
Science of Computer Programming 36 (2000) 209–266
www.elsevier.nl/locate/scico

Generation of components for software renovation factories
from context-free grammars

Mark van den Brand ∗, Alex Sellink, Chris Verhoef 1

Programming Research Group, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam,
Netherlands

Abstract

We present an approach for the generation of components for a software renovation factory.
These components are generated from a contex-free grammar de�nition that recognizes the code
that has to be renovated. We generate analysis and transformation components that can be
instantiated with a speci�c transformation or analysis task. We apply our approach to COBOL
and we discuss the construction of realistic software renovation components using our approach.
c© 2000 Elsevier Science B.V. All rights reserved.

MSC: D.2.6; D.2.7; D.2.m

Keywords: Reengineering; System renovation; Restructuring; Language migration; Software
renovation factory; COBOL

1. Introduction

Software engineers are faced with serious problems when dealing with the renova-
tion of large amounts of legacy code. Manual approaches are not feasible, in general,
due to the amount of code. This makes renovation by hand unreliable if not impossi-
ble. In [43,54] we can read that two key factors drive the decision to use an external,
mass-change factory. The �rst factor is the number of lines of code to alter. If this num-
ber exceeds two million most in-house workbenches cannot handle this and a factory
must be used [43,54]. The second factor is whether there are reasonable standards for
manipulation or analysis that lend themselves to rule-based modi�cation, or identi�ca-
tion. Nowadays, it is more and more recognized that a factory-like approach to renovate

∗ Corresponding author.
E-mail addresses: markvdb@wins.uva.n1 (M. van den Brand), alex@wins.uva.n1 (A. Sellink),

x@wins.uva.n1 (C. Verhoef)
1 Supported by the Netherlands Computer Science Research Foundation (SION) with �nancial support

from the Netherlands Organization for Scienti�c Research (NWO), project Interactive tools for program
understanding, 612-33-002.

0167-6423/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0167 -6423(99)00037 -4

210 M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266

legacy code is a sensible paradigm. In [43,54] a factory is a set of tools that are owned
and operated by a vendor. The vendor’s employees operate the technology, either by
setting up the factory on-site or at a central facility. For instance in case of Year 2000
remediation, exponents of such factories are the tools that Reasoning produces [81] and
the tools that the Emendo Software Group produces [35]. Emendo was selected in 1997
and 1998 by the Gartner Group [43,54] as technology leader. Capers Jones, probably
the most frequently quoted researcher on software productivity statistics, suggests not
just that software renovation factories for Year 2000 remediation should be used, he
even proposes the use of a global network of Year 2000 repair factories, with three
(or more) Year 2000 facilities located eight time zones apart so that Year 2000 repairs
can proceed on a 24-hour-a-day basis [53, loc. cit. pp. 89, 115, and 182].
In our opinion, it is relevant to investigate how software renovation factories can be

constructed, in general. In this paper we discuss the generation of major parts of typical
components. These components should preferably be reliable, maintainable, reusable
and thus compositional, and easy to construct. Moreover, the components should be
dialect proof. Components should also be able to handle programs containing mixed
languages. From [53] we can learn that about 30% of the US Software applications
contain at least two languages. In that case many Year 2000 search engines come to
a halt [53]. In [53] the combination of COBOL and SQL is mentioned as a common
combination. We applied the component-generation technology (outside this paper) to
mixed-language applications like COBOL and SQL and=or CICS (see Section 1.1 for
details).
In our opinion, there is a need for a construction methodology for components to be

used in software renovation factories. In this paper we propose a method to generate
substantial parts of such components from a context-free grammar. Such a grammar
recognizes the code that has to be renovated. In general, it takes an e�ort to obtain
such a grammar. In [15] a method is discussed to obtain grammars from legacy code.
Fortunately, in some cases computer aided support to generate grammars can be used
[90,94]. We will show in the present paper that due to our generic approach and
the presence of a grammar, the components we develop are reliable, maintainable,
maximally reusable, and their implementation is usually measured in minutes.

1.1. Applications of our results

Although we make an e�ort of illustrating that the component-generation construction
methods satisfy the above-mentioned properties, it is di�cult to prove this. We illustrate
the component-generation technology in Section 8 to give the reader an idea of the
use of our results. We brie
y mention a few other applications that use the generic
transformation and=or analysis technology so the reader can get an even better idea of
the application range and scalability of the component-generation technology.

• In [16] an assembly line is presented that performs control-
ow normalization of
COBOL=CICS legacy systems.

M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266 211

• In [92] an assembly line is presented that transforms a faulty leap year calculation in
COBOL to a correct one. The problematic leap year calculation has been presented
in [28] and elsewhere in this special issue.

• In [93] an assembly line implementing several maintenance transformations is pre-
sented in order to restructure COBOL=SQL systems.

• In [90,94] computer aided language engineering tools are presented that support the
rapid generation of grammars needed for reengineering. Several assembly lines are
presented and an analysis and assessment tool set is available.

• In [26] cluster analysis technology is implemented to detect classes in legacy code.
Although no implementation details are mentioned in [26], personal communication
with the authors con�rmed application of the techniques presented here.

• In [27] a type inference method is implemented for COBOL.
• In [76] translations from COBOL to a data-
ow representation language are dis-
cussed.

• In [88] a complex restructuring of a COBOL=CICS system is discussed.
• In [7] a Boolean condition normalizer is discussed that has been implemented for a
reengineering company.

1.2. Organization of the paper

In Section 2 we give our viewpoint on what a software renovation factory is. In
Section 3 we discuss in detail what implementation platform we use, and we discuss
related implementation platforms that could serve the purpose of generating transforma-
tions and analyzers as well. In Section 4 we explain how we generate transformations
and analyzers in principle. In Section 5 we give an elaborate example of how to in-
stantiate generic analyzers and generic transformations generated from a given simple
grammar. In Section 6 we elaborately show how to reuse existing components. In par-
ticular, we reuse the components that we de�ned in Section 5 for a dialect that we
discuss in Section 6. In Section 7 we show that our approach is robust. We de�ne yet
another dialect of the language we used in Section 5. Then in Section 8 we will apply
our approach to COBOL in order to show that the technology that we propose scales
to real-world grammars (and realistic problems). Finally, in Section 9 we draw some
conclusions.

1.3. Related work

In [44] we can �nd a control-
ow normalization tool for COBOL74 developed using
the TAMPR system [10] – this is a general purpose program transformation system.
With the use of REFINE [81] it is also possible to develop components for software
renovation. With the TXL transformation system [22] it is also possible to construct
software renovation components. All these systems share the property that the trans-
formations are entirely coded by hand. We propose a method to generate substantial
parts of them from a given context-free grammar. One of the bene�ts of our approach

212 M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266

is that we can reuse components for di�erent dialects whereas in the above cases the
components have to be rewritten.
In attribute grammars [1] an implicit tree traversal function is present. It is com-

parable to our generated traversal functions. Since they are implicit, it is not possible
to manipulate syntax trees so it is di�cult to express program transformations using
that technology. Higher-order attribute grammars [103] is an extended form of attribute
grammars in which the traversal functions are no longer implicit. In principle, we think
that it should be possible to implement our generic approach using higher-order gram-
mars. We have not seen any publication that discusses the generic construction of
components using attribute grammars.
In the thesis of Tip [99], the generation of program analysis tools is discussed.

The emphasis is on the generation of tools for source-level debugging [98] and for
computing various types of program slices [100].
In [29], an application generator called generator of analyzers (GENOA) is pre-

sented which is a generator of analyzers (it has been applied in [30] in order to build
an application generator for the easy speci�cation of testing and analysis tools). The
accompanying language, also called GENOA, works directly on a certain parse tree
data structure for which useful operations are de�ned within the language. In this way,
it is easy to de�ne analyzers. In order to have access to the GENOA data structure,
there is a system GENII with accompanying language GENOA interface implemen-
tation (GENII) that maps the output of an arbitrary parser to the data structure used
by the GENOA system. In this way, it is possible to de�ne generic analyzers inde-
pendent of the language. When the language changes, it is only necessary to change
the GENII speci�cation. In this paper, we propose an alternative solution for dealing
with dialects. We do not need to make changes, in general, to the tools at all. We
modify the grammar. GENOA is a domain speci�c language; the word generator refers
to the fact that from a GENOA speci�cation of an analysis tool you can generate its
implementation. We generate the speci�cation of analysis and transformation compo-
nents from the speci�cation of the language for which the tools are intended. As with
GENOA, in our case, it is simple to implement analysis and transformation tools. One
of the merits of using GENOA is that it is a framework intended for reusing existing
parsers successfully. From [85], we know that reuse is a far from trivial task. A crucial
limitation of the GENOA system, is that all accesses of the parsed code are read-only.
Therefore, it is not possible, as in our case and in the case of REFINE, to implement
transformations. We have to implement parsers ourselves. This takes time and e�ort,
but using sophisticated technology, this is not too much of a problem (see [17,90,94]
for more information). An advantage of having the grammar, is that we can gear the
grammar towards reengineering, which is not possible when reusing a parser.
In [78], requirements for advanced Year 2000 maintenance tools are discussed. Re-

mediation is done using a so-called correction assistant. This assistant automatically
generates a transformation which transforms any statement into itself, but it does not
transform large structures. From an arbitrary context-free grammar, we generate all
the necessary traversal functionality that enables arbitrary identity transformations.

