cou-

pling, aspect cohesion, aspect coupling) that can support the evaluation of

a software model. But the intuition of architects also plays an important

role [Cor89]. An ArchiSpect like Component Coupling helps an architect

shape his or her intuition.

We could use our experience to develop a dedicated tool that supports the

impact analysis process (Computer-Aided Impact Analysis). An idea can

be transformed into actions that must be executed during simulation (i.e.

a script for modifying the software model). The tool could be designed

to keep the software model consistent. To support evaluation, such a tool

should be able to present various metrics and diagrams and tables as results

of various ArchiSpects.
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There exist clustering algorithms that e.g. try to cluster functions into co-

hesive groups that are minimally coupled. In large systems, functionalities

are grouped at various levels, which makes these algorithms hard to apply.

In addition, factors that are hard to measure play a role with respect to

deciding whether to cluster functionalities, e.g. the semantics of functions.

Accepted ideas must be implemented in the actual software. An idea, e.g.

move function f from �le x to �le y, must be translated into a prescription

that can be applied to the source code. Dedicated transformation tools

(often based on compiler technology to a great extent) can automatically

apply simple prescriptions to the source code. The rest must be speci�ed in

terms of change requests and must be performed manually by developers.
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Chapter 6

Managed Architecture

The SAR method consists of �ve levels of reconstruction (initial, described,

rede�ned, managed and optimized). In this chapter we discuss the managed

level of SAR. We focus on architecture veri�cation, a means to keep the

de�ned architecture and actual architecture consistent.

6.1 Introduction

The software architecture intended by architects should be well documented.

Nevertheless, a number of implicit assumptions relating to the architecture

reside in the heads of the architects and developers only. Sources, docu-

ments and architects' minds together in fact embody a system's intended

software architecture.

The actual software architecture, i.e. the architecture implemented by the

software developers, will de�nitely deviate from the intended architecture

when no precautions are undertaken to prevent such deviations. Archi-

tecture veri�cation is the process of revealing the deviations between the

intended architecture and the actual architecture. Preferably, this is per-

formed as early in the development process as possible. The main goal

of architecture veri�cation is to achieve architecture conformance. Bass

et al. [BCK98] de�ne architecture conformance being the activity that is

concerned with keeping developers faithful to the structures and interaction

protocols constrained by the architecture. If architecture veri�cation is ap-

plied consistently, and is properly integrated in the development process, a

managed software architecture is achieved.
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Some of the architectural decisions can be formally de�ned. Given that

appropriate information can be extracted, one can automatically verify the

formally de�ned decisions. Other architectural decisions are more intu-

itive, and therefore it is hard to verify them automatically. For example,

a description of the contents of a component like All functions relating to

printing must be contained in the \Printing" component can currently only

be interpreted by humans. In this chapter we will concentrate on the rules

that can be automatically veri�ed. The other type of architectural rules

could be veri�ed in e.g. review sessions.

If a system's implementation does not conform to the architecture, this

will have to be �xed. Sometimes this may lead to changes in the archi-

tecture, but, more often, the design and/or source code will have to be

modi�ed. Sometimes both the architecture and the source code will have

to be modi�ed. Architecture violations describe the parts of the implemen-

tation that do not conform to the intended architecture. The ArchiSpects

of the managed architecture de�ne the architectural rules and the corre-

sponding architectural violations. Violations are de�ned in such a way that

they support resolving a disconformance (by suggesting a possible solution).

An architectural rule is satis�ed if there are no architectural violations.

In Chapter 1.5 we discussed a number of good architectural patterns. Here

we will discuss some ArchiSpects that correspond to these architectural

patterns. For each system, a dedicated set of ArchiSpects must be de�ned

to comprise the de�nition of the architecture. In this chapter we will discuss

the following ArchiSpects:

� Layering Conformance;

� Usage Conformance;

� Aspect Conformance;

� Generics and Speci�cs Conformance.

6.2 ArchiSpect: Layering Conformance

6.2.1 Context

The Layering Conformance ArchiSpect belongs to the module view. It

requires results of the Import (Section 4.6) and PartOf (Section 4.7) In-

foPacks. It is furthermore related to the Software Concepts Model (Sec-

tion 4.2) and Component Dependency (Section 4.9) ArchiSpects.
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Figure 6.1: Overview of Managed Architecture
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Figure 6.2: Layering Conformance of Cons

6.2.2 Description

A layer is a group of software elements. Layers are strictly ordered. Given

the layer ordering, elements of a higher layer may use only elements of

lower layer(s). Layering o�ers the possibility to develop and test the system

incrementally: from the bottom layer towards the top layer. The principles

of layering have been discussed in Section 1.5.1.

6.2.3 Example

Cons

The architecture of the Cons system describes a transparent layering of the

system depicted on the left side of Figure 6.2. The actual implementation

(on the right side of the �gure) shows a di�erent diagram. For example,

some elements in Basic layer use functionality of the Feature layer, which

is not speci�ed in the intended architecture.

Tele

The Tele system was developed with the aid of the Building Block method

[KW94]. This method requires that each Building Block resides in a single

layer. Furthermore, Building Blocks may use only Building Blocks that

reside in lower layers. Figure 6.3 shows an example of Building Block (BB)
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Figure 6.3: Layering Conformance of Tele

usage. According to the rule described above the usage relations marked

with a cross are not allowed [Kri95, FKO98]. Note that the Tele system

achieves Layering Conformance by means of dedicated tools that support

the system's development.

6.2.4 Method

Each Building Block resides in a single layer, which is de�ned by the

residesBlocks;Layers relation1. Note that the residesBlocks;Layers relation in

fact describes a partition of all the Building Blocks over layers (see also

Figure 4.3). The layers are strictly ordered, which is reected in the rela-

tion <Layers;Layers .

Furthermore, we need the following relations:

� importsFiles;Files (from the Import InfoPack)

� partof Files;Blocks (from the PartOf InfoPack)

We can then de�ne the following rule with its corresponding violations in

RPA:

importsBlocks;Blocks = importsFiles;Files " partof Files;Blocks

mayuseBlocks;Blocks = <+
Layers;Layers # residesBlocks ;Layers

1The PartOf InfoPack can be extended to extract this information.
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rule:

importsBlocks ;Blocks � mayuseBlocks;Block

violations:

v importsBlocks ;Blocks = importsBlocks;Blocks nmayuseBlocks;Blocks

v Blocks = dom(v importsBlocks;Blocks)

v importsFiles;Files = importsFiles;Files n

(mayuseBlocks ;Blocks # partof Files;Blocks)

explanation

The mayuse relation describes the import dependencies allowed at
Blocks level. All the blocks in a layer may use the blocks of all the
lower layers, hence the transitive closure upon <Layers;Layers . By
lowering the allowed usage at Layers level to Blocks level, we get the
mayuseBlocks;Blocks relation. The architectural rule de�nes that the
actual import dependencies (importsBlocks;Blocks) is a subset of the
allowed import dependencies (mayuseBlocks;Blocks).

The v importsBlocks;Blocks relation describes the violating imports be-
tween Building Blocks. It consists of the actual import dependencies
minus the allowed import dependencies. During the process of resolv-
ing disconformance one �rst wants to know which Building Blocks are
involved (i.e. domain of v importsBlocks;Blocks). After that, more pre-
cise information (i.e. closer to the source code) is required in terms of
source code �les. Therefore, we lower the mayuseBlocks;Blocks relation
to the Files level and subtract this from the actual import dependen-
cies in order to �nd the violating �le import statements.

Finally, we have to present the violations in a way that will appeal to the

person who has to resolve them. The violating import dependencies can be

presented in the same way as Component Dependency (i.e. in a diagram or

tables). We can also use colours to distinguish allowed usage and forbidden

usage relations in a diagram or table.
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6.2.5 Discussion

A violation of the layering conformance rule can be resolved in several dif-

ferent ways. First, we can move a complete Building Block to another layer.

Secondly, we can remove violating import statements from the source code

�les (and move the corresponding code to other �les). Or, a combination

of the two options may resolve the violations.

In this ArchiSpect we have used only binary relations. The use of multi-

relations o�ers more dedicated information when it comes to resolving a vi-

olation. For example, a large weight in the violating v importsBlocks;Blocks
relation may indicate that the Building Block resides in the wrong layer.

Such a modi�cation of the system is relatively simple, especially when com-

pared with removing import statements (and the corresponding movements

of functions or other code) from a number of source �les.

Multi-relations can also help de�ne some exceptions to the architectural

rules. An example is a system that is strictly ordered while a single Building

Block (e.g. the Loader Building Block) may use functionality from higher

layers. This extra allowed usage can be incorporated in the mayuse multi-

relation (f: : : ; hLayer1; Layer2; 1i; : : :g).

6.3 ArchiSpect: Usage Conformance

6.3.1 Context

The Usage Conformance ArchiSpect belongs to the module view. It uses

the results of the Import (Section 4.6) and PartOf (Section 4.7) InfoPacks.

It is related to Component Dependency ArchiSpect (Section 4.9).

6.3.2 Description

The documentation of a software architecture often contains a diagram

that shows components and relations between those components. Such a

diagram in fact de�nes the allowed usage between components. Component

Usage Conformance is achieved when the actual implementation conforms

to the allowed usage de�ned in the documentation.

This ArchiSpect is in fact an extension of Layering Conformance. We de-

scribe precisely which components may use each other, while Layering Con-
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Comp Comp

Acq Abb

Acq Rec

Acq Log

Rec Sen

Sen Log

Man Str

. . . . . .

Table 6.1: Component Usage Table of Med

formance is based on a more general concept of allowed usage. When both

ArchiSpects are applied to a system, one can also check whether the Usage

Conformance and Layering Conformance are compatible, even before any

code has been written.

6.3.3 Example

Med

The Med system formally describes the usage between components, which

is de�ned in a simple table (which is similar to a RPA-formatted �le). Part

of the component usage table is presented in Table 6.1 (�les of the left

component may import �les from the right component).

6.3.4 Method

The allowed component usage can be de�ned manually by an architect or

it can be extracted from the architecture documentation. In the case of

the Med system, we can simply translate the component usage table into

the mayuseComps ;Comps relation. The architectural rule that must hold is

de�ned as follows in RPA (also discussed in [FKO98]):

rule:

importsComps ;Comps � mayuseComps ;Comps
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violations:

v importsComps ;Comps = importsComps ;Comps nmayuseComps ;Comps

v Comps = dom(v importsComps;Comps )

v importsFiles;Files = importsFiles;Files n

(mayuseComps ;Comps # partof Files;Comps )

The explanation of these formulas is similar to that of the formulas of

Layering Conformance. We can also use the same presentation techniques

to reveal violations.

6.3.5 Discussion

The build process of the Med system incorporated controlled component

usage. An architect maintains a component usage table that describes

the allowed usage between components. All the source �les of a component

reside in separate directories in the �le system. Before a �le is compiled, the

include-path for the compiler is automatically set by the build environment

according to the entries in the component usage table. Illegal inclusion of

�les consequently results in a failure of the compiler: File olise.h not

found.

This approach has a great advantage over the method described aboveand

that is that a developer gets feedback on illegal usage at a very early stage.