M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266 213

Moreover, we generate similar functionality for analysis components, and we are able
to combine both: an analysis component can serve as a condition for a transformation.
Also in [78] a generation assistant under development is mentioned. It is capable of
handling larger syntactic structures than on the statement level. In our approach, this
is already possible for both transformation and analysis functionality.
We use a generic interactive programming environment for our implementation pur-

poses. We discuss related implementation environments, like REFINE, in Section 3.3.

2. Factories

Although we agree with [43,54] that a factory is a set of tools, plus operating
personnel, plus a process for analysis or modi�cation, we use a more strict de�nition
of a software renovation factory. We restrict ourselves to the technical part of a factory.
We refer to [6] for a more organizational view on (component) factories that can be
used as complement to the technical view presented by us.
We see a factory as a set of assembly lines, an assembly line consists of a number

of consecutive components. The components themselves are implementations of condi-
tional term rewriting systems with possibly negative premises [60,37]. To understand
the contents of this paper is it not necessary to understand the mathematical details of
conditional term rewriting with negative premises. We refer to [37] for a formal treat-
ment of these issues. In this paper it su�ces to have an intuition of what a factory is.
The purpose of a software renovation factory is to handle the transformation of

massive amounts of code (see Fig. 1). First, the code is translated by a parser into an
annotated abstract syntax tree. Then the annotated abstract syntax tree is manipulated,
e.g., transformed or restructured, according to the desired renovation strategy. Finally,
an unparser translates the abstract syntax tree back to text. So, parsers, analyzers, trans-
formations, and unparsers are components of a software renovation factory. Parsing and
unparsing components can be obtained by powerful techniques: they can be generated
from the context-free grammar of the language to be parsed or unparsed. Lex and
Yacc [52,71] are well-known examples of a scanner generator and an LALR(1) parser

Fig. 1. Schematic software renovation factory.

214 M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266

Fig. 2. The three phases in a factory.

generator, respectively. We use more sophisticated technology to generate parsers. See
[17] for an overview of current parsing technology in reengineering and a comparison
with the techniques that we use. For the generation of unparsers from a context-free
grammar we refer to [18]. The primary focus of this paper is to show that it is also
possible to generate other components of a software renovation factory that are easy
to implement, reusable, and robust. They are the components that are part of assembly
lines in a software renovation factory.
If we zoom in on the middle part of Fig. 1 we end up in Fig. 2. On the parse tree

level of the software renovation factory, we can discriminate three phases. First the code
needs to be pretreated. We call this the preprocessing phase. A very common example
is to uniformize code, but many more preprocessing operations can be thought of. The
uniformization of code is also a �rst step in Sneed’s reengineering workbench [97].
Normally, we pretreat the code in order to be able to perform the main task as smooth
as possible. Then we enter the main processing phase. Usually, it is necessary to shape
up the code after the main operation. We call that postprocessing. All our examples of
assembly lines exhibit these three phases. Fortunately, many pre- and postprocessing
steps can be reused over and over again. Most notably, uniformization of code, but
there are many more examples. In each phase we can combine components. In some
cases, the order of components is irrelevant. In Fig. 2, such components are enclosed in
dotted rectangles. The �xed ordering of a number of components is called an assembly
line. Although we have three phases in a factory the assembly lines can consist of
many more components than just three as suggested by Fig. 2.

3. Implementing with the ASF+SDF Meta-Environment

This section discusses the support environment that we use to implement the gen-
eration process and the implementation of the components. We use the ASF+SDF
Meta-Environment and its supporting formalisms. We will explain the formalisms in

M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266 215

more detail so that the remainder of this paper can be fully understood. For more
information and a more elaborate treatment of the ASF+SDF Meta-Environemnt we
refer to [25,63]. The �rst chapter of the latter textbook on language prototyping con-
tains an overview of ASF+SDF [24]. We refer to [64] for an extensive user man-
ual. We �rst give a short overview in Section 3.1. Then we discuss the ASF+SDF
Meta-Environment in more detail in Section 3.2, �nally we elaborately discuss related
programming environments in Section 3.3.

3.1. Overview

ASF+SDF is a modular algebraic speci�cation formalism for the de�nition of syn-
tax and semantics of (programming) languages. It is a combination of two formalisms
ASF, Algebraic Speci�cation Formalism [8], and SDF, which stands for Syntax Def-
inition Formalism [45]. The ASF+SDF formalism is supported by an interactive pro-
gramming environment, the ASF+SDF Meta-Environment [63]. This system is called
meta-environment because it supports the design and development of programming
environments. For more information on algebraic speci�cation in general we refer to
[8,33,107].
ASF is based on the notion of a module consisting of a signature de�ning the abstract

syntax of functions and a set of conditional equations de�ning their semantics. SDF
allows the de�nition of concrete (i.e., lexical and context-free) syntax. Abstract syntax
is automatically derived from the concrete syntax rules.
ASF+SDF has been used for the formal de�nition of a variety of (programming)

languages and for the speci�cation of software engineering problems in diverse areas.
See [12,13] for details on industrial applications.
ASF+SDF speci�cations can be executed by interpreting the equations as conditional

rewrite rules or by compilation to C [61]. For more information on conditional rewrite
systems we refer to [58,66]. The conditional rewrite rules may also contain negative
conditions. See [37,60] for more information on the semantics of such systems. It is
also possible to regard the ASF+SDF speci�cation as a formal speci�cation and to
implement the described functionality in some programming language by hand.
The generic components that we discuss in this paper are generated ASF+SDF

modules. Since we use generalized LR parsing [70,82,101,102] it is possible to com-
bine grammars without losing the property that we can generate a parser for them
(the advantages of using generalized LR parsing are discussed in detail in [17]).
This implies that our grammars are modular. The modular structure of the underly-
ing context-free grammar is clearly visible in the generated components. Each module
in the context-free grammar corresponds with a module in the generated components.
Each context-free grammar rule corresponds with an equation in a generic component.
We generate so-called default equations. A default equation is applied when none
of the other equations can be applied successfully. So in our case the system will
use the generated equations by default, and hand-written equations whenever they are
applicable.

216 M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266

3.2. The ASF+SDF Meta-Environment

We discuss various aspects of the ASF+SDF Meta-Environment pointwise: the for-
malisms SDF, ASF, ASF+SDF, SEAL, and the support environment for these for-
malisms: the ASF+SDF Meta-Environment.

3.2.1. SDF
SDF is a modular speci�cation formalism in which it is possible to de�ne syntax.

It is comparable to BNF [3], but SDF is richer, in the sense that BNF does not allow
the de�nition of lexical syntax, whereas SDF does. Moreover, SDF contains modular
constructs, like imports, exports and hiding. The generation process that we describe
in this paper consists partly of a transformation from SDF to SDF. From the grammar,
de�ned in SDF we generate new syntax to be used in the generated components. We
give an example of an SDF module so that we can explain the basics of SDF. For a
full treatment of SDF we refer to [45].
In Fig. 3 we show a very simple module de�ning the LAYOUT for a certain lan-

guage. In this module we see an exports section. SDF has three types of sections:
exports, imports and hiddens sections. In Fig. 3, we only see an exports section.
It contains lexical syntax only. It describes that terms (think of terms as source
code fragments) of the (prede�ned) sort name LAYOUT consist of two %-signs fol-
lowed by anything not being a return, zero or more times, followed by a newline
(denoted \n). Similarly, the second rule states that a space or a tab or a newline
is LAYOUT.
In Fig. 4 we display the syntax for a simple langauge de�ning the syntax for some

dialect of Booleans. We depicted it to explain SDF in more detail. First we see that
it imports the Layout module. An imports section can only contain a list of mod-
ule names. An exports and hiddens section can contain various paragraphs. Both
sections may contain sorts paragraphs containing a list of sort names. An example
is sort name BOOL in the sorts paragraph. Both may contain lexical syntax para-
graphs (like we saw in Fig. 3). Both sections may also contain context-free syntax

paragraphs. Fig. 4 de�nes Tony Hoare’s symmetric syntax for conditionals using two
triangles. It de�nes the literals True and False, the Boolean connectors disjunction,

Fig. 3. Example syntax of LAYOUT.

M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266 217

Fig. 4. Example syntax of Booleans.

denoted |, and conjunction (&). The attribute {assoc} states that these operators are
associative. The negation is de�ned using a tilde-sign (~). Then the syntax of Tony’s
conditional operator is de�ned. Furthermore, we allow brackets in Booleans. The at-
tribute {bracket} indicates that the parantheses are not stored in the abstract syntax
tree. This means that expressions that are equal upon parenthesis are considered equal
during computations. Both sections may also contain a variables paragraph. We can
declare variables of any type that we need later on to de�ne the semantics of our syntax.
In Fig. 4 we specify that Bool1, Bool23, and Bool′ and such may occur as variables
of type BOOL. Finally, both sections may contain a priorities paragraph. We see an
example of this in the exports section of the Booleans module. It expresses that the
& binds stronger than the |.