On the other hand, it imposes a certain organisation of the source code �les

which may not hold for every system.

The coupling measure (see Section 5.3) and Usage Conformance are related.

They both say something about the coupling between a system's compo-

nents. Coupling describes a general metric for measuring usage between

components that can be applied to any system. In general, the aim is to

minimise coupling. In contrast to coupling, Usage Conformance de�nes

exactly which components of a speci�c system may use each other.

Reexion Models

Murphy et al. [MNS95, MN97] introduced reexion models to discuss di�er-

ences between a high-level model, as de�ned by an engineer, and a source

model, as extracted from source code. The high-level model describes the
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mental model of the engineer, whereas the source model describes the actual

implementation of the system. By comparing the relations in the two mod-

els one can partition them into three categories: convergences, divergences

and absences. Convergences occur in both models, divergences occur only

in the source model and absences occur only in the high-level model. The

authors used reexion models to compare a design (high-level model2) with

an implementation (source model); they concluded that divergences do not

adhere to design principles (in order to achieve design conformance).

We can easily translate these ideas into Relation Partition Algebra. Con-

sider a source model consisting of a relation USM and a high-level model

containing a relation UHLM . We can then de�ne the three categories as

follows in RPA:

convergences = USM \ UHLM

divergences = USM n UHLM

absences = UHLM n USM

6.4 ArchiSpect: Aspect Conformance

6.4.1 Context

The Aspect Conformance ArchiSpect belongs to the module view. It re-

quires results of the Import (Section 4.6), PartOf (Section 4.7) and Aspect

Assignment (Section 5.4) InfoPacks. It is related to the Aspect Coupling

ArchiSpect (Section 5.5).

6.4.2 Description

The notion of aspects has already been discussed in Section 1.5.3. We

would like to enforce certain dependencies between parts of the system

that belong to aspects (see also Section 5.5). The Usage Conformance,

discussed in Section 6.3, restricts the usage between components. Aspect

Conformance can be seen as an additional means in controlling a system's

2They extracted a high-level model from design documentation (object diagrams).
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Figure 6.4: Aspect Conformance

complexity, by restricting usage between software parts belonging to certain

aspects.

6.4.3 Example

Tele

The recovery aspect belongs to all the functions involved in initialising a

system or recovering a system from some erroneous state (e.g. due to a

hardware failure). After recovery, the system is in a de�ned state, but dur-

ing recovery, one cannot rely on a de�ned state in other Building Blocks.

During recovery, a Building Block may therfore only access data and func-

tionality of its own, as illustrated in Figure 6.4.

6.4.4 Method

An architect must de�ne the maydependAsps;Asps relation, which de�nes

the allowed usage between aspects. Furthermore, we require the relations
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importsFiles;Files (Import InfoPack), partof Files;Comps (PartOf InfoPack)

and addressesFiles;Asps (Aspect Assignment InfoPack). We de�ne the fol-

lowing architectural rule (also discussed in [FKO98]):

dependsAsps;Asps = addressesFiles;Asps � importsFiles;Files �

addresses�1 Files;Asps

rule:

dependsAsps;Asps � maydependAsps;Asps

violations:

v dependsAsps;Asps = dependsAsps;Asps nmaydependAsps;Asps

v importsFiles;Files = importsFiles;Files n

(addresses�1 Files;Asps �

maydependAsps;Asps � addressesFiles;Asps)

explanation

The dependsAsps;Asps relation is created by lifting the domain and
range of the imports relation (as already discussed in Section 5.5).
The actual dependencies between aspects (dependsAsps;Asps) must be
a subset of the allowed dependencies (maydependAsps;Asps ) to ensure
compliance with the rule. The violating dependencies between aspects
are all actual dependencies minus the allowed ones. When solving the
problem, one wants to know how the violations occur in source code,
i.e. violating imports at Files level.

6.4.5 Discussion

The following formulas are de�ned for the Tele system, concerning the

recovery aspect (given a calls relation and addresses relation at Functions

level):

Funcsrecovery = addressesFuncs;Asps :recovery
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recoversFuncs;Funcs = callsFuncs;Funcs �dom Funcsrecovery

recoversBlocks;Blocks = recoversFuncs;Funcs "

partof Funcs;Files " partof Files;Blocks

rule:

recoversBlocks;Blocks n IdBlocks � ;

There is a single exception to the recovery rule. The SysRecovery Building

Block controls the whole recovery process. Therefore, it may access all the

recovery functions of the other Building Blocks. We adapt the above rule

as follows:

rule:

(recoversBlocks;BlocksndomfSysRecoveryg) n IdBlocks � ;

In Section 5.5 we discussed Aspect Cohesion and Aspect Coupling. Aspect

Conformance and these metrics are closely related. They are the metrics

which should be maximised or minimised in any system. Aspect Confor-

mance de�nes the exact relations between the aspects of a speci�c system.

One may assume that the architect has considered the Aspect metrics in

de�ning Aspect Conformance.

6.5 ArchiSpect: Generics and Speci�cs Confor-

mance

6.5.1 Context

The Generics and Speci�cs Conformance ArchiSpect belongs to the mod-

ule view. It requires the results of Import (Section 4.6) and PartOf (Sec-

tion 4.7) InfoPacks.
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6.5.2 Description

The notions of generic and speci�c components have been discussed in

Section 1.5.2. There is a special relationship between these two types of

components. A generic component and a corresponding set of speci�c com-

ponents belong together semantically. The common functionality resides

in the generic component, while the speci�c functionality resides in various

speci�c components.

Each product in the family comprises (most of) the generic components,

while the speci�c components vary per product. Hence, in a system, a com-

ponent can only count on the availability of generic components. Therefore,

speci�c components can only be accessed via their corresponding generic

component (via a call-back mechanism).

6.5.3 Example

Tele

A switching system (e.g. Tele) must be able to handle di�erent kinds of

physical lines to communicate with other switching systems. A dedicated

hardware unit (peripheral processing unit, PPU) handles the physical com-

munication with other systems. The central unit of a system contains

software to control proper usage of the PPUs. During the development of

Tele one does not know which products will ultimately be con�gured, so

one cannot rely on the availability of software that controls a certain PPU.

At a very abstract level, each communication line performs the same func-

tionality, namely communication with other systems. The generic com-

ponent addresses this abstraction: hiding all the speci�c characteristics

of various communication lines. During initialisation time each speci�c

component subscribes itself to the generic component. The allowed usage

relation between generic and speci�c components is illustrated in Figure 6.5.

Note that the Tele system has completely achieved Generics and Speci�cs

Conformance.
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Generic

Specific

Figure 6.5: Generic and Speci�c Components

6.5.4 Method

The input3 for this ArchiSpect consists of the set of generic components

(Generics) and the set of speci�c components (Speci�cs). Furthermore, we

require the relations: importsFiles;Files and partof Files;Comps . Note that the

Generics and Speci�cs describe a partition of Comps .

Components are prohibited to import functionality from speci�c compo-

nents. One can de�ne this as follows:

importsComps;Comps = importsFiles;Files " partof Files;Comps

importsSpecComps;Comps = (importsComps;Comps �ran Speci�cs) n

IdSpeci�cs

rule:

importsSpecComps ;Comps � ;

violations:

v importsComps;Comps = importsSpecComps ;Comps

v Comps = dom(v importsComps ;Comps)

v importsFiles;Files = (importsSpecComps ;Comps #

partof Files;Comps ) \

3An InfoPack can be de�ned to provide this information.



140 Managed Architecture

importsFiles;Files

explanation

The importsSpec relation represents all the imports of speci�c compo-
nents (excluding imports of itself). The architectural rule is satis�ed
if and only if this relation is empty. The violating components consist
of the components that import a speci�c component, i.e. v Comps .
The violating imports at Comps level can be lowered to Files level to
obtain all the possible violating imports at this level. The intersection
of this intermediate result with the actual imports (importsFiles;Files)
leads to the actual violating imports (v importsFiles;Files).

6.5.5 Discussion

An alternative de�nition of the above rule is de�ned as follows:

ExpSpeci�cs = dom(importsComps ;Comps n IdComps)

ExpGenerics = Comps n ExpSpeci�cs

rule:

ExpGenerics � Generics

ExpSpeci�cs � Speci�cs

explanation

In fact, we de�ne a pattern that recognizes speci�c components: all
the speci�c components import functionality only from generic com-
ponents or from themselves. Given this characteristic, the speci�c
components should be de�ned in the ExpSpeci�cs set; the other com-
ponents are therefore ExpGenerics . The rule consists of verifying
whether all the recognized generic (speci�c) components are indeed
generic (speci�c).

6.6 Architecture Veri�cation in Action

In the previous sections we discussed a number of ArchiSpects relating

to the managed architecture. Architecture conformance can be achieved
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when the application of these ArchiSpects to an existing system results in

the satisfaction of the architectural rules. The ArchiSpects discussed in

this chapter should be seen as examples of how ArchiSpects of the man-

aged architecture can be de�ned. Although the presented ArchiSpects can

be useful for many systems, each system may require its own ArchiSpects

to enforce architecture conformance. Below we will briey discuss the in-

troduction of an architecture veri�cation process in real environments.

The �rst step toward achieving architecture conformance consists of formal-

ising the architecture decisions (as described in the documentation and/or

stored in the heads of architects). As shown in this chapter, relation par-

tition algebra can be applied to formalise a number of these decisions4. In

addition to these rules, violations must also be de�ned, in such a way that

they support a developer in resolving possible disconformances.

The second step concerns the incorporation of architecture veri�cation in

the development process. Automation of the veri�cation process is re-

quired to be able to successfully introduce it. The execution of InfoPacks

and ArchiSpects should be incorporated in the Build Process5. We can

distinguish three general points in time at which architecture conformance

can be introduced:

� early; as soon as a developer has written some code the applicable

architectural rules are checked (in parallel to e.g. a compile job).

� mediate; at the time the rules are checked a module is \checked in"

in the source code management system. If errors are detected, the

module involved is not accepted by the source code management sys-

tem.

� late; an architect initiates architecture veri�cation at certain times

during system development (e.g. by starting a rule checking program).

If disconformance is established, the architect must submit a Problem

Report.

It will depend on the situation which of the three alternatives will have to

be applied. In general, a system should be veri�ed as early as possible. If

possible, a developer should be given feedback immediately after he or she

has broken an architectural rule. If one is not familiar with architecture

veri�cation, one may prefer to check architecture conformance at a late

stage. That way, the introduction of many changes in the development

4Rules that cannot be formalised (an example is given in Section 6.1) should be

validated in e.g. review sessions.
5For example, we can create a special \thread" in the Build Process activities to

execute InfoPacks and ArchiSpects.
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process (and the related tools) is avoided, so the continuity of development

is guaranteed. After a while, one can shift to an early stage (which will

a�ect the development environment more).

The �rst time the architectural rules of an existing system are checked,

many violations may be expected. It will be practically impossible to solve

all the violations immediately. Therefore, one should �rst only verify the

architecture and identify the violations. In a next veri�cation session, the

newly detected violations can then be compared with the previously de-

tected violations. But this time it must be ensured that no new violations

are introduced (in other words, that the number of violations does not

increase). The violations can then be resolved to improve the actual archi-

tecture at a convenient time. This way, architecture conformance can be

ensured without a�ecting the schedules of product deliveries.