3.2.2. ASF
ASF is a formalism that has su�cient expressive power to describe typechecking,

program translations, and program execution. Since the syntax for ASF is user-de�nable
(via SDF) it is not hard to read ASF equations. We give an example: in Fig. 5 we
present the semantics that we give to the Booleans (for which we speci�ed the syntax
in Figs. 3 and 4). An ASF module starts with the keyword equations. Each rule has
a tag. Then the rule follows. It is of the form s= t where s and t are terms that are
de�ned over the syntax de�ned in the SDF part. Note that all syntax used in the left-
and right-hand sides of the equations is indeed de�ned in Figs. 3 and 4. Let us take a
look at the �rst equation. This equation states that when the condition in the middle is
true, that we choose the left-side expression. The second equation gives the symmetric
case. Once we have this semantics de�ned we can express all the other well-known
operations in terms of the �rst one. Of course, this example is truly simple. In fact,
ASF is an implementation of positive=negative conditional term rewriting systems. The

218 M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266

Fig. 5. Example semantics of Booleans.

Fig. 6. Semantics of a component containing a negative condition and a default equation.

general mathematical form is as follows:

s1 ◦ t1; : : : ; sn ◦ tn
s= t

; ◦∈ {=; 6=}

For a general reference to term rewriting we refer to [66]. For more information on
conditional term rewriting we refer to [57–59,105,106] for implementations of condi-
tional rewriting. We refer to [37,60] for details on conditional rewriting with negative
premises. We give an example of the above notations in ASF.
In Fig. 6 we present a tool [90,94] from our CALE factory (CALE stands for

Computer Aided Language Engineering). It sorts BNF rules with respect to left-hand
sides. We show this component in order to explain the full syntax of ASF (for more
information on CALE tools we refer to [90,94]). We already saw that each rule has a
tag. Tags divide equations into two di�erent classes. If the tag starts with “default-”
it is a so-called default equation. In all other cases it is a non-default equation. De-
fault equations are applied only if all non-default equations fail. (Within one class the

M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266 219

choice between applicable equations is random.) We will use default equations in the
generation process later on. A conditional rule can be de�ned using the double line.
Negation is denoted in a C-like fashion (!=). Below the double line we also see user-
de�ned syntax, like with the Booleans. Important is that it is of the form s= t like in
the above mathematical formula. For a more elaborate treatment of the ASF formalism
we refer to [8,25].

3.2.3. ASF+SDF
The ASF+SDF Meta-Environment supports the combination of ASF and SDF. In

fact, the syntax and semantics that we showed separately in Figs. 4 and 5, respectively,
is contained in one window, called a module editor. In Fig. 7 we show the entire
window. We cut the window in two just for explanatory purposes. The upper-half
contains the syntax and the lower-half contains the semantics. In this way the syntax
and semantics of programming languages can be de�ned. But also generic components
that can be used in a software renovation factory. We note that on the operating system
level, the syntax part of a module is a �le with extension . syn and the ASF part is
a �le with extension . eqs. So when a module Foo is loaded in the ASF+SDF Meta-
Environment the two �les Foo.syn and Foo.eqs are loaded into a module-editor. We
create . syn and . eqs �les in the generation process for transformations and analysis
functions. For more information on ASF+SDF we refer to [64].

3.2.4. ASF+SDF Meta-Environment
In Fig. 8 we display a screen dump of the ASF+SDF Meta-Environment in

action. The upper window is the ASF+SDF Meta-Environment. You can add and delete
modules. Modules contain syntax descriptions (of languages or tools) and semantics.

Fig. 7. Example syntax and semantics of Booleans: an ASF+SDF module.

220 M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266

Fig. 8. Example of an ASF+SDF Meta-Environment session.

They can be edited via the Edit-module window. We can also open editors that un-
derstand the syntax speci�ed in a given module. For instance, the window containing
the Boolean True & True | True understands the structure of the Booleans. Note that
the window is a generated structured editor [67]. The text structure is visualised by the
so-called focus. In the example above the focus shows that the & binds stronger than
|. We pushed the Reduce button and in the lower right window we see that the result
is rewritten to True. On the background we see the module containing the syntax and
semantics of the Booleans. This module is used to reduce the Boolean expression.
For more information on the ASF+SDF Meta-Environment we refer to [63,64].

3.2.5. SEAL
In order to construct assembly lines, we combine components. We glue these com-

ponents together with a coordination language called SEAL [68]. SEAL stands for
Semantics-directed Environment Adaptation Language; it not only takes care of the
coordination but also of a graphical user interface for windows in the ASF+SDF Meta-
Environment [69]. The SEAL language enables us to add buttons to editors. With these
buttons we coordinate the application of the di�erent tools we develop. It is possible
to change the coordination run-time, and to add functionality run-time, which enables
rapid development of assembly lines.
In Fig. 9, the buttons at the left of each window are implemented using SEAL.

The front window is an editor that understands SEAL. If we press the Typecheck

button, it checks for type errors in the SEAL script. If we press the CompileAndLoad
button, LeLisp [50] source is generated that is runtime linked to the ASF+SDF Meta-
Environment, which results in the addition of buttons with the speci�ed behavior to

M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266 221

Fig. 9. Example of the use of SEAL in the ASF+SDF Meta-Environment.

the window on the background. In this way, we can runtime add or remove buttons
or we can modify their functionality. Part of the coordination script can be seen in
the front window: it describes the functionality of some Aeqs button (we will explain
these buttons later on). This part of the SEAL-script describes that we combined some
components. Using this approach we can e�ortlessly reuse components over and over
again. See [69] for a reference to SEAL and see [65] for a more elaborate discussion
of component-based software engineering in general.

3.3. Related systems

The ASF+SDF Meta-Environment is not the only system that is designed to generate
interactive programming environments. The ASF+SDF Meta-Environment is built on
top of the Centaur system [9] (see [51] for an elaborate tutorial=manual). Centaur is
a generic interactive environment. Also, for this environment there is the possibility
to specify the syntax and semantics of a programming or speci�cation language from
which a language speci�c environment is produced. The speci�cations of concrete
and abstract syntax are speci�ed in [56]. A Metal speci�cation is a set of grammar
rules, with annotations that specify what abstract syntax trees should be synthesized.
To describe semantic aspects of a programming language in the Centaur system a
speci�cation formalism called Typol [23] is used. Typol is an implementation of natural
semantics as presented in [55]. Typol speci�cations may be compiled into Prolog [21] to
be executed. For the ASF+SDF Meta-Environment there is a compiler [57] to convert
ASF+SDF speci�cations into C [61]. A formalism that is related to Metal=Typol and
the ASF+SDF formalism is OBJ3 [39]. Discussion of OBJ3 and comparisons are out of
scope for this paper. For a comparison between the OBJ3 and the ASF+SDF formalism
we refer to [34].
We recall that the Centaur system is used as the implementation platform for

the ASF+SDF Meta-Environment. In [24] we can read that the rivalry between the

222 M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266

metalanguages ASF+SDF and Metal=Typol has been a fruitful source of inspiration for
the development of the ASF+SDF Meta-Environment. Needless to say that both sys-
tems are strongly related. An important di�erence between the two approaches is that
in the ASF+SDF Meta-Environment the abstract syntax is automatically derived from
the concrete syntax and vice versa. In the case of Metal=Typol the form of the abstract
syntax tree has to be de�ned by hand, so the unparsing cannot be generated, but needs
to be speci�ed by hand. A language called PPML [77] is used for that purpose.
In [19] a tool for building application generators called Stage is discussed. In [20]

this is extended with the tools PG2 and WOODS. This e�ort has lead to a commer-
cially available tool for building application generators discussed in [95] that is called
Metatool. This tool is used in [29] to construct the GENOA=GENII system.

3.3.1. Historical remarks
Let us make a few historical remarks, to give an impression of the myriad of systems

that contributed to the current state-of-the-art in programming environment generation.
The just mentioned formalism Metal has originally been de�ned for the Mentor system
[31] (later also published in [32]). The kernel of Mentor is a syntax-directed editor, in
which every object is represented as an abstract syntax tree. It is one of the �rst syntax-
directed editors. In [56] we see that in the early eighties the Mentor system constitutes
the core of an interactive programming environment that is language independent and
has multi-formalism support. Another such system is the CEYX system [48] which was
the predecessor of the Centaur system. An early syntax-directed editor is ALOE [75]. It
evolved in the direction of an integrated programming environment [74]. Another well-
known system for the generation of full-screen syntax-directed editing is the synthesizer
generator [83] (see also [84]). In this system the goal was to also integrate additional
program analysis and translation tools. Note that in this paper we generate such analysis
and translation components. The underlying formalism of the synthesizer generator is
the use of attribute grammars. This is di�erent from the approach taken in the Mentor
system and the ASF+SDF Meta-Environment. For an elaborate comparison and survey
of Mentor, the synthesizer generator and the CEYX system we refer to [62]. For the
prehistory of the ASF+SDF Meta-Environment we refer to [47].
There are many more systems being reported on in the literature with the same goal

as the ASF+SDF Meta-Environment: generation of interactive programming environ-
ments. We mention some of them but we will not treat them here. We mention the PSG
system that produces interactive, language-speci�c programming environments from
formal language de�nitions [4]. The Gandalf system enables the semi-automatically
generation of programming environments [42]. The Pan Language-based editing and
browsing system is a multi-language window-based editing system that is fully cus-
tomizable and extensible [5]. Then we have the compiler construction system Eli,
which is an open system where it is easy to add tools or replace them; everything con-
trolled by an expert system [41]. There is the language development laboratory whose
main components are a tool for language design based on a component library and a

M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266 223

knowledge-base plus a test set generator for the generation of program examples to
test the de�ned language [86]. In [36] IPSEN, Integrated Project Support Environment,
is discussed. It uses PROGRESS, a formal language based on graph rewriting [87].