Chapter 7

Concluding Remarks

We �nish this thesiswith recommendations for application of the SAR

method in a real world system. Furthermore, the application of RPA in

several contexts is elaborated once more.

7.1 Recommendations for Application

In this thesis we have discussed a framework for the Software Architecture

Reconstruction method. InfoPacks and ArchiSpects �t in various architec-

tural views at di�erent levels in this framework. This modular structure of

the SAR method simpli�es discussing software architecture reconstruction.

For the module view and code view of software architecture, we presented

a number of InfoPacks and ArchiSpects, summarized (I) in Table 7.1.

The SAR method can be enhanced with new ArchiSpects, which �t in the

framework.

When applying SAR to an existing system, one should �rst consider which

ArchiSpects are most valuable to reconstruct. Most of the discussed Archi-

Spects are based on the imports relation. One imports a header �le to be

able to use a function, a type de�nition, a macro and/or a global variable

from another �le. The imports relation is in fact a mixture of a number

of relations: calls , accesses and typed , and for object-oriented languages

also the inherits relation. When reconstructing a system in more detail,

one requires a re�nement of the imports relation. For example, for each of

these relations the Component Dependency ArchiSpect can be re�ned, e.g.

Component Dependency for function calls.
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Architectural Views
Logical Module Code Execution Hardware

SAR levels View View View View View

Optimized
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IAspect
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IDepend
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IAspect
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and Coupling
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IComponent

Coupling

IDepend BResource Us-

age

ISource Code

Organisation
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Described IUsing and

Used Inter-

faces

IPart-Of BProcess

Communica-
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IComponent

Dependency

IDepend BProcess

Topology

ISoftware

Concepts

Model

IFiles BProcesses

Initial

Table 7.1: Software Architecture Reconstruction
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For the reconstruction of the execution view of software architecture, we

suggest the following ArchiSpects: Process Communication, Process Topol-

ogy and Resource Usage. The Process Communication ArchiSpect describes

how processes (extracted by a Processes InfoPack) communicate with each

other (e.g. via TCP/IP, a database, shared memory or shared �les). The

Process Topology ArchiSpect describes in terms of a running system how

and when processes are created and killed. The Resource Usage Archi-

Spect describes the usage of di�erent resources, e.g. RAM memory, disk

memory and cpu. A �rst experiment in reconstructing Resource Usage of

Med is presented in [KPZ99]. The suggested InfoPack and ArchiSpects of

the execution view are presented (B) in Table 7.1.

Although separately discussed, the module view, code view and execution

view are related. In [KFJM99, BFG+99] we discussed how scenarios, ap-

plied to the Switch system, can help developers comprehend these three

views. The importance of combining static analysis with dynamic analysis

has also been discussed by Kazman and Carri�ere [KC98].

For the described andmanaged level of software architecture reconstruction,

one should integrate reconstruction activities in the development process.

An up-to-date described architecture supports developers in their activities

by means of given opportunities to comprehend the software architecture

better. Web technology is the most appropriate mechanism for presenting

requested information to developers due to its accuracy and multi-media

nature. Also, for the managed architecture, one should integrate recon-

struction activities tightly in the development process. In this way, feed-

back relating to architecture conformance can be given as soon as possible.

In the case of new systems, special attention must be given to architec-

ture veri�cation, because it is easier to introduce architecture conformance

in an early stage of the product's life-cycle than it is to introduce it in

existing systems. In that stage, it is easier to take special measurements

and de�ne extra coding standards to increase the possibilities of extracting

architectural information and verifying architectural decisions.

7.2 Relation Partition Algebra

Since 1994, when Relation Partition Algebra (RPA) was de�ned [FO94], in

1994, we have applied it in various areas of software architecture analysis.

We experienced that RPA is suitable for making software abstractions,

embellishing the presentation of information, expressing software metrics,
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performing dedicated analyses, navigating through information, verifying

architectural decisions and recognising patterns in software. We will briey

discuss these di�erent areas.

RPA o�ers �ltering operators (e.g. �dom ; �ran ; ndom ) and grouping operators

(e.g. ") for abstracting information from software. These operators make

it possible to focus on speci�c data (i.e. to answer a question a software

analyst has in mind), and to eliminate irrelevant data. Furthermore, in-

formation can be combined (e.g. through composition: �) to obtain more

dedicated information.

The presentation of a function call graph of a large system probably results

in a diagram that contains a large black area (i.e. all the edges of the graph).

Abstractions can help to reduce the amount of information to embellish a

graph presentation. For example, lifting a large imports relation reduces the

amount of information in a smart way. Transitive reduction also improves

the presentation of information. The transitive reduction removes short-

cuts1 from a (cycle-free) relation, resulting in a more convenient graph.

We can also express software-related metrics in RPA (e.g. cohesion and

coupling). The notion of partof relations gives such metrics an extra di-

mension; one can consider cohesion and coupling at di�erent levels in the

decomposition hierarchy.

RPA is also useful for performing dedicated analyses, e.g. detecting cyclic

dependencies in a system, recognising local functions and calculating com-

ponents to be tested:

� To detect whether a relation (R) contains cycles, it su�ces to calcu-

late R+ \ Id . If this equals the empty relation, then R contains no

cycles [FKO98].

� A function is local to another function if it is used by this function

only. Some programming languages o�er concepts for de�ning lo-

cal functions (e.g. Pascal). To minimise a system's complexity, one

should de�ne local functions close to their caller (preferably by lim-

iting the scope of the local function).

� Given a dependency relation (D) between components and a list of

modi�ed components (M), it is calculated which components must

be tested again (because of the changes): dom(D� �ran M), i.e. all

the components which, directly or indirectly, depend on a changed

component must be tested again.

1A tuple hx; zi is a short-cut if the relation contains the tuples

hx; y1i; hy1; y2i; : : : ; hyn; zi for some n � 1.
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Presentation can be made more dynamic by o�ering some navigation mech-

anisms. For example, a user may want to zoom-in or zoom-out on certain

information. TabVieW is a presentation tool that provides navigation abil-

ities by executing RPA formulas and re-calculating a new table.

For the managed architecture, we have de�ned a number of ArchiSpects

that incorporate architectural rules. RPA is suitable for formalising archi-

tectural decisions, making it possible to automatically verify an implemen-

tation.

In the discussion of Section 6.5 we described how the generic and speci�c

components can be recoginised in software. We formulated the pattern to

which generic and speci�c components adhere in RPA.

As indicated above, a number of di�erent areas of software analysis can

be covered by RPA. It is a great advantage to have a single formalism for

di�erent applications (consider e.g. the learning curve of a new formalism).

RPA o�ers a formal notation, but RPA formulas can also be executed on

a computer. In this way, one can easily explore di�erent aspects and parts

of the system, using an interactive RPA calculator, see Figure B.2. After

performing various calculations, one can consolidate these calculations by

de�ning a new ArchiSpect which reconstructs a certain interesting aspect of

architecture. This approach in fact roughly describes the way in which we

analysed a number of systems at Philips and the way in which we deduced

various InfoPacks and ArchiSpects.

The diversity of applying RPA summarized above strenghtens our thoughts

of using RPA as a foundation for an Architecture Description Language

(ADL). The semantics of notations and operations of an ADL can be ex-

pressed in terms of RPA. Further research into this topic is required to

validate these thoughts.
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Appendix A

Extraction Tools

This appendix lists the source codes of a number of Perl [WCS96] programs.

The programs are related to the Files, Imports and Part-Of InfoPacks dis-

cussed in Chapter 4. We used these tools in various reconstruction activi-

ties, but sometimes we changed these programs slightly in order to satisfy

the system at hand.

A.1 �le-exts.pl

#!/home/krikhaar/cadbin/perl

# input: Files

# standard output: typed.Files.Exts

#

while (<>) {

chop;

if (/.*\.([^.]+)/) {

print "$_ $1\n";

}

else {

print "! ERROR: unmatched filename $_\n";

}

}

A.2 units.pl

#!/home/krikhaar/cadbin/perl
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# input: Files

# standard output: partof.Files.Units

#

while (<>) {

chop;

if (/(.*)\.([^\.]+)/) {

print "$1 $2\n";

}

else {

print "! ERROR: unmatched filename $_\n";

}

}

A.3 comment-strip.pl

#!/home/krikhaar/cadbin/perl

# input: <file>

# standard output: <stripped file>

#

# read whole file at once

undef $/;

$_ = <>;

# remove comment /* ... */ with minimal ... match

s{/\*.*?\*/}{}gsx;

# remove comment // ...

s{//.*?\n}[]gsx;

# pre-process line extension (\\)

s/(^[ ]*#.*?)\\\\\n/$1/g; # at first line of file

s/(\n[ ]*#.*?)\\\\\n/$1/g; # at all other lines

# print the stripped file

print;

A.4 C-imports.pl

#!/home/krikhaar/cadbin/perl

# input: Files

# standard output: imports.Files.Files
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#

while (<>) {

if (/[ ]*(\S*)/) {

$INP=$1;

open INP or die "! Unable to open file $INP\n";

while (<INP>) {

if (/^[ ]*#[ ]*include[ ]*(\S*)/) {

$impfile = $1;

$impfile =~ s/"//g;

$impfile =~ s/<//;

$impfile =~ s/>//;

print "$INP $impfile\n";

}

}

}

}

A.5 J-imports.pl

#!/home/krikhaar/cadbin/perl

# input: Files

# standard output: imports.Classes.Classes+

#

foreach $java (@ARGV) {

print "Java: $java\n";

$java =~ /.*[\/\\]([^\/\\]+).[Jj][Aa][Vv][Aa]/;

$class = $1;

print "Class: $class\n";

$package = "";

open JAVA, $java or die "! Unable to open file $java\n";

while ( <JAVA> ) {

if ( /package\s+([^;]+)\s*;/ ) {

$package = $1.".";

}

if ( /import\s+([^;]+)\s*;/) {

$import = $1;

print "$package$java $import\n";

}

}

}
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A.6 J-package.pl

#!/home/krikhaar/cadbin/perl

# input: Files

# standard output: defines.Classes+.Classes

#

foreach $java (@ARGV) {

$java =~ /.*[\/\\]([^\/\\]+).[Jj][Aa][Vv][Aa]/;

$class = $1;

open JAVA, $java or die "! Unable to open file $java\n";

while ( <JAVA> ) {

if ( /package\s+([^;]+)\s*;/ ) {

$package = $1;

print "$package.* $package.$class\n";

print "$package.$class $package.$class\n";

}

}

}

A.7 ObjC-imports.pl

#!/home/krikhaar/cadbin/perl

# input: Files

# standard output: imports.Files.Files

#

while (<>) {

if (/[ ]*(\S*)/) {

$INP=$1;

open INP or die "! Unable to open file $INP\n";

while (<INP>) {

if (/^[ ]*#[ ]*import[ ]*(\S*)/) {

$impfile = $1;

$impfile =~ s/"//g;

$impfile =~ s/<//;

$impfile =~ s/>//;

print "$INP $impfile\n";

}

}

}

}
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A.8 QAC-imports.pl

#!/home/krikhaar/cadbin/perl

# input: <QAC intermediate file(s)>

# standard output: imports.Files.Files

#

while (<>) {

chop;

@fields = split/[ \t]+/;

if ($fields[0] =~ /<INCL>/) {

print "$fields[1] $fields[2]\n";

}

}

A.9 directory.pl

#!/home/krikhaar/cadbin/perl

# input: <list of to be inspected directories>

# standard output: partof.Files.Directories

#

while (<>) {

if (/[ ]*(\S*)/) {

$dir=$1;

opendir DIR,$dir or die "! Unable to open file $INP\n";

@allfiles = readdir $DIR;

foreach $f (@allfiles) {

print "$f $dir\n"

}

closedir;

}

}
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Appendix B

Abstraction Tools

B.1 Introduction

In this appendix we discuss some implementations of Relation Partition

Algebra. A number of implementations have been created in a broad range

of programming languages:

� functional language: Clean and Prolog;

� scripting language: Perl and AWK;

� database language: SQL.