3.3.2. REFINE and ASF+SDF
Within the reengineering community we receive questions about the di�erences=simi-

larities between the REFINE language of Reasoning’s Software Re�nery tools and the
ASF+SDF Meta-Environment that supports the ASF+SDF formalism. We discuss
their relations and di�erences here. We start with some historical quotes. In an early
publication on REFINE [96] we can read:

One of the authors (G.B. Kotik) is currently with Reasoning Systems, a
company founded in 1984 in order to apply the body of basic research in knowledge-
based programming to commercial problems. Reasoning develops special purpose
knowledge-based program generators and programming environments for various do-
mains. Promising applications are in �elds where highly reusable speci�cations can
be built, where there is a great utility in developing and prototyping formal very
high-level speci�cations.

Obviously, we are dealing with a system that is related to the many systems that we
just discussed, including the ASF+SDF Meta-Environment. While Software Re�nery
is developed in a commercial environment from the beginning, the development of the
ASF+SDF Meta-Environment has been developed in an academic environment. The
o�cial beginning forms a European project called Generation of Interactive Program-
ming Environments. Let us quote from the ESPRIT 1985 Status Report [46], where
the objectives are stated (this can be considered the �rst publication discussing the
ASF+SDF Meta-Environment).

The main objective of this project is to investigate the possibilities of automati-
cally generating interactive programming environments from language speci�cations.
An interactive programming environment is here understood as a set of integrated
tools for the incremental creation, manipulation, transformation and compilation of
structured, formalized, objects such as programs in a programming language, spec-
i�cations in a speci�cation language, or formalized technical documents. Such an
interactive environment will be generated from a complete syntactic and semantic
characterization of the formal language to be used. In the proposed project, a pro-
totype system will be designed and implemented that can manipulate large formally
described objects (these descriptions may even use combinations of di�erent for-
malisms), incrementally maintain their consistency, and compile these descriptions
into executable programs.

Both systems are based on dialects of Lisp. Both systems have their roots in the
late 1970s=early 1980s. Both systems build abstract syntax trees in detail. Both systems

224 M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266

have a way to vizualize the syntactic structure in an editor. Software Re�nery uses hy-
perlinks and the ASF+SDF Meta-Environment uses a generic structured editor. But
see [40,94] for HTML support for the ASF+SDF Meta-Environment. Both systems
allow the use of concrete syntax of the parsed language in the description of the be-
havior of tools. In Software Re�nery this is a little less smooth, but its there. Both
supporting formalisms REFINE and ASF+SDF deal on an abstract level with transla-
tions and transformations. REFINE is based on set theory, combines both declarative
and imperative programming paradigms, includes transformation rules, syntax-directed
pattern matching, has higher orderness, and has traversals in the language. ASF is alge-
braic and higher orderness is not incorporated. Both languages are relatively extensive.
Some notions are more convenient in ASF and others are more convenient in RE-
FINE. Apart from that the languages are comparable. A di�erence is the user-de�nable
syntax of ASF (by SDF). In the ASF+SDF Meta-Environment we generate similar
traversals to those in Software Re�nery (see this paper). Both systems allow escapes
to the underlying Lisp system. This is more frequently found in Software Re�nery
than in the ASF+SDF Meta-Environment. A di�erence is the use of parser technol-
ogy. Re�ne=Dialect [79] uses mainly LALR(1) parser generation technology whereas
the ASF+SDF Meta-Environment uses generalized LR parser generation technology
[70,82,101,102]. Reasoning is implementing generalized LR parsing as well. Software
Re�nery has error recovery and the ASF+SDF Meta-Environment does not have that.
See [17] for an elaborate treatment of parser technology and reengineering. Reasoning
has the Re�ne=Intervista windowing toolkit to construct GUIs [80]. The ASF+SDF
Meta-Environment uses SEAL [68]. Re�ne=Intervista is low-level compared to SEAL.
In fact, it is hard to �nd anything that can be done using REFINE that cannot be

done with the ASF+SDF Meta-Environment, and vice versa. A major advantage of
REFINE for companies that there is a company behind it and a major advantage for
the research community is that behind ASF+SDF Meta-Environment there is a research
community (for instance, the source code is available).

4. Generating generic components

We discuss the various ways of constructing components for a software renovation
factory. Given a speci�c renovation problem in a speci�c language for which a compo-
nent has to be developed, several approaches are possible to construct the component.
We introduce the following abbreviations LP, LS, PP, and PS standing for language
parameterized, language speci�c, problem parameterized, and problem speci�c, re-
spectively. They all lead to a tool, see Fig. 10. The classical way of constructing a
component for a given problem in a given language is handcrafted construction of the
component, that is, the LS–PS approach. A serious problem in renovation is that every
new customer uses a new dialect so the component has to be re-implemented. A more
generic approach can solve that problem. Known generic examples are LP–PS compo-
nents: parser generators [52,71] and unparser generators [18], which take the language

M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266 225

Fig. 10. Ways to construct a tool.

Fig. 11. Generation of components for software renovation factories.

as a parameter. Examples of LP–PP components are generic component generators that
can be instantiated with a speci�c problem in a speci�c language to obtain a component
solving the speci�c problem.
The LP–PP approach to construct a component is depicted in Fig. 11. In this �g-

ure we assume the presence of input code in some input language and some given
reengineering problem, for instance, an analysis or a transformation task. The �gure
describes a method to obtain components to perform the reengineering task. First we
use a generator that takes the grammar parameter as input. This generator generates
a generic component that can be instantiated with the speci�c problem thus obtaining
the component that we need to solve the given problem. We have four grammars: one
that recognizes the input code, one that recognizes the output code, one that recognizes
both, and one that recognizes the results of an analysis. Recognition of code is ex-
pressed with the asymmetric open arrows. In our approach, a component that transforms
input code into output code should understand both grammars, in order to be able to
combine transformation components sequentially. This is expressed in Fig. 11 by the
merge operator. Note that the implementation should be able to merge grammars in a
convenient way without having reduce=reduce and shift=reduce con
icts, so Lex+Yacc
approaches are not always satisfactory (see [72] for a textbook on Lex+Yacc and
Chapter 8 for an elaborate treatment of shift=reduce and reduce=reduce con
icts and
how to solve them). We do not have these problems, since we use generalized LR

226 M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266

Fig. 12. Example of a small grammar.

parsing which handle arbitrary context-free grammars (see [17] for more information).
Thus, we obtain a merged grammar: the I=O grammar that understands both the input
and output code. Given this merged grammar a generator generates a generic code
transformer.
A component that performs an analysis should have knowledge of the input code and

the types in which the data is presented, for instance, a Boolean value or a (natural)
number. So, the analyzer takes as arguments the input grammar and the result data
type to generate the generic analysis functions. Now we come to the PP part: for a
speci�c reengineering task, say a transformation or an analysis, we can instantiate the
generic components to obtain a speci�c component that implements the reengineering
task. This instantiation consists of writing the non-predictable parts of the component.
In this way we can generate the various components that are necessary in a software
renovation factory.
Next, we will explain how the generation process works by giving a very simple

example and the output of the generation process. To that end we use the grammar of
Fig. 12. It is a very simple grammar, and it does not mean anything in particular. We
present our development environment for software renovation factories only to illustrate
the generation processes.
The symbols U, V, and W are nonterminals. In practical cases they could be Decla-

ration, Statement, or Program. In SDF we declare them in a sorts paragraph. In
fact, we can generate this sorts paragraph, using the button AddSorts. The quoted
symbols K, L, and M are literals or keywords. Practical examples of keywords are
begin, end, if or a semicolon. This example grammar uses SDF syntax. For the sake
of comparison, in BNF-style the rule is denoted as:

〈W〉 ::= K 〈U〉 L 〈V〉 M ;

The generation process consists of two parts: a part that creates new syntax, which is
a transformation from SDF to SDF, and a part that creates new behavior, or semantics
for the new syntax. The latter is a transformation from SDF to ASF. We have this
situation twice: for generic transformations and for generic analyzers. So we end up
with four buttons: Tsyn, Teqs, Asyn, and Aeqs. We will show the output of the

M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266 227

components attached to these buttons and explain the generated code. We use this
process to generate for a given grammar the traversal and analysis syntax and semantics.
In the next paragraphs we give a short characterization of the generated output of the
example grammar (Fig. 12).