� imperative language: Pascal, C, C++, Basic, and Java;

For each kind of language we will briey discuss some issues of particular

language.

One should not only think about the implementation of RPA operators, but

also about the interface of these operators. We distinguish the following

types of interfaces: API (application programmers interface) consisting of

a set of functions (e.g. Java implementation), a command line (e.g. AWK

implementation), a graphical calculator (e.g. SQL implementation) and

a sophisticated graphical interface [Pet97]. These interfaces will not be

discussed any further here.

B.2 RPA-Prolog

The �rst implementation of RPA was written in Prolog [SS86] using the

SWI-Prolog interpreter [Wie96]. The key design decision for almost any
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RPA implementation is the internal representation of sets and relations.

For RPA-Prolog [Kri95] we have chosen the following data structure:

� A set is implemented as a list containing the elements.

� A relation is a compound term obj(SetX, SetY, Rel); with an invariant

SetX = dom(Rel ) and SetY = ran(Rel ). Rel is a list of compound

terms rel(Elem, ElemRel); where Elem 2 SetX and ElemRel is a list

of elements with which Elem has a relation. Each Elem occurs only

once in the Rel list.

� The elements in the list Rel and the elements in the list ElemRel are

ordered according to the order in SetX and SetY, respectively.

The Prolog code of the rel dom and rel comp operators are listed below.

/* Example of facts that represent a set and relation */

set(functions, [main,a,b,c,d]).

relation(calls, obj(functions, functions,

[rel(main, [a,b]), rel(a, [b,c,d]),

rel(b,[d])])).

/*

rel_dom(Relation, Set) <-

Set is the domain of Relation

*/

rel_dom(obj(SetX, _, Rel), obj(SetX, Domain)) :-

domain(Rel, Domain).

domain([rel(E,_)|R], [E|Dom]) :-

domain(R, Dom).

domain([], []).

/*

rel_comp(Relation1, Relation2, Relation) <-

Relation is the composition Relation2 ; Relation1

*/

rel_comp(obj(NameX, NameY, Rel1), obj(NameY, NameZ, Rel2),

obj(NameX, NameZ, Result)) :-

set(NameY, SetY),

set(NameZ, SetZ),

comp(Rel1, SetY, SetZ, Rel2, Result).

comp([], _, _, _, []).

comp([rel(X,XList)|Rel1], SetY, SetZ,

Rel2, [rel(X,CList)|Result]) :-
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compose(XList, SetY, SetZ, Rel2, CList),

CList \== [],

!,

comp(Rel1, SetY, SetZ, Rel2, Result).

comp([_|Rel1], SetY, SetZ, Rel2, Result) :-

comp(Rel1, SetY, SetZ, Rel2, Result).

addlist([], [], List, List).

addlist([Z|SetZ], [Z|YList], [Z|RestList], [Z|List]) :-

!,

addlist(SetZ, YList, RestList, List).

addlist([Z|SetZ], YList, [Z|RestList], [Z|List]) :-

!,

addlist(SetZ, YList, RestList, List).

addlist([Z|SetZ], [Z|YList], RestList, [Z|List]) :-

!,

addlist(SetZ, YList, RestList, List).

addlist([_|SetZ], YList, RestList, List) :-

addlist(SetZ, YList, RestList, List).

compose([], _, _, _, []).

compose([Y|XList], [Y|SetY], SetZ, [rel(Y,YList)|Rel], List) :-

!,

compose(XList, SetY, SetZ, Rel, RestList),

addlist(SetZ, YList, RestList, List).

compose(XList, [Y|SetY], SetZ, [rel(Y,_)|Rel], List) :-

!,

compose(XList, SetY, SetZ, Rel, List).

compose([Y|XList], [Y|SetY], SetZ, Rel, List) :-

!,

compose(XList, SetY, SetZ, Rel, List).

compose(XList, [_|SetY], SetZ, Rel, List) :-

!,

compose(XList, SetY, SetZ, Rel, List).

B.3 RPA-AWK

The input �les for the AWK [AKW88] implementation consist of so-called

RPA �les. A set �le contains a single element of the set at each line; in a

relation �le each line contains a tuple of two elements separated by white

space. The lines in a multi-set �le and a multi-relation �le contain an
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rel_lift

Relation-1 Relation-2

Set-3

rel_carX

excluded_lift

Figure B.1: High Level Operations

extra �eld to represent the weight.

We have implemented each RPA operator in a separate AWK script. The

input of these scripts consists of �les (including standard input) and the

output is given on standard output. The unix pipe mechanism can be

used to concatenate a number of operators, implementing for example an

excluded-lift as depicted in Figure B.1:

rel_lift Relation1 Relation2 | rel_carX - Set3

A standard wrapper is used to parse the various arguments before the

actual AWK script is called. This wrapper is responsible for checking the

command line arguments, creating temporary �les if needed (the Unix way

of referring to standard input '-' has been used to read from standard

input), and some exception handling code. For clarity the wrapper code

has been removed from the code below. Again, we give the source code for

the rel dom and rel comp operators.

#! /bin/sh

# Calculates the domain of a relation

Usage="Call: rel_dom <rel>"

#

<wrapper code> the variable $IN1 gets a value

#

awk 'seen[$1]==0 { print $1; seen[$1]=1; }

' $IN1

#! /bin/sh
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# Composes two relations

Usage="Call: rel_comp <rel1> <rel2>"

#

<wrapper code> the variables $IN1 and $IN2 get a value

#

awk 'flag==0 { right[$1" "nr[$1]++]=$2; }

flag==1 { n=nr[$2]; for (i=0; i<n; i++) {

s=$1" "right[$2" "i];

if (seen[s]==0) { print s ; seen[s]=1; }

} }

' flag=0 $IN2 flag=1 $IN1

B.4 RPA-SQL

Another implementation is built on top of a database program. Any

database that supports SQL would su�ce, but we have used MS-Access

[Boe96]. The various sets, relations, multi-sets and multi-relations are

stored in separate tables. For relations, the columns in the table are named

dom and ran, respectively. The table name refers to the relation's name.

Query: rel_dom(<rel>):

SELECT DISTINCT <rel>.dom

FROM <rel>;

Query: rel_comp(<rel1>, <rel2>):

SELECT DISTINCT <rel1>.dom, <rel2>.ran

FROM <rel1> AS rel1 INNER JOIN <rel2> AS rel2

ON rel1.ran = rel2.dom

GROUP BY rel1.dom, rel2.ran;

Note that the rel dom query refers to the relation name <rel>. In SQL

it is however not possible to use such a construct. Therefore we have

developed a Visual Basic program to instantiate such free variables in our

SQL description. A new SQL statement is generated in which the actual

values of these variables are �lled out. After that, the generated SQL

statement is applied to the data in the database.
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Query: rel_dom(calls):

SELECT DISTINCT calls.dom

FROM calls;

Query: rel_comp(calls, calls):

SELECT DISTINCT calls.dom, calls.ran

FROM calls AS rel1 INNER JOIN calls AS rel2

ON rel1.ran = rel2.dom

GROUP BY rel1.dom, rel2.ran;

The stack-oriented RPA calculator shown in Figure B.2 has been built

on top of this program. Sets and relations can be pushed on the stack,

operations (represented by di�erent buttons) are applied to the element(s)

on the top of the stack.

B.5 RPA-Java

In our Java [Web96] implementation of RPA we made much use of classes

of standard packages. Various container classes of the java.util package

were used; e.g. relations were represented in HashTables. We constructed

an RPA package that contains the classes Set, Relation, MultiSet, and Mul-

tiRelation. Each class de�nes its own methods that perform related RPA

operations. For example, the rel dom method of Relation calculates this

object's domain; the rel comp method of Relation calculates its composi-

tion with another Relation object. As already discussed in Section B.3,

RPA �les can be read and written by calling the provided IO methods.

The command line interface of the AWK implementation proved to be very

handy in software architecture analysis. We have therefore implemented a

similar interface on top of this Java implementation, consisting of a number

of small programs, each calling a single method of the RPA package.

public class Relation {

// storage of tuples of Relation

protected Hashtable tuples;

/** dom( ) returns the domain of this Relation */
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Figure B.2: RPA Calculator
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public Set dom( ){

Set s = new Set( );

Enumeration e = tuples.keys( );

while( e.hasMoreElements( ) ){

s.insert( (String)( e.nextElement( ) ) );

}

return s;

}

/** comp( Relation r ) returns a Relation defined as r o 'this' */

public Relation comp( Relation r ){

Relation res = new Relation();

Enumeration e1 = r.tuples.keys( );

while( e1.hasMoreElements( ) ){

String s1 = (String)( e1.nextElement( ) );

Hashtable h1 = (Hashtable)( r.tuples.get( s1 ) );

Enumeration e2 = h1.keys( );

while( e2.hasMoreElements( ) ){

String s2 = (String)( e2.nextElement( ) );

Hashtable h2 = (Hashtable)( s.tuples.get( s2 ) );

if( h2 != null ){

Enumeration e3 = h2.keys( );

int i1 = get( h1, s2 );

while( e3.hasMoreElements( ) ){

String s3 = (String)( e3.nextElement( ) );

int i2 = get( h2, s3 );

res.insert( s1, s3, Integer( i1 * i2 ) );

}

}

}

}

return res;

}

}

B.6 A Brief Comparison of RPA tools

The Prolog implementation should just be seen as a �rst experiment with

the aim of becoming familiar with RPA.

The AWK implementation proved to be very suitable in daily practice. It
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is easy to use (certainly for persons familiar with unix concepts). The

AWK scripts are interpreted and can be easily combined using other shell

scripts. It is easy to incorporate these scripts, e.g. in a make facility. A

disadvantage may be the performance, the scripts may take some time in

the case of large relations.

The SQL implementation performs poorly in the case of large relations.

This holds especially for calculating a relation's transitive closure. The

transitive closure is implemented as an extra program (Visual Basic) which

iterates over a number of RPA operations (composition and union).

The advantage of Java is that it is platform-independent. It is also easy to

integrate RPA in e.g. Java applets in a Web browser.
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Appendix C

Presentation Tools

In this appendix we briey discuss, in a chronological order, a number of

proprietary presentation tools we have developed over the years.

C.1 Teddy-Classic

Teddy-Classic [Omm93, Roo94] displays components and relations between

components. Components are represented by boxes and relations are repre-

sented by lines. Teddy-Classic requires as input a relation �le and option-

ally a view �le and a component �le. The user can layout the components

on the screen (using a mouse). The layout can be saved in a so-called

view �le. Later on, the view �le can be used again, even in combination

with another relation �le (having the same components as carrier). So,

in Teddy-Classic, the relation and view are separate concepts.

Components are clickable, meaning that the user can `click' on a box, which

results in a text viewer with component information. This `click' informa-

tion is described in a component �le that describes the relation between

components and information �les. Teddy-Classic has various types of boxes,

which represent di�erent types of components. The lines also have di�er-

ent representations, dictated by the types of components to which they are

connected.

Figure C.1 shows an example of the output of Teddy-Classic. It shows the

same information as presented in the diagram of Figure 4.11 (page 83). A

thick line between two components means that there is a relation between

the graphically lower component and the higher component. A thin line
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Figure C.1: Teddy-Classic

represents a relation between the higher component and the lower com-

ponent. From these rules we infer that bi-directional relations are always

represented as thick lines.

Teddy-Classic was written, in 1992, in the programming language C using

X windows. The separation of relations, click information and views is a

powerful concept: various relations can be displayed with the same view

information. A drawback of Teddy-Classic is its graphical appearance. Bi-

directional relations are not explicitly handled and all the boxes are of

the same size; lines start (end) in the middle of a box, which reduces the

possibilities of creating an appealing layout. There are now more tools

available that provide similar functionalities, e.g. Rigi [SWM97], developed

at the University of Victoria, Canada.
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Figure C.2: Teddy-Visio

C.2 Teddy-Visio

In 1996, the functionality of Teddy-Classic was also implemented in Visual

Basic in combination with VisioTM [Vis]. The Visio tool displays 1-D and

2-D objects, say for clarity arrows and boxes. Each box has various con-

nection points to which an arrow can be connected. The connected arrows

automatically re-size when a box is moved (using a mouse). Visio calcu-

lates the best connection points for arrows (they call it `dynamic glueing')

and it automatically layouts boxes. Furthermore, arrows may be straight,

but the tool can also bend lines to beautify the layout. An example of the

output of Teddy-Visio is given in Figure C.2.
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C.3 Teddy-PS

The aim of Teddy-PS was to present architectural information in forms re-

sembling as closely as possible the diagrams already used in the architecture

documentation concerned. So, in 1996, Teddy-PS was developed to resolve

drawbacks of Teddy-Classic: boxes of the same sizes and arrows that start

(end) at prede�ned positions at the border of these boxes.

Teddy-PS requires as input a view �le and one or more relation �les.

The view �le is a prepared postscript �le that contains the layout of all the

components (boxes) and possible relations between components (arrows).

The view �le is manually created (by adapting a copy of a template view

�le). Per relation, Teddy-PS �lters, from the view �le, the corresponding

arrows and gives them a colour. Teddy-PS also calculates the sizes of arrows

in the case of multi-relations. An example of the output of Teddy-PS is

given in Figure C.3.

C.4 Teddy-ArchView

All of the Teddy tools discussed above use two dimensions to present in-

formation. Teddy-ArchView, developed in 1997, presents architectural in-

formation in a three-dimensional picture [FJ98]. The tool's input consists

of various relations and part-of relations. From this information, Teddy-

ArchView generates a VRML [VRM] description. The result is presented

in a standard Web browser (using a plug-in, a VRML viewer) or any other

VRML viewer. The viewer gives the user the opportunity to walk through

the information, in a virtual-reality world. An example of such a world is

given in Figure C.4.

C.5 TabVieW

TabVieW (developed in 1998) presents relations and multi-relations in a

tabular (or matrix) form in a Web browser. The input for this tool is a

use relation, e.g. importsFiles;Files , and a number of partof relations. For

the sake of discussion, we will call the use relation U1 ;1 and the chain of

partof relations P1;2; P2;3; : : :. For example, decomposition level 1 refers to

Files , level 2 to Comps , level 3 to Subs and level 4 to Systems , so partof 1 ;2
describes which Files belong to which Comps .
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Figure C.4: Teddy-ArchView
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TabVieW shows, in a Web browser, a matrix that belongs to a tuple of

focus points: a focus point in the domain x at level d plus a focus point

in the range y at decomposition level r. In the �rst column the domain's

focus point x is presented, in the second column the constituents of x are

listed. In Figure C.5 the domain's focus point is Comm . The constituents

of x can be calculated with RPA: partof d�1 ;d :x. In the given example

the constituents of x are, amongst others, Cil, Cnl, and Std. Analogously,

in the �rst row the range's focus point y is presented, and in the second

row its constituents ( partof r�1 ;r :y ) are given. The cells in the matrix

show whether a tuple exists in the relation Ud�1 ;r�1 or, in the case of a

multi-relation1, they also show the corresponding weight in RPA:

Ud�1 ;r�1 = Pr�2;r�1 � : : : � P1;2 �U1 ;1 � P
�1
d�2;d�1 � : : : � P

�1
1;2

The user can navigate through the information by clicking on hyperlinks.

Zooming-in can be achieved by clicking on elements in the second column

or row. A new matrix is then calculated and presented with the clicked

element as a new focus point (preserving the other focus point). Zooming-

out can be performed by clicking on the element in the �rst column (row).

The parent of this element becomes the new focus point (again preserving

the other focus point). When the user clicks on the cells, the corresponding

tuples (lowered to decomposition level 1) are presented in a table. All the

calculations are performed on request (i.e. after a user's click); a Perl script

accessed via cgi [SQ96] calculates a new matrix or table.

Since the development of this prototype, a more elaborate version of Tab-

VieW has been implemented by the Switch development team [Gla98,

BGKW99]. It contains a more dedicated user interface containing, amongst

other things, more zooming and hiding actions.

1In case of multi-relations, the part-of relation P of the formula should be interpreted

as a multi-relation.
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Figure C.5: TabVieW



Appendix D

RPA Operators in a Nutshell

In this appendix we give an overview (quick reference guide) of all the

operators on sets, multi-sets, relations and multi-relations. The �rst column

of these tables contains the operators and the types of operands (all given

in the same order as discussed in Chapter 3). The second column contains

the mathematical names, and the third column contains the mnenomic,

which includes only ASCII characters (recommended as function/method

name in implementations).
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=: Set � Set ! Bool equal set eq

�: Set � Set ! Bool subset set sub

�: Set � Set ! Bool superset set sup

�: Set � Set ! Bool strict subset set ssub

�: Set � Set ! Bool strict superset set ssup

[ : Set � Set ! Set union set union

\ : Set � Set ! Set intersection set isect

n : Set � Set ! Set di�erence set di�

: Set ! Set complement set compl

j j : Set ! Int size set size

Table D.1: Operations on Sets
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=: Rel � Rel ! Bool equal rel eq

�: Rel � Rel ! Bool subset rel sub

�: Rel � Rel ! Bool superset rel sup

�: Rel � Rel ! Bool strict subset rel ssub

�: Rel � Rel ! Bool strict superset rel ssup

[ : Rel � Rel ! Rel union rel union

\ : Rel � Rel ! Rel intersection rel isect

n : Rel � Rel ! Rel di�erence rel di�

� : Rel � Rel ! Rel composite rel comp

� : Set � Set ! Rel cartesian product rel times

IdX : Set ! Rel identity rel ident

dom : Rel ! Set domain rel dom

ran : Rel ! Set range rel ran

car : Rel ! Set carrier rel car

�dom : Rel � Set ! Rel domain restriction rel domR

�ran : Rel � Set ! Rel range restriction rel ranR

�car : Rel � Set ! Rel carrier restriction rel carR

ndom : Rel � Set ! Rel domain exclusion rel domX

nran : Rel � Set ! Rel range exclusion rel ranX

ncar : Rel � Set ! Rel carrier exclusion rel carX

> : Rel ! Set top rel top

? : Rel ! Set bottom rel bot

� : Set � Rel ! Set forward projection rel fproj

� : Rel � Set ! Set backward projection rel bproj

: : Rel � Elem ! Set left image rel left

: : Elem � Rel ! Set right image rel right

j j : Rel ! Int size rel size
�1 : Rel ! Rel converse rel conv

: Rel ! Rel complement rel compl
+ : Rel ! Rel transitive closure rel clos
� : Rel ! Rel reexive transitive closure rel rclos
� : Rel ! Rel transitive reduction rel hasse

Table D.2: Operations on Binary Relations
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": Rel � Par ! Rel lifting rel lift

#: Rel � Par ! Rel lowering rel low

Table D.3: Operations on Part-Of Relations

d e : Set ! mSet mapping set 2mset

d en : Set � Int ! mSet n-mapping set n2mset

b c : mSet ! Set mapping mset 2set

=: mSet �mSet ! Bool equal mset eq

�: mSet �mSet ! Bool subset mset sub

�: mSet �mSet ! Bool superset mset sup

�: mSet �mSet ! Bool strict subset mset ssub

�: mSet �mSet ! Bool strict superset mset ssup

[ : mSet �mSet ! mSet union mset union

+ : mSet �mSet ! mSet addition mset sum

\ : mSet �mSet ! mSet intersection mset isect

n : mSet �mSet ! Set di�erence mset di�

: mSet ! mSet complement mset compl

k k : mSet ! Int size mset size

Table D.4: Operations on Multi-Sets
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d e : Rel ! mRel mapping rel 2mrel

d en : Rel � Int ! mRel n-mapping rel n2mrel

b c : mRel ! Rel mapping mrel 2rel

=: mRel �mRel ! Bool equal mmrel eq

�: mRel �mRel ! Bool subset mrel sub

�: mRel �mRel ! Bool superset mrel sup

�: mRel �mRel ! Bool strict subset mrel ssub

�: mRel �mRel ! Bool strict superset mrel ssup

[ : mRel �mRel ! mRel union mrel union

+ : mRel �mRel ! mRel addition mrel sum

\ : mRel �mRel ! mRel intersection mrel isect

n : mRel �mRel ! mRel di�erence mrel di�

� : mRel �mRel ! mRel composite mrel comp

� : mSet �mSet ! mRel cartesian product mrel times

IdX : Set ! mRel identity mrel ident

IdX;n : Set � Int ! mRel identity mrel ident

dom : mRel ! mSet domain mrel dom

ran : mRel ! mSet range mrel ran

car : mRel ! mSet carrier mrel car

�dom : mRel � Set ! mRel domain restriction mrel domR

�ran : mRel � Set ! mRel range restriction mrel ranR

�car : mRel � Set ! mRel carrier restriction mrel carR

ndom : mRel � Set ! mRel domain exclusion mrel domX

nran : mRel � Set ! mRel range exclusion mrel ranX

ncar : mRel � Set ! mRel carrier exclusion mrel carX

> : mRel ! mSet top mrel top

? : mRel ! mSet bottom mrel bot

� : Set �mRel ! mSet forward projection mrel fproj

� : mRel � Set ! mSet backward projection mrel bproj

: : mRel � Elem ! mSet left image mrel left

: : Elem �mRel ! mSet right image mrel right

k k : mRel ! Int size mrel size
�1 : mRel ! mRel converse mrel conv

: mRel ! mRel complement mrel compl
+ : mRel ! mRel transitive closure mrel clos
� : mRel ! mRel reexive transitive closure mrel rclos
� : mRel ! mRel transitive reduction mrel hasse

": mRel � Par ! mRel lifting mrel lift

#: mRel � Par ! mRel lowering mrel low

Table D.5: Operations on Multi-Relations



178 RPA Operators in a Nutshell



Bibliography

[AIS77] C. Alexander, S. Ishikawa, and M. Silverstein. A Pattern Lan-

guage { Towns Buildings Construction {. Oxford University

Press, 1977.