4.1. Generation of transformation syntax

In order to use transformations we need to specify their syntax. We do this in a
completely structured way, so that operators in a factory know the naming conventions
after a short course. For instance, when an operator wants to de�ne a tool that adds
END-IF to COBOL 74 code to migrate it to a new dialect, then after a simple function
declaration, it is possible to use the function for each level. See Section 8.3 for details
on a tool that adds END-IF. From the grammar depicted in Fig. 12 we generate the
syntax for transformations by pressing the Tsyn button. The result is presented in
Fig. 13.
We import a module called TA-basis. In the language independent module TA-

basis some basic issues are handled. Part of the module TA-basis is depicted in
Fig. 14. In Fig. 14, we omitted those parts that are not relevant for the purpose of this
paper (denoted as [. .]). Next, we export a context-free syntax rule for each sort of
the grammar (U, V and W in the example). This syntax is used to express that some tool
is applied to some code fragment. If u is a code fragment of sort U, then t U(u) ˆ{ }

denotes that tool t is applied to u. How to compute the result is explained in a moment
(Fig. 15).
In Fig. 14 we see that TRANSFORM and ANALYSE are non-terminals as well. We recall

that in SDF it is possible to de�ne variables for each nonterminal. This is done for the
sorts TRANSFORM and ANALYSE in the variables paragraph in Fig. 14. This enables us
to reason about arbitrary terms (functionals) of sort TRANSFORM or ANALYSE. In Wile’s
calculus of abstract syntax trees [109], these functionals are called catamorphisms. An
example of a function name is: ADD-END-IF Sentence. The terminal ADD-END-IF is
de�ned by an operator in a factory to be of sort TRANSFORM. On the level of COBOL

Fig. 13. Generated generic transformation syntax from the small grammar.

228 M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266

Fig. 14. Some relevant aspects of the basic module TA-basis.

Fig. 15. Generated generic transformation semantics from the small grammar.

sentences we have generated the syntax

TRANSFORM " Sentence" "(" Sentence")ˆ{" Attr-s "}" -> Sentence

This syntax can immediately be used by the operator and the bookkeeping on de�ning
it has been done automatically. The Attr-s is a sort that can be used to put attributes
in. This can be anything, but think of results of data-
ow analysis as an example. See
Section 8.3 for more information.

4.2. Generation of transformation behavior

Now that we have the syntax at our disposal, we generate its behavior. The behavior
that we generate is a traversal of the annotated abstract syntax tree. Using the generated
syntax and semantics, we can de�ne any non-default behavior by hand.
In Fig. 15 we depict the generated ASF (see Section 3 for details on ASF). Let us

take a look at the equation that was generated. First we see the T. In the TA-basis

of Fig. 14 we can see that this is a variable of type TRANSFORM. We recall that the
variable can be instantiated with a function. T W is the top traversal function and T U

M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266 229

and T V are traversal functions for the body. Note that these expressions consist of two
di�erent tokens, displayed without any white space. White space is de�ned to be of
sort LAYOUT, which is always optional in SDF. Moreover, U1 is a variable of sort U
representing the subtree with root U and V2 is a variable of type V for the subtree V.
The expression Attr1∗ is a variable representing a list of attributes which may contain
values needed for speci�c transformations such as the introduction of new variables.
What is important to realize, is that we can substitute for the T any tool that an

operator might de�ne, for example, suppose we need a tool called foo. If we declare
foo to be of type TRANSFORM it will match the variable T of type TRANSFORM. So
we have now for foo the syntax foo U, foo V and foo W available. The function
foo W operates on expressions of sort W. Therefore, the argument of the T W is K U1

L V2 M — this is of type W. During traversal, the T W eats itself through the grammar.
The literals K, L, and M are not a�ected. For each sort we also generated variables
that we can use. U1 is a variable of sort U and V2 is of type V. We see that the T

distributes over its argument. We will return to the traversal idea itself in more detail
in Section 5. For now it is important to realize that this process is so structured that
it can be automated.

4.3. Generation of analyzer syntax

We discuss our generic analyzers. Some of it is analogous to the generation of
transformations. A generic analyzer is a catamorphism that maps a program to a �xed
output sort. An example is a pretty printer: input sort is a program, out comes plain text,
which is a �xed output sort. Another example is the cyclomatic complexity measure
[73]: in comes a routine, and a natural number is returned. In order to calculate analysis
results we need an operator that combines the partial results of a calculation, and we
need a default value. For instance, if we wish to count assignments, the default value
is zero and the operator to combine results is addition. This idea is expressed in our
generic analyzers. In Fig. 16 we see the result of pressing the Asyn button (Fig. 12)
that generates the syntax for generic analyzers.
The TA-basis module that we displayed in Fig. 14 is imported again. In that module

the sort name ANALYSE is declared. Also the sorts DATA and BIN-OP are declared. We

Fig. 16. Generated generic analyzer syntax from the small grammar.

230 M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266

can see in the context-free syntax of TA-basis that we can combine the data using
a binary operator. The {left} means that the grammar rule is left associative. We
can instantiate the generic sorts DATA and BIN-OP at wish: if we need a test, then
we can de�ne the DATA to be a Boolean and the BIN-OP a binary Boolean function.
The syntax in Fig. 16 enables us to write expressions like a U (d,o,u)ˆ{ }. This
expression denotes the application of analysis a of code fragment u, with result d if u
is a leaf, and sub-result combinator o. This is explained in more detail in Fig. 17.
We give generic analyzers two extra arguments so that an operator in the factory

can instantiate them with the desired values. Like with the transformation syntax, we
have for each sort a function symbol generated that has the sort name as a su�x in
the form of an underscore.

4.4. Generation of analyzer behavior

For the freshly generated syntax for analyzers, we generate the generic behavior.
This behavior is similar to the traversals. We show the output of pressing the Aeqs

button in Fig. 17.
The equation that has been generated from the grammar is the same as for the

transformation as it comes to the distribution part. Indeed we see that the literals K,
L and M disappeared. The o in between is a variable of type BIN-OP. The resulting
output of the generic analyzer is a generic calculation: we have generic DATA and a
generic operation BIN-OP in between. As soon as we instantiate these two we will
get an actual calculation. Here A W is the top analysis function and the others are for
the body; o is an operator variable, like +, or and; d is a variable representing some
default value, like 0 or true; the other symbols are as with the transform function. The
di�erence with the transform function is that the analyze function does not preserve
the context-free rule. Instead, all language constructions are mapped to one �xed type.
Subresults are combined with a binary operator, represented by variable o. We note
that in case of a grammar rule with only terminals at the left-hand side, the right-hand
side of the equation we generate is a default value (d).

Fig. 17. Generated generic analyzer semantics from the small grammar.

M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266 231

Remark. The above functionality has �rst been prototyped in perl [104]. When the
impact of our results became apparent, an e�cient, partly lexical implementation in
perl has been developed by Egbert-Jan van Buiten, a Ph.D. Student at the University of
Amsterdam. After that we have formally speci�ed the functionality using the ASF+SDF
Meta-Environment. The results that we discuss in this paper are based on the formal
speci�cation, but apply equally well to both perl implementations.

5. Instantiating generic components

In this section we treat a more elaborate example language that serves as a running
example. We generate its generic functionality and then we show how to instantiate
it in order to illustrate the construction of components. In Section 5.1 we introduce a
small grammar that is a dialect of a language called ZOO. Think of it as COBOL with
its myriads of dialects, but then an utterly small subset. In Section 5.2 we instantiate
two analysis components for this dialect. Finally, in Section 5.3 we elaborately discuss
the instantiation of transformations.

5.1. A small example dialect

Consider Fig. 18 containing the production rules for an arti�cial language called
Cat. It is a dialect of ZOO. As can be seen from the lexical syntax, Cat contains the
LAYOUT symbols: space, newline, and tab. Identi�ers (ID) are upper-case characters
mixed with numbers. We have expressions (EXP) of the form cat1,: : :,cat8. We
have three statements: a loop construct, an assignment construct and a conditional
construct. We can combine statements to series of statements. A series of statements is
a program. The Cat language is a dialect of ZOO. Later on we will see other dialects
of ZOO that are also named after animals. Note that the grammar de�nition is not
complete: there is, for instance, no sorts paragraph. We can generate this using the
buttons that we see in the display. Note that we now have two more buttons than in
Fig. 12: one that generates a so-called native pattern language [92] (NatPatLang), and
a button that performs all the tasks of this assembly line called ApplyAll. If we hit the
ApplyAll button, we obtain �ve windows. One containing the generated native pattern
language, one containing the syntax for generic analyzers, on for its semantics, one for
the syntax of the generic transformations, and �nally one containing the semantics of
the transformations. We only show the generated output of the Aeqs button in Fig. 19.
This is the semantics of the generic code analysers.
We see that eight ASF equations are generated. We generate for each grammar rule

one ASF equation, except for the LAYOUT production rules since this sort is not in
the abstract syntax tree to be analyzed. Consider, for instance equation [default-

6]. Its left-hand side consists of the function name A STAT and the three arguments,
the data variable (called d here), the operator variable (called o), and the assignment
statement ID1 := EXP2. The variable ID1 represents any identi�er in the Cat language

232 M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266

Fig. 18. Cat: a dialect of ZOO.