[AKW88] Alfred V. Aho, Brian W. Kernigham, and Peter J. Weinberger.

The AWK Programming Language. Addison-Wesley Publishing

Company, 1988.

[Bab86] Wayne A. Babich. Software Con�guration Management | Co-

ordination for Team Productivity. Addison-Wesley Publishing

Company, 1986.

[BCK98] Len Bass, Paul Clements, and Rick Kazman. Software Ar-

chitecture in Practice. Addison-Wesley Publishing Company,

1998.

[BFG+99] Reinder J. Bril, Loe M.G. Feijs, Andr�e Glas, Ren�e L. Krikhaar,

and Thijs Winter. Maintaining a Legacy: towards support at

the architectural level. Journal of Software Maintenance, 1999.

Submitted on invitation.

[BGKW99] Reinder J. Bril, Andr�e Glas, Ren�e L. Krikhaar, and Thijs Win-

ter. "Hiding" expressed using Relation Algebra with Multi-

Relations. 1999. Submitted for publication.

[BHS80] Edward H. Berso�, Vilas D. Henderson, and Stanley G. Siegel.

Software Con�guration Management | An investment in Pro-

duct Integrity. Prentice Hall, 1980.

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Som-

merlad, and Michael Stal. A systems of patterns { pattern-

oriented software architecture {. John Wiley, 1996.



180 Bibliography

[Boe96] Koos Boertjens. Access 7 voor Windows 95 { voor gevorderden

{. Academic Service, 1996.

[Boo91] Grady Booch. Object Oriented Design with Applications. The

Benjamin/Cummings Publishing Company, 1991.

[Box98] Don Box. Essential COM. Addison-Wesley Publishing Com-

pany, 1998.

[Bro82] Frederick P. Brooks. The Mythical Man-Month. Addison-

Wesley Publishing Company, 1982.

[Bro99] Jacques Brook. Design and Implementation of a tool for reclus-

tering. Master's thesis, Eindhoven University of Technology,

1999.

[CC90] E. Chikofsky and J. Cross. Reverse Engineering and Design

Recovery: A taxanomy. IEEE Software, pages 13{17, January

1990.

[Cle] http://www.rational.com/products/ccmbu/clearcase.

[CN91] Brad J. Cox and Andrew J. Novobiliski. Object-Oriented Pro-

gramming { an evolutionary approach. Addison-Wesley Pub-

lishing Company, second edition, 1991.

[Con] http://www.continuus.com.

[Cor89] T.A. Corbi. Program Understanding: Challenge for the 1990's.

IBM Systems Journal, 28(2):294{306, 1989.

[CS95] M. Cusumano and R. Selby. Microsoft Secrets: How the

World's Most Powerful Software Company Creates Technology,

Shapes Markets, and Manages People. New York: Free Press,

1995.

[Dij68] E.W. Dijkstra. The structure of the THE-multiprogramming

system. Communications on the ACM, 11(5):341{346, 1968.

[ES90] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++

Reference Manual. Addison-Wesley Publishing Company, 1990.

[Fel79] Stuart I. Feldman. Make - A Program for Maintaining Com-

puter Programs. Software - Practice and Experience, 1979.



Bibliography 181

[FHK+97] P.J. Finnigan, R.C. Holt, I. Kalas, S. Kerr, and K. Kontogian-

nis. The software Bookshelf. IBM Systems Journal, 36(4):564{

593, 1997.

[FJ98] L. Feijs and R.P. de Jong. 3D visualization of software architec-

tures. Communications on the ACM, 41(12):73{78, December

1998.

[FK99] L.M.G. Feijs and R.L. Krikhaar. Relation Algebra with

Multi-Relations. International Journal Computer Mathemat-

ics, 70:57{74, 1999.

[FKO98] L. Feijs, R. Krikhaar, and R. van Ommering. A relational

approach to Software Architecture Analysis. Software Practice

and Experience, 28(4):371{400, April 1998.

[FO94] L.M.G. Feijs and R.C. van Ommering. Theory of Relations

and its Applications to Software Structuring. Philips internal

report, Philips Research, 1994.

[FO99] L.M.G. Feijs and R.C. van Ommering. Relation Partition Al-

gebra { mathematical aspects of uses and part-of relations {.

Science of Computer Programming, 33:163{212, 1999.

[Fow97] Martin Fowler. UML Distilled - applying the standard ob-

ject modeling language. Addison-Wesley Publishing Company,

1997.

[GAO95] D. Garlan, R. Allen, and J. Ocklerbloom. Architectural Mis-

match: Why reuse is so hard. IEEE Software, pages 179{184,

November 1995.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-

sign Patterns - Elements of Reusable Object-Oriented Software.

Addison-Wesley Publishing Company, 1995.

[Gla98] Andr�e Glas. Module Architecture Browser. Technical report,

Philips Business Communications, 1998.

[GMS93] Michel Goossens, Frank Mittelbach, and Alexander Samarin.

The LATEXCompanion. Addison-Wesley Publishing Company,

1993.



182 Bibliography

[Hol96] Richard C. Holt. Binary Relation Algebra Applied to Software

Architecture. CSRI Technical Report 345, Computer Systems

Research Institute, 1996.

[Hol98] Richard C. Holt. Structural Manipulations of Software Archi-

tecture using Tarski Relational Algebra. In Proceedings of Fifth

Working Conference on Reverse Engineering. IEEE Computer

Society, 1998.

[Hum89] Watts S. Humphrey. Managing the Software Process. Addison-

Wesley Publishing Company, 1989.

[ITU93] ITU. CCITT Z.200 CCITT High Level Language (CHILL) {

Recommendations Z200, 1993.

[Jav] http://java.sun.com/doc/language speci�cation.html.

[JGJ97] Ivar Jacobson, Martin Griss, and Patrik Jonsson. Software

Reuse { Architecture, Process and Organization for Business

Success. ACM Press, 1997.

[Joh75] S.C. Johnson. YACC { Yet Another Compiler-Compiler. Tech-

nical report, Bell Laboratories, 1975.

[Jon88a] H.B.M. Jonkers. Introduction to COLD-K. Deliverable of esprit

project meteor, Philips Research, 1988.

[Jon88b] H.B.M. Jonkers. The SPRINT Method. Philips internal report

RWB-113-hj-90071, Philips Research, 1988.

[KABC96] R. Kazman, G. Abowd, L. Bass, and P. Clements. Scenario

Based Analysis of software architecture. IEEE Software, pages

47{55, November 1996.

[KC98] Rick Kazman and S. Jeromy Carri�ere. View Extraction and

View Fusion in Architectural Understanding. In Proceedings of

the Fifth International Conference on Software Reuse, 1998.

[KFJM99] R.L. Krikhaar, L.M.G. Feijs, R.P. de Jong, and J.P. Medema.

Architecture Comprehension Tools for a PBX System. In Pro-

ceedings of Third European Conference on Software Mainte-

nance and Reengineering, pages 31{39. IEEE Computer Soci-

ety, 1999.



Bibliography 183

[KL94] Ren�e Krikhaar and Frank van der Linden. Comparison of the

Building Block Method with other methods. Philips internal

report RWB-508-re-94073, Philips Research, 1994.

[KPS+99] Ren�e Krikhaar, Andr�e Postma, Alex Sellink, Marc Stroucken,

and Chris Verhoef. A Two-phase Process for Software Archi-

tecture Improvement. submitted for publication, 1999.

[KPZ99] R.L. Krikhaar, M. Pennings, and J. Zonneveld. Employing Use-

cases and Domain Knowledge for Comprehending Resource Us-

age. In Proceedings of Third European Conference on Software

Maintenance and Reengineering, pages 14{21. IEEE Computer

Society, 1999.

[KR88] B. Kernighan and D.M. Ritchie. The C programming Language.

Prentice Hall, second edition, 1988.

[Kri94] Ren�e Krikhaar. Dynamic Aspects of the Building Block

Method. Philips internal report RWB-508-re-94071, Philips

Research, 1994.

[Kri95] R.L. Krikhaar. A Formal View on the Building Block Method.

Philips internal report RWB-506-re-95014, Philips Research,

1995.

[Kri97] R.L. Krikhaar. Reverse Architecting Approach for Complex

Systems. In Proceedings International Conference on Software

Maintenance, pages 4{11. IEEE Computer Society, 1997.

[Kri98] Ren�e Krikhaar. Reverse Architecting Comm { User Manual {.

Philips internal report, Philips Research, 1998.

[Kro93] Klaus Kronlof. Method Integration { Concepts and Case Stud-

ies. John Wiley, 1993.

[Kru95] P. Kruchten. The 4 + 1 View Model of Architecture. IEEE

Software, pages 42{50, November 1995.

[KW94] Ren�e Krikhaar and Jan Gerben Wijnstra. Product develop-

ment with the Building Block Method { a process perspective

{. Philips internal report RWB-508-re-94070, Philips Research,

1994.



184 Bibliography

[KW95] Ren�e Krikhaar and Jan Gerben Wijnstra. Architectural Con-

cepts for the Single Product Line. Philips internal report RWB-

508-re-95047, Philips Research, 1995.

[Lam85] Leslie Lamport. LATEX- A Document Preparation System.

Addison-Wesley Publishing Company, 1985.

[LLB+98] Bruno Lagu�e, Charles Leduc, Andr�e Le Bon, Ettore Merlo,

and Michel Dagenais. An Analysis Framework for Understand-

ing Layered Software Architectures. In Proceedings 6th Inter-

national Workshop on Program Comprehension, pages 37{44.

IEEE Computer Society, 1998.

[LLMD97] Bruno Lagu�e, Charles Leduc, Ettore Merlo, and Michel Dage-

nais. A Framework for the Analysis of Layered Software Ar-

chitectures. In Proceedings of the 2nd International Workshop

on Empirical Studies of Software Maintenance, pages 75{78.

IEEE Computer Society, 1997.

[LM95] F. van der Linden and J. M�uller. Creating Architectures with

Building Blocks. IEEE Software, pages 51{60, November 1995.

[LS86] M.E. Lesk and E. Schmidt. LEX { A lexical analyzer generator.

Technical report, Bell Laboratories, 1986.

[Med98] Jeroen Medema. Manual on Module Architecting Switch.

Philips Internal Report SR 2290-98.0214, Philips Business

Communications, 1998.

[MK97] J.P. Medema and R.L. Krikhaar. Reverse Module Architecting

for Med - handbook for analysing the module interconnection

architecture of the Med software -. Philips internal report Nat.