Fig. 19. Generated generic analyser semantics for the Cat language.

and the variable EXP2 represents any Cat expression. We generate these variables in
the native pattern language. Discussion of native patterns is out of scope for this paper
but for a detailed treatment we refer to [92]. For now it su�ces to think of native
patterns as code fragments with variables in them for matching. The non-terminals in
the assignment statement are translated to function calls in the right-hand side of the
equation. This right-hand side consists of a function applied to the left-hand side of
the assignment, a function applied to the right-hand side of the assignment, and the
binary operator variable o in between them. As we can see, this is the generic set-up
of any analysis tool that combines the results on individual parts of a program into

M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266 233

one generic calculation. In the next section we show how to obtain actual components
from this generic one.

5.2. Analyzer examples

The construction of components performing reengineering tasks is rather straightfor-
ward when using our approach. First we load the �ve generated �les into the ASF+SDF
Meta-Environment. Then we can make components by giving non-default behavior for
equations that are generated and instantiating the variables d and o in the generated
functions. We will show this using the generated Cat analyzer.
Our �rst target is to construct a component for the Cat language that counts the

number of assignment statements in the code. This means that we present an alternative
to the above discussed equation [default-6] so that the default equation will not be
used. Note that [default-6] is responsible for the generic analysis of assignments.
In Fig. 20 we depicted the assignment counter component. We baptized it AssCnt.
We explain this tool. In the upper part of the module window we de�ned the syntax

of this tool. We imported a language independent module called Tool-basis so that
the generated generic transformations and analyzers are known to the tool. This Tool-
basis imports the TA-basis, which imports the native pattern language. Everything
that is relevant to the tool is known by this single import of the Tool-basis. We
state that AssCnt is an analyzer, by declaring it being of the sort ANALYSE. We also
de�ne a function asscnt, that only takes a ZOO-term as single argument. This way
we can specify the operator (+) and the default value (0), that are needed to give
AssCnt the required behavior, in a separate equation (equation [0]) and call asscnt,
instead of AssCnt, without reiteration of the operator and default value each time we
call the assignment counter. Function AssCnt ZOO is generated, using button Asyn. For
the default value and the operator we initialize now default value zero and operator
plus. Once we have done this we can further use the variables d and o since they

Fig. 20. Implementation of the assignment counter.

234 M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266

Fig. 21. An example Cat program.

Fig. 22. The �rst analysis step.

will match the 0 and + because of equation [0]. Then in equation [1] we provide an
alternative to equation [default-6]: we state that once we encounter some arbitrary
assignment statement, it should be replaced by the number 1. Of course, this is an
arti�cal example, but it shows exactly what has to be done in order to construct an
actual component.
Next, we discuss the execution of the assignment counter on a simple Cat program.

The program is displayed in Fig. 21. Note that this �gure contains a structured editor
which is generated on the
y from the Cat grammar [67]. The editor contains three
buttons, corresponding to the three example components we are going to implement.
A �rst button is an analyzer to show the reader how to implement it, a second analyzer
to show that the same generic analyzers is used by as many analyzers as needed. The
third is a transformation in order to illustrate how they are instantiated. For now, we
explain the �rst button, which is the assignment counter.
We discuss the behavior using parse trees representing the simple program so that

the reader can easily understand what happens during execution of the component. First
the concrete syntax is parsed according to the Cat grammar. This yields the parse tree
depicted in Fig. 22. We use a box around a sort name to indicate that the traversal of
the tree is at that point. So in the beginning we are at the top of the tree. In Fig. 23

M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266 235

Fig. 23. The second analysis step.

Fig. 24. The third analysis step.

Fig. 25. The fourth analysis step.

equation [default-5] removes the literals while, do, od, it distributes to the body
of the while and it puts an operator + in between. In Fig. 24 we discuss two steps:
equation [default-3] distributes from the SERIES level to the STAT level. Equation
[default-1] replaces the expression cat1 by the default value 0. At the appropriate
locations the plus signs are put in place. Then in Fig. 25 the if statement is traversed

236 M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266

Fig. 26. The last analysis step.

Fig. 27. Implementation of the variable lister. The Cat program and the results of pressing �rst two buttons.

using equation [default-7]. The literals if, then, else, fi are removed. The sort
name STAT is replaced by the sum operator and we distribute over the body of the if.
Note that this includes the Boolean condition as well. In Fig. 26 equation [default-1]
replaces the expression cat2 by the default value 0. Finally, we have a situation that
not only the default equations matches, but also equation [1] that we de�ned in the
assignment statement counter (see Fig. 20). It is used twice to replace two matching
patterns with the number 1. After normalizing this reducible expression, we obtain 2

as a result. This is exactly the output of the assignment statement counter tool that we
implemented. The semantics of + is speci�ed in ASF and hence computation of the
sums (0+(0+(1+1))) are carried out as part of the reduction process (see Fig. 27).
We can use the same generic analyzer for as many analysis components as we

need. The reason for this is that the generic functions use the catamorphisms: A is a

M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266 237

variable of type ANALYSE so any instantiation will �t. In order to show this we have
built another component for Cat: it is a tool that provides a list of the used variables
in Cat programs. In Fig. 27 we give an overview: the VarList tool, the example
program and the output of the AssCnt and VarList buttons in separate windows. We
see that the structure of the variable listing component is exactly the same as the �rst
one. The instantiation is speci�ed in equation [0]: for the default value we have the
empty word, represented by a white space in Fig. 27. The operator is concatenation.
We have chosen the circum
ex notation, but this could have been anything else. Then
in equation [1] we provide alternative behavior for equation [default-0] of Fig. 19.
In this equation we see two functions: id and item. We explain them. In fact, for
every lexically de�ned sort (so also ID and ITEM) the ASF+SDF Meta-Environment
generates a corresponding function with the sort name in lower case characters. Such a
function has a prede�ned sort CHAR∗ as domain and the range is the lexically de�ned
sort. So in the above cases two functions are generated under the surface:

"id" "(" CHAR∗ ")" -> ID

"item" "(" CHAR∗ ")" -> ITEM

In the parse tree the lexical syntax form the leaves. But also the leaves have structure,
and sometimes it is desirable to manipulate the lexical structure just as we wish to
manipulate the context-free structure. The lexical access functions serve the purpose of
being able to do this. So, for instance, multiplying by ten can be implemented in the
ASF+SDF Meta-Environment by using these generated functions by concatenating a
zero to the end of a number. In the example, the lexical access functions are used to
carry out a type conversion (from ID to ITEM).

5.3. A transformation example

Now we discuss a transformation to explain the instantiation of the generic transfor-
mations. We depict the result of pressing the Teqs button (Fig. 18) for the Cat dialect
in Fig. 28. We see that eight equations are generated. They implement the complete
traversal functionality for Cat programs.
We implemented a tool that transforms an arbitrary assignment statement beginning

with D := into F := and that transforms each identi�er E into the identi�er G. So we
see that we transform on two levels: the assignment statement level and the identi�er
level. Of course this is an arti�cial tool. We present it here to explain the way the
transformation components work. See Fig. 29 for the complete tool speci�cation. We
use the same example program of Fig. 21 to explain this so-called DE2FG tool. We
display the example program plus its output of the DE2FG component in Fig. 30.
The syntax of transformation components is like the analyzers that we already dis-

cussed, only simpler: it is not necessary to initialize a transformation with default
values. For convenience’s sake we implemented the syntax of transformations identical
to that of analyzers. So we have an extra function de2fg without underscores for usage

238 M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266

Fig. 28. Generated generic transformation semantics for the Cat language.

Fig. 29. Implementation of the DE2FG component.

Fig. 30. Original Cat program and the output of the DE2FG component.

M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266 239

Fig. 31. The second transformation step.

Fig. 32. The third transformation step.

in the outside world. The semantics of DE2FG is as follows. In equation [1] we have
an alternative equation to equation [default-0] on the identi�er level. We stated
that when we �nd an identi�er named E we rename it to G. In equation [2] (on the
statement level), we deviate from the default traversals for assignment statements that
start with an identi�er D. This equation transforms each D occurring in the left-hand
side of an assignment to an F.
Next we explain, using the tree representation that we saw before, the execution of

the DE2FG component for the simple example program. Fig. 22 is the �rst step for
our transformation. We are at the top of the tree and now we start traversing the tree
with the DE2FG tool. In Fig. 31 we see that not much happens in the tree: there is
only distribution over the while performed by equation [default-5] (observe that
the terminals are not removed during transformations). We move to Fig. 32: on the
expression cat1 nothing happens so that part is �nished using eqation [default-1].
With equation [default-3] we distribute from the SERIES to STAT level. Then in
Fig. 33 we distribute through the body of the if statement using equation [default-

7]. In Fig. 34 we arrive at a point where not only default equations match, but also
a hand written one: equation [2] depicted in Fig. 29. Since the latter does not have
default status, it will be applied. We see that the D := cat3 is changed into F := cat3.

240 M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266

Fig. 33. The fourth transformation step.

Fig. 34. The �fth transformation step.

Since our handcrafted equation does not �t the other assignment it will be treated with
equation [default-6]. Using equation [default-1] the expression cat2 is traversed
without a change. Then our handwritten equation [1] is applied in Fig. 35 in order
to rename E to a G. With default equation [default-1] we traverse through the EXP
(representing cat4) and we are done.
We have explained what happens when our architecture is used to implement trans-

formations and analysis functions, we will see in the next section how we can reuse
components.

6. Reusing generic components

An, in our opinion, very important consequence of the LP–PP approach that we
discussed in Section 4 is that the generated components should be maximally reusable
and thus easily maintainable. We sketched the situation in Fig. 36. In Section 4 we
have seen that components consist of a shared part that is generated from a grammar G
containing the generic rules. In Section 5 we saw that the handcrafted parts C1; : : : ; Cn
containing problem speci�c rules are usually small. Suppose that we want to reuse

M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266 241

Fig. 35. The �nal transformation step.

Fig. 36. Maximal reuse of actual components.

the components C1; : : : ; Cn in a di�erent dialect G′. Then we usually only have to
regenerate the generated part and we do not have to modify any of the handcrafted
parts. The purpose of this section is to illustrate this.
Before we continue, let us �rst give a real-world example to make this apparent.

Suppose we have a renovation factory to migrate certain company speci�c COBOL 74
code to a dialect of COBOL 85. Suppose that for another company we have the same
problem to solve. The new customer has another COBOL 74 dialect. Suppose, for the
argument, that in the PROCEDURE DIVISION a DECLARATIVES section has been added.
We extend the grammar G with this knowledge thus obtaining G′. Then we regenerate
the generic part of the components. Since we are sure that the components C1; : : : ; Cn
do not a�ect the DECLARATIVES keyword (for, it was not even in the grammar G) they
do not need to be adapted. They use the newly generated functions and the original
handcrafted parts and work now on the new grammar. It is not necessary to make a
single change to the components. Of course, the second grammar G′ is an extension
of the �rst grammar, so the reader might get the impression that our approach only
works for extensions. In fact, we use this simple example to give the reader a �rst
impression. In a more elaborate example we will show that reuse is not limited to the
extension case. In fact, we discuss a dialect that is neither an extension nor a subset:
both dialects share just one production rule.

242 M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266

Fig. 37. Dog: another ZOO dialect.

We de�ne a dialect of ZOO, called Dog for which we reuse the components that we
implemented for the Cat dialect of ZOO. It turns out that we can completely reuse any
component as long as the grammar of the new language does not a�ect the part of the
original grammar on which the component is working. Let us stress that although this
example is arti�cial, we applied the discussed approach successfully to the myriad of
dialects of COBOL. We depict the grammar of Dog in Fig. 37.
Our de�nition of a dialect is that both grammars should have at least one production

rule in common. Note that only the production rule

ID " := " EXP -> STAT

is the same both in Cat and Dog. See Fig. 18 for the grammar of Cat. Although the
sorts ID, EXP, STAT occur in both languages, they are not the same. In fact, we have
other LAYOUT (no tabs allowed), di�erent identi�ers (no numbers allowed), disjoint
expressions (dog1,: : :,dog8 instead of cat1,: : :,cat8), di�erent statements (no if,
no while but print and foreach), and no series of statements separated by a semi-
colon, but sentences ending in a period. Since the grammars for Cat and Dog share
one production rule we still call Dog and Cat dialects of ZOO.
We press the button ApplyAll (see Fig. 37) for the Dog grammar, in order to

generate the syntax and semantics of the new generic components plus the new native
pattern language. We load the obtained modules in the ASF+SDF Meta-Environment.
Since we have attached buttons for the components AssCnt, VarList and DE2FG to
the editor, the components that we just constructed are being loaded when we open
an editor for a Dog program. We can reuse all components originally implemented
for Cat programs, for the Dog dialect without a single change. This is possible since
the grammar of Dog does not a�ect the handwritten part of Cat on which the three
components are working. Of course, other parts di�er. This is not a problem since
for the changed parts we generated the new behavior for the generic components.
We displayed the generated output of the Aeqs button for Dog in Fig. 38. We show

M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266 243

Fig. 38. Generated generic analyser semantics for the Dog language.

Fig. 39. An example Dog program.

with the example program in Fig. 39 what happens, so that the reader can check our
claims.
Let us discuss the traversal of the little Dog program in the same way as we did

for the simple Cat program (only shorter). We will show that the AssCnt button will
print the number 2 since there are two assignments in the Dog program. We depicted
the parse tree in Fig. 40. The program is just a foreach sentence. So, only equa-
tion [default-7] of Fig. 38 applies, and its e�ect is that the keywords foreach,
to, and do are removed, while the generic analysis functions now apply to the level
below. We have now four positions where equations �t: ID, EXP, another EXP and the
second level SENT. Those cases are dealt with by the following equations: equation
[default-1] for the ID representing D; two times equation [default-0] for dog1
and dog2; and equation [default-4] for the sentence that is in the foreach. The
�rst three applications result in a default value zero combined using plus operators.

244 M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266

Fig. 40. Parse tree of the Dog program.

The remaining application distributes over the sentence. So now equation [default-4]
applies and we reached the left-�rst STAT in Fig. 40. Furthermore, we are at the
third SENT. By two more applications of equation [default-4] we end up in
the situation that we only have to deal with the three STAT parts in the �gure. On
the �rst two the nondefault equation [1] of the assignment counter that we depicted in
Fig. 20 applies. So at those two positions the number 1 is substituted for the assign-
ment. On the last STAT the default equation that we generated for Dog applies: equation
[default-6]. So the print keyword is removed and for the EXP representing dog5

a zero is substituted. The resulting term is a calculation that evaluates to 2. We can do
the same for the VarList and the DE2FG components. We leave this as an exercise
for the reader.
Although this example is quite arti�cial, it clearly shows that when dealing with

substantially di�erent dialects of a language, we can still reuse components that have
handcrafted parts on shared constructions in a black box fashion: no change of the
component is necessary. In the every-day-practice of reengineering COBOL with its
extensions, like CICS and=or SQL we use this technology fruitfully. Once we con-
structed a tool for a customer using a certain dialect, we can reuse the components
e�ortlessly for other dialects in other projects. As a consequence, we have experienced
that our renovation components are insensitive to dialects. Software renovation factories
that are not addressing dialects issue somehow, are likely to run into huge grammar
maintenance problems. See [17] for more information.

7. Robustness of generic components

In this section we give an idea of the robustness of our components. Note that the
components that we have seen thus far could – at �rst glance – easily be implemented

M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266 245

Fig. 41. Rat: yet another ZOO dialect.

using simple lexical scanning tools. In reality, lexical tools break down immediately
when applied to real-world cases (see Section 8.1 for elaborate details on the pitfalls
of lexical tools). In order to show the robustness, we have implemented yet another
dialect of ZOO that is called Rat, it is similar to Cat. The purpose of the Rat example
is that it is no longer possible to use lexical scanning tools for Rat programs, whereas
we can reuse the three components (originally implemented for Cat) without a single
change. We observed during several demonstrations of our components that humans
have trouble parsing Rat programs. We depict the Rat grammar in Fig. 41.
The LAYOUT is similar to the LAYOUT in Cat. The identi�ers may contain a colon and

an equality sign. We have only one identi�er. It looks like an assignment: Example :=
Tricky. We have BLOCK structures in Rat, consisting of STATs that are separated by
the := separator. Furthermore, we have the same rule for the assignment as with Cat

and Dog. So also here the intersection of the two grammars as minimal as with Cat

and Dog. We do have a while statement and a conditional statement, but with BLOCKs
instead of SERIES. Of course, this language is beyond zoo – it is just there to make
the point of robustness.
We push the ApplyAll button (see Fig. 41) and we load the new dialect of ZOO in

the ASF+SDF Meta-Environment. We note that the ASF+SDF Meta-Environment has
no problems with the Rat grammar: on the
y a parser is generated and a structured
editor, etc. We display the outcome of the Aeqs button in Fig. 42 so that the reader
can inspect the generated generic analysis equations.
We open an editor containing a Rat program (Fig. 43). Since we made buttons for

the three components, they are automatically loaded. The purpose of this dialect is
to show that although it becomes quite di�cult to count the assignment statements,
the components that we originally developed for Cat can be reused without a single
change. Note that the DE2FG component is the identity on the example Rat program.
We have made a Rat program that is not easy to parse (for humans), and for which

a simple lexical tool will most certainly break down. For instance, the Unix command

grep := Rat.trm | wc -l

246 M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266

Fig. 42. Generated generic analyser semantics for the Rat language.