Lab. Technical Note 80/97, Philips Research, 1997.

[MMR+98] S. Mancoridis, B.S. Mitchell, C. Rorres, Y. Chen, and E.R.

Gansner. Using Automatic Clustering to Produce High-Level

System Organizations of Source Code. In Proceedings 6th Inter-

national Workshop on Program Comprehension, pages 45{52.

IEEE Computer Society, 1998.

[MN97] Gail Murphy and David Notkin. Reengineering with Reexion

Models: A Case Study. Computer, pages 29{36, August 1997.



Bibliography 185

[MNS95] G. Murphy, D. Notkin, and K. Sullivan. Software Reexion

Models: Bridging the Gap between Source and High-Level

Models. In Proceedings Third ACM Sigsoft Symposium on

Foundations of Software Engineering, pages 18{28. ACM New

York, 1995.

[Omm93] R.C. van Ommering. TEDDY user's manual. Technical report

12NC-4322-2730176-1, Philips Research, 1993.

[Par76] D. Parnas. On the Design and Development of Program Fami-

lies. IEEE Transactions on Software Engineering, SE-2(1):1{9,

1976.

[PCW85] D.L. Parnas, P. Clements, and D. Weiss. The Modular Struc-

ture of Complex Systems. IEEE Transactions on Software En-

gineering, SE-11(3):259{266, 1985.

[Pet97] Marcel Peters van Ton. Visual Logic: an experiment in graphi-

cal assertion language design. Master's thesis, Eindhoven Uni-

versity of Technology, 1997.

[Pro96] Programming Research Ltd. QAC Version 3.1 User's Guide,

1996.

[PW92] D. Perry and A. Wolf. Foundations for the Study of Software

Architecture. ACM Software Engineering Notes, 17(7):40{52,

1992.

[PZ93] G. Parikh and N. Zvegintzov. Tutorial on Software Mainte-

nance. Los Alamitos, CA: IEEE Computer Society Press, 1993.

[Roo94] M. Roosen. Design Visualization de�nition and concepts.

Philips internal report RWB-508-re-94040, Philips Research,

1994.

[SG96] Mary Shaw and David Garlan. Software Architecture { per-

spectives on an emerging discipline {. Prentice Hall, 1996.

[SM77] Donald F. Stanat and David F. McAllister. Discrete Mathe-

matics in Computer Science. Prentice Hall, 1977.

[SMB83] C.H. Smedema, P. Medema, and M. Boasson. The Program-

ming Languages - Pascal, Modula, CHILL, Ada. Prentice Hall,

1983.



186 Bibliography

[SMC74] W.P. Stevens, G.J. Myers, and L.L. Constantine. Structured

Design. IBM Systems Journal, 13(2):115{139, 1974.

[SNH95] D. Soni, R. Nord, and C. Hofmeister. Software Architecture

in Industrial Application. In Proceedings International Confer-

ence on Software Engineering, pages 196{207, 1995.

[SQ96] Stephen Spainbour and Valerie Quercia. Webmaster in a Nut-

shell. O'Reilly, 1996.

[SS86] Leon Sterling and Ehud Shapiro. The Art of Prolog { Advanced

Programming Techniques {. The MIT Press, 1986.

[SWM97] Margaret-Anne D. Storey, Kenny Wong, and Hausi A. Mueller.

Rigi: A Visualisation Environment for Reverse Engineering. In

Proceedings of International Conference on Software Engineer-

ing, pages 606{607, 1997.

[Szy97] Clemens Szyperski. Component Software { beyond Object-

Oriented Programming. Addison-Wesley Publishing Company,

1997.

[Tan76] Andrew S. Tanenbaum. Structured Computer Organization.

Prentice Hall, 1976.

[Tar41] A. Tarski. On the calculus of relations. Journal of Symbolic

Computing, 6(3):73{89, 1941.

[VAX96] Digital Equipment Corporation. Using VAXset { user manual,

1996.

[Vis] http://www.visio.com/.

[VRM] http://www.vrml.org/.

[War62] S. Warshall. A Theorem on Boolean Matrices. Journal on the

ACM, pages 11{12, 1962.

[WCS96] L. Wall, T. Christiansen, and R.L. Schwartz. Programming

Perl. O'Reilly, second edition, 1996.

[Web96] Joe Weber. Using JAVA. QUE, second edition, 1996.

[Wie96] Jan Wielemaker. SWI-Prolog Reference Manual. University of

Amsterdam, 1996.



Bibliography 187

[Wig97] T.A. Wiggerts. Using Clustering Algorithms in Legacy Systems

Remodularization. Proceedings of Fourth Working Conference

on Reverse Engineering, 1997.

[Wij96] Jan Gerben Wijnstra. Supporting System Families with Gener-

ics and Aspects. Philips internal report RWB-506-re-96004,

Philips Research, 1996.

[Wir83] Niklaus Wirth. Programming in Modula-2. Springer-Verlag,

second corrected edition, 1983.

[WW90] Robin J. Wilson and John J. Watkins. Graphs { an introductory

approach. John Wiley, 1990.

[YC79] Edward Yourdon and Larry L. Constantine. Structured De-

sign { Fundamentals of a Discipline of Computer Program and

Systems Design. Yourdon Press, 1979.



188 Bibliography



Glossary

4 + 1 View Model:

A speci�c architecture view model that partitions an architecture into

4 views (logical view, development view, process view, physical view)

plus an additional view (scenarios) that combines the four views (see

Section 1.2.1).

abstraction:

An activity that raises extracted information to a higher level of ab-

straction, e.g. to an architectural level (see Section 2.3).

ArchiSpect:

A concept of the SAR method that describes how an aspect of archi-

tecture of an existing system can be reconstructed (see Section 2.5.2).

architectural pattern:

A recurring solution to a problem relating to architecture (see Sec-

tion 1.5).

architecture:

The main structures of a system, also used as a shorthand for software

architecture (see Chapter 1).

architecture conformance:

The situation in which the implementation of a system conforms to

the architecture (see Section 6.1).

architecture improvement:

The process of improving the architecture of an existing system (see

Section 2.4).

architecture veri�cation:

The process of verifying an implementation by comparing it with its

architecture to assess architecture conformance (see Section 6.1).
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AV model:

An architectural view model that partitions an architecture into �ve

di�erent views (logical view, module view, code view, execution view,

physical view) plus an extra view (scenarios) that combines the �ve

views (see Section 1.2.3).

binary relation:

A set of tuples (f: : : ; hx; yi; : : :g) representing a certain relation, e.g.

calls for function calls within a system (see Section 3.3).

Building Block method:

A dedicated software architecture method that stems from telecom-

munication system development (see Section 2.2).

component:

A generic name for a piece of software; this term is sometimes used

to refer to a piece of software at a certain level of decomposition.

decomposition hierarchy:

The hierarchy of software entities of a system including their contain-

ment relationship (see Section 4.7).

decomposition level:

A certain level in the decomposition hierarchy (see Section 4.7).

extraction:

An activity involving the retrieval of information from source code,

design documentation and/or domain experts (see Section 2.3).

Files:

An example of the notation used in this thesis for sets (see Sec-

tion 3.6.2).

forward architecting:

The discipline of creating new architectures for software systems (see

Section 2.2).

impact analysis:

The process of simulating a possible idea for modi�cation in a soft-

ware model to analyse, in advance, the possible consequences of its

application to actual source code (see Section 5.1).

importsFiles;Files:

An example of the notation used in this thesis for multi-relations:

importsFiles;Files represents the multi-relation: imports � Files �

Files (see Section 3.6.2).
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importsFiles;Files :

An example of the notation used in this thesis for binary relations:

importsFiles;Files represents the binary relation: imports � Files �

Files (see Section 3.6.2).

InfoPack:

A concept of the SAR method that describes how to extract (architec-

ture-relevant) information from existing software (see Section 2.5.2).

lifting:

An RPA operation involving a relation and a part-of relation resulting

in a relation at a higher level of abstraction (see Section 3.4).

lowering:

An RPA operation involving a relation and a part-of relation resulting

in a relation having a �ner coarse of granularity (see Section 3.4).

multi-relation:

A bag of tuples ha; bi, represented as a set of triples ha; b; ni, where

n represents the number of occurrences, called the weight (see Sec-

tion 3.5).

multi-set:

A bag of entities, represented as a set of tuples ha; ni, where n repre-

sents the number of occurrences, called the weight (see Section 3.5).

part-of relation:

A relation that describes a partition, i.e. a division of a set of entities

into various non-overlapping (named) parts (see Section 3.4).

presentation:

The activity of showing (architectural) information to developers and

architects in an appropriate way e.g. by means of diagrams, tables

and/or text (see Section 2.3).

re-architecting:

The process of modifying the software architecture of an existing sys-

tem (see Section 2.3).

repository:

A data-store containing software-related information (see Section 2.3).

reverse architecting:

Reverse engineering of software architectures (see Section 2.3).
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reverse engineering:

The process of analysing a subject system to identify the system's

components and their relationships and create representations of the

system in another form or at a higher level of abstraction (see Sec-

tion 2.3).

RPA:

Relation Partition Algebra, an algebra based upon sets, relations and

partitions (see Chapter 3).

SAR:

Software Architecture Reconstruction, a method for reconstructing

software architectures (see Chapter 2).

SAR level:

A level of the Software Architecture Reconstruction method (see Sec-

tion 2.5.1).

set:

A collection of objects, called elements or members (see Section 3.2).

SNH model:

An architectural view model that partitions an architecture into �ve

di�erent views: conceptual architecture, module interconnection ar-

chitecture, execution architecture, code architecture and hardware

architecture (see Section 1.2.2).

software architecture:

A heavily overloaded term, which covers at least the main structures

of a software system (see Section 1.2).

software architecture reconstruction:

The process of recovering an existing software architecture, improving

an existing software architecture and/or verifying the architecture of

an existing system (see Section 2.5).

software architecting:

The process of creating software architectures (see Section 1.2).



Summary

This thesis concerns Software Architecture Reconstruction of large embed-

ded systems of the kind developed at Philips (MRI scanners, telephony

switching systems, etc.). These systems typically consist of millions of

lines of code1, from which the �rst lines of code may have been developed

more than �fteen years ago. A complete crew of software developers, typ-

ically sixty persons, continuously maintains and extends the system with

new functionality.

Chapter 1 discusses the term software architecture. It concerns the design

of simple and clear structures to be able to share software code amongs

di�erent products. A well designed architecture can be reused in d��erent

products. We must note that the term software architecture is somewhat

ambigious. Therefore, we discuss a number of de�nitions and views on

software architecture. Finally, a number of product's aims from a business

perspective are discussed. For example, a product should be available in

the market as soon as possible. The business goals determine the objectives

of an architecture, for example possibilities to reuse parts of the software in

other systems. On its turn these architectural objectives can be translated

into architectural patterns.

In Chapter 2 we give an overview of the SAR (Software Architecture Recon-

struction) method. First, we introduce terminology like software architect-

ing (the construction of a new software architecture), reverse architecting

(the process of making explicit the software architecture of an existing sys-

tem) and architecture improvement. Next, the basic notions of the SAR

method are discussed: InfoPacks, ArchiSpects and software architecture

reconstruction levels. InfoPacks describe information extraction from soft-

ware and ArchiSpects describe aspects of software architecture. A number

1To print a system of two million lines of code, we need a pile of 300 books of the size

of this thesis.
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Architectural Views
Logical Module Code Execution Hardware

SAR levels View View View View View

Optimized

IGenerics and

Speci�cs Confor-

mance

IAspect Confor-

mance

IAspect Assign-

ment

Managed IUsage Confor-

mance

IPart-Of

ILayering Con-

formance

IDepend

IAspect Cou-

pling

IAspect Assign-

ment

Rede�ned ICohesion and

Coupling

IPart-Of

IComponent

Coupling

IDepend

ISource Code Or-

ganisation

IBuild Process

Described IUsing and Used

Interfaces

IPart-Of

IComponent De-

pendency

IDepend

ISoftware Con-

cepts Model

IFiles

Initial

Table S.1: Software Architecture Reconstruction

of InfoPacks and ArchiSpects can be de�ned for each architectural view.

The following software architecture reconstruction levels are identi�ed: ini-

tial, described, rede�ned, managed and optimized. A framework (with a

focus on the module view and code view) of the SAR method is given in

Table S.1. The cells of the table contain various InfoPacks and ArchiSpects

discussed in this thesis.

In Chapter 3 Relation Partition Algebra (RPA) is discussed. Relation Par-

tition Algebra is an algebra based on sets, binary relations and operations

on them. Partitions play a special role in the algebra, which can be ex-

pressed in so-called part-of relations. In particular, dedicated operations
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upon relations and part-of relations make the algebra very useful for soft-

ware architecture. Multi-relations are an extension of binary relations,

which were found to be very useful for architecture analysis. In the SAR

method, we consequently apply RPA to describe the InfoPacks and Archi-

Spects.

In Chapter 4 we show how the software architecture of an existing sys-

tem can be described by de�ning a number of InfoPacks and ArchiSpects.

The ArchiSpects Source Code Organisation and Build Process belong to

the code view and the ArchiSpects Software Concepts Model, Component

Dependency and Using and Used Interface belong to the module view of

software architecture. The InfoPacks that are required to reconstruct these

ArchiSpects are also discussed.

In Chapter 5 we describe a number of ArchiSpects that support the im-

provement (or rede�nition) of an existing software architecture. The Archi-

Spects Component Coupling, Cohesion and Coupling and Aspect Coupling

are discussed. These ArchiSpects can be used by an architect to analyse

the impact of the introduction of certain architectural changes.

In Chapter 6 we discuss architecture veri�cation, i.e. the process of check-

ing whether the implementation agrees with the de�ned software architec-

ture. Therefore, we discuss the ArchiSpects (Layering Conformance, Usage

Control, Aspect Conformance, and Generics and Speci�cs) that can help to

manage a software architecture.

Chapter 7 contains some concluding remarks and recommendations.

The appendices contain the extraction, abstraction and presentation tools

used to reconstruct and present ArchiSpects of a number of Philips systems.

The last appendix contains an overview of the RPA operators.
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Samenvatting

Niet alle lezers van dit proefschrift zullen weten wat software-architecturen

zijn. We zullen dit begrip proberen uit te leggen door een vergelijking te

maken met de architectuur van huizen.

Het zal duidelijk zijn dat de architectuur van een wolkenkrab-

ber (letterlijk) hemelhoog verschilt van die van een zomerhuisje.

Een wolkenkrabber heeft natuurlijk een heel ander soort fun-

dering nodig, maar ook grotere aan- en afvoerpijpen voor het

water, er zal met andere bezoekersaantallen rekening moeten

worden gehouden, enzovoorts.

Toch wordt van softwaresystemen soms wel verwacht dat ze

in toepassingen worden gebruikt van een geheel andere schaal-

grootte. Dergelijke verwachtingen kunnen niet altijd worden

waargemaakt. Een televisietoestel bijvoorbeeld heeft een ge-

sloten architectuur, wat betekent dat nieuwe functionaliteiten,

geschreven in software, via de kabel kunnen worden binnenge-

haald en als die met elkaar zijn verbonden kunnen gebruikers

met elkaar communiceren.

Als dergelijke productveranderingen niet zijn voorzien en de

software-architect daarmee met zijn ontwerp geen rekening heeft

gehouden, zal het systeem niet zijn voorbereid op toekomstige

uitbreidingen. Een software-architect heeft dus ook tot taak om

zoveel mogelijk rekening te houden met toekomstige uitbreidin-

gen.

Het is natuurlijk onpraktisch om de ontwerper van een zomer-

huisje te laten werken met allerlei speci�caties die gelden voor

veel grotere gebouwen, en voor wolkenkrabber en zomerhuisje

zal niet snel een gezamenlijke architectuur te ontwerpen zijn.

Maar het zou al een hele verbetering zijn als de architectuur
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van de wolkenkrabber ook toepasbaar zou zijn voor een te ont-

werpen atgebouw, en andersom. Ook voor software geldt dat

het om allerlei redenen, waarover hieronder meer, van belang is

om bij de onderliggende architectuur rekening te houden met

toekomstige uitbreidingen en andere toepassingen.

Dit proefschrift gaat over de reconstructie van software-architecturen van

grote systemen zoals die door Philips worden ontwikkeld zoals MRI-scanners

en telefooncentrales. De software van dit soort systemen bevat miljoenen

regels code1 waarvan de eerste code vaak al vijftien jaar oud is. Er is

een groep van zo'n zestig software-ontwikkelaars nodig om het systeem te

onderhouden en uit te breiden met nieuwe functies. Die inspanning kan

aanzienlijk worden gereduceerd als software-architecturen zodanig worden

ontworpen dat ze toepassing in vele systemen mogelijk maken.

Hoofdstuk 1 gaat over het begrip software-architectuur. Daarbij gaat het

om het ontwerpen van duidelijke en eenvoudige algemene structuren die het

mogelijk maken om softwarecode te delen met andere producten. Op die

manier kan een productfamilie ontstaan. Een goed ontworpen architectuur

kan voor vele producten worden gebruikt. Het begrip software-architectuur

is overigens niet eenduidig. Er worden verschillende de�nities gehanteerd.

Een aantal de�nities worden besproken, samen met een aantal gezichts-

punten op software-architecture. Tenslotte worden een aantal doelen voor

producten besproken vanuit bedrijfsperspectief. Zo'n doel is bijvoorbeeld

dat het product snel voor de markt beschikbaar moet zijn. De bedrijfsdoe-

len bepalen uiteindelijk de eisen die aan de architectuur worden gesteld,

zoals de mogelijkheid van hergebruik. Deze eisen zijn op hun beurt weer

richtlijnen voor de architectuurpatronen.

In hoofdstuk 2 wordt een overzicht gegeven van de Software Architectuur

Reconstructie (SAR) methode. Nadat termen worden uitgelegd zoals soft-

ware architecting (de constructie van een nieuwe software-architectuur),

reverse architecting (het proces van het expliciet maken van de software-

architectuur van een bestaand systeem), en architectuurverbetering, wor-

den de basisonderdelen van de SAR-methode besproken: InfoPacks, Archi-

Spects en niveaus van software-architectuur reconstructie (SAR levels). In-

foPacks beschrijven extractie van informatie uit software. ArchiSpects be-

schrijven aspecten van software-architectuur. Voor elk architectuurgezicht-

spunt kunnen andere InfoPacks en ArchiSpects worden gede�nieerd. De

1Het afdrukken van twee miljoen regels code levert een stapel op van 300 boeken met

de omvang van van dit proefschrift.
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Architectural Views
Logical Module Code Execution Hardware

SAR levels View View View View View

Optimized

IGenerics and

Speci�cs Confor-

mance

IAspect Confor-

mance

IAspect Assign-

ment

Managed IUsage Confor-

mance

IPart-Of

ILayering Con-

formance

IDepend

IAspect Cou-

pling

IAspect Assign-

ment

Rede�ned ICohesion and

Coupling

IPart-Of

IComponent

Coupling

IDepend

ISource Code Or-

ganisation

IBuild Process

Described IUsing and Used

Interfaces

IPart-Of

IComponent De-

pendency

IDepend

ISoftware Con-

cepts Model

IFiles

Initial

Table T.1: Software-Architectuur Reconstructie

software-architectuur reconstruction levels die zijn gede�nieerd, zijn : ini-

tieel (initial), beschreven (described), opnieuw gede�nieerd (rede�ned), ge-

controleerd (managed) en geoptimaliseerd (optimized). In tabel T.1 wordt

het raamwerk van de SAR-methode (met een nadruk op de module view

en de code view) getoond. De cellen in de tabel bevatten de InfoPacks en

ArchiSpects zoals verwoord in dit proefschrift.

In hoofdstuk 3 wordt Relatie Partitie Algebra (RPA) behandeld. RPA is

een algebra, gebaseerd op verzamelingen, binaire relaties en operaties die

hierop plaats vinden. Partities, die een aparte rol spelen in deze algebra,

kunnen worden uitgedrukt in \delen-van" relaties (partof -relations). Het
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zijn vooral de speciale operaties op relaties en de partof-relaties die deze

algebra geschikt maken voor software-architectuur. Multi-relaties zijn een

uitbreiding op binaire relaties die uitstekend geschikt bleken voor architec-

tuur analyse. In de SAR-methode wordt RPA systematisch toegepast om

InfoPacks en ArchiSpects te beschrijven.

In hoofdstuk 4 wordt uitgelegd hoe een software-architectuur van een be-

staand systeem kan worden beschreven door een aantal InfoPacks en Archi-

Spects te de�ni�eren. De ArchiSpects Source Code Organisation en Build

Process behoren tot de code view en de ArchiSpects Software Concepts

Model, Component Dependency en Using and Used Interfaces behoren tot

de module view van software-architectuur. De InfoPacks die noodzakelijk

zijn om ArchiSpects te reconstrueren worden ook besproken.

In hoofdstuk 5 worden een aantal ArchiSpects beschreven die het verbeteren

(of opnieuw de�ni�eren) van een bestaande software-architectuur ondersteu-

nen. De ArchiSpects Component Coupling, Cohesion and Coupling and

Aspect Coupling worden besproken. Deze ArchiSpects kunnen door een ar-

chitect worden gebruikt om het e�ect van een bepaalde verandering in de

architectuur te analyseren.

Hoofdstuk 6 gaat over architectuurveri�catie, het proces om de implemen-

tatie te veri�eren met de gede�nieerde software-architectuur. Er worden

enkele ArchiSpects (Layering Conformance, Usage Control, Aspect Confor-

mance, en Generics and Speci�cs Conformance) besproken die bijdragen

aan het beheersen van de software-architectuur.

De dissertatie wordt afgesloten met enkele concluderende opmerkingen en

aanbevelingen voor gebruik.

De appendices bevatten extractie-, abstractie- en presentatie- programma's

die zijn gebruikt om ArchiSpects van een aantal Philips-systemen te recon-

strueren en presenteren. De laatste appendix laat een overzicht van alle

RPA-operatoren zien.
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