Fig. 43. An example Rat program and the results pressing the �rst two buttons.

returns 10. Similar commands return correct values for the other example programs
(see Figs. 21 and 39). We display the program plus the results of the components
AssCnt and VarList in Fig. 43. We see that the result of the AssCnt button yields 4.
Let us analyze the Rat program and conclude that our AssCnt component is returning
the correct answer.
The reason that it is di�cult for humans and lexical tools to count the number

of assignment statements is that we used the := token in many di�erent contexts.
Therefore, we depicted in Fig. 44 the parse tree of the Rat program. We abbreviated
Example:=Tricky to e:=t. We discuss the traversal of the AssCnt component. Note
that it uses the generated analysis equations from the Rat grammar (see Fig. 42) plus
the equations depicted in Fig. 20. Since the program is a simple if we start with
equation [default-7]. It will remove the terminals (if, then, else, and fi). Then

M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266 247

Fig. 44. Parse tree of the Rat program.

it adds the results of the body of the if: the EXP, and two BLOCKs. The EXP is
replaced by zero due to equation [default-1]. The two BLOCKs are traversed with
[default-4] and [default-3], respectively. Then we enter the left-�rst STAT and
equation [1] of the AssCnt component applies: a 1 is the replacement. The BLOCK

is traversed using a default equation and we enter the second STAT, which is also
replaced by 1 by equation [1] of the AssCnt component. In the right-hand side of
Fig. 44 we enter a while statement. Using equation [default-6] we throw away the
terminals and enter the body of the while. As with the if, the EXP is replaced by 0
and the two STATs are replaced by a 1 because of the non-default equation [1] of the
assignment counter. The resulting term evaluates to 4.
The other components also work for the Rat language. So, we see that although it

becomes quite complex to analyze the program using lexical techniques, the approach
that we propose in this paper is not only easy and reusable, but also robust.

8. Applications to COBOL

We applied our approach to construct reengineering components for various COBOL
dialects. Our COBOL grammar is based on legacy code, see [15] for more details. We
applied the entire generation process to this 700 production rule COBOL grammar,
and used the generated analysis and transformation functionality to implement a wide
variety of COBOL renovation components. In Section 1.1 we give pointers to many
of these components.
As an illustration we discuss in this paper a number of real-life components that are

useful in restructuring COBOL code and we discuss components to migrate COBOL
74 code to COBOL 85 code. So, we distinguish components to analyze, components to
restructure, and components to migrate. We use analysis components to decide whether
or not certain migration or restructuring components should be activated, e.g., if the

248 M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266

COBOL 74 special register CURRENT-DATE does not appear in original code, it is not
necessary to perform a CURRENT-DATE transformation. What all these components have
in common is that they are generated and that their speci�cation is straightforward using
the methods discussed in Section 5. The e�ort to construct them is usually measured
in minutes. Moreover, they are maximally reusable, and robust.
In Section 8.1 we brie
y discuss the danger of underestimating simple transformation

tasks. Once we have an idea of these dangers, we discuss in Section 8.2 the construc-
tion of two components using the implementation strategy that we propose in this
paper. In Section 8.3 we describe a more sophisticated restructuring which inserts the
missing explicit scope terminators for conditional constructs in COBOL code. In Sec-
tion 8.4 a migration component which deals with the CURRENT-DATE transformation is
discussed.

8.1. Simple tasks do not imply simple tools

In this section we explain that simple tasks generally cannot be implemented in a
simple way using simple tools. With simple tools we mean lexical tools or text editors.
To explain this, we give an example of a simple task and we review what happens
when we apply simple tools to it.
Suppose we have the simple task of removing the words UPON CONSOLE from the

COBOL DISPLAY statement in a complete COBOL system. This can be implemented
in a one-liner using our approach. Of course, we need the grammar, a pretty printer,
the generic transformations, we need to pre and postprocess the COBOL code. So
one could argue that this can be done more easily and cheaper using a simple lexical
tool, or even using a text editor macro. For, we only have to remove the words UPON
CONSOLE in code like:

DISPLAY ‘** BEGIN PROGRAM’ UPON CONSOLE.

In fact, we carried out this task (among others) for a customer on a COBOL=SQL
system using our approach. We will show in this section some anonymized code frag-
ments of this system. On their COBOL=SQL system we applied the following command
that removes the UPON CONSOLE from the system:

perl -p -e "s/UPON CONSOLE//g" * | less
to show the danger of such careless operations. This perl command [104] shows the
result of removing the words UPON CONSOLE in all the �les of the system. This is a
typical simple tool: it is a lexical tool, it is a one-liner, and there is no need to do
anything fancy with the code to get things going. Application of this command to the
system has a devastating e�ect. The result of the above command leads to a system
that is not at all executable anymore. The reason is that each line of this system has
trailing comments, like in this line:

00188 DB002-002-XXX UPON CONSOLE XXXXXXXX

M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266 249

So the line is transformed into:

00188 DB002-002-XXX XXXXXXXX

The name of the �le (XXXXXXXX) which �rst was comment is turned into code by
the simple tool. The system will not compile anymore. In order to solve this we can
invoke another perl command that replaces UPON CONSOLE by spaces. But suppose
that there are two spaces between UPON and CONSOLE, then we need an additional
command. As we can see, this simple tool breaks down immediately. Whatever the
next try will be, in the end it will boil down to a form of preprocessing the system
code. So let us suppose that we have preprocessed the code so that trailing comments
are not a problem. For preprocessing COBOL code we refer to [15] where we discuss
how to obtain a COBOL grammar for reengineering purposes.
Let us look at the next problem. In some of the �les the UPON CONSOLE is already

removed. This is indicated in the �les as follows:

00017 * - UPON CONSOLE REMOVED

which is transformed by a simple tool into:

00017 * - REMOVED

It is not a good idea to remove comments while restructuring. So, the simple tool
needs modi�cation to prevent changing comments. We have at least two
avors for
comments (using a * or a / in the seventh column) so the tool gets more complicated.
Now suppose we have solved that also. Let us look at the next problem.

00308 IF OKAY

00309 PERFORM READ-CARD

00310 IF AVAILABLE

00311 PERFORM INITIALIZE-INPUT

00312 ELSE

00313 DISPLAY ’0I120 NOT AVAILABLE’

00314 UPON CONSOLE.

The latter UPON CONSOLE will be removed and the result is a separator period that
ends the nested IF on a single line:

00308 IF OKAY

00309 PERFORM READ-CARD

00310 IF AVAILABLE

00311 PERFORM INITIALIZE-INPUT

00312 ELSE

00313 DISPLAY ’0I120 NOT AVAILABLE’

00314 .

This is not in compliance with the coding style of the company. Moreover, loose
separator periods are a source of errors. So the simple tool needs to be modi�ed to

250 M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266

take care of this issue: it should put the separator period directly after the display
statement. As we can see, the simple tool is no longer simple. A variant of the above
problem is present in the code below:

00230 IF XXX-XXXXX = ’1’

00231 DISPLAY ’***’

00232 UPON CONSOLE

00233 DISPLAY ’** PROGRAM XXX **’

00234 UPON CONSOLE

00235 DISPLAY ’** BATCH XXX IS OKAY **’

00236 UPON CONSOLE

00237 DISPLAY ’***’

00238 UPON CONSOLE

00239 CALL ’XXXXX’.

The simple tool will replace this with:

00230 IF XXX-XXXXX = ’1’

00231 DISPLAY ’***’

00232

00233 DISPLAY ’** PROGRAM XXX **’

00234

00235 DISPLAY ’** BATCH XXX IS OKAY **’

00236

00237 DISPLAY ’***’

00238

00239 CALL ’XXXXX’.

Also this is not in compliance with coding styles of the company. The empty lines
should be removed. So the simple tool needs to take care of this as well. Another
problem occurs when the following code is changed:

00820 DISPLAY XRST-MSG-XXXX UPON CONSOLE.
00821 DISPLAY XRST-MSG UPON CONSOLE.
00822 DISPLAY XRST-MSG-XXXX UPON CONSOLE.

This results in:

00820 DISPLAY XRST-MSG-XXXX .
00821 DISPLAY XRST-MSG .
00822 DISPLAY XRST-MSG-XXXX .

Again, this is not in compliance with coding style of the company. So this should
be solved as well. As we can see, simple tools turn rapidly into very complicated
tools, containing preprocessing, pretty printing, grammar knowledge and such in an
ad hoc way. As soon as the next ‘simple’ task needs to be performed a lot of
(other) problems need to be solved in the next tool to implement the so-called simple
functionality.

M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266 251

It is a better idea to have a structured approach towards transformations, even the
ones that look deceptively simple at �rst sight. We argue that there is no such thing
as a simple tool that is able to perform a system-wide transformation in a controlled
way. We note that simple maintenance changes are underestimated in general: in [38]
we can read that research at a software maintenance organization pointed out that 55%
of one-line changes were in error before code reviews were introduced. The belief that
a change will be easy to do correctly makes it less likely that the change will be done
correctly [108, p. 236].

8.2. Two simple components

Using the architecture we developed, tasks that are simple at �rst sight can indeed
be carried out successfully by components that are easy to build. Implementation often
takes no more than a few minutes. Using our architecture, the transformation to remove
an UPON CONSOLE message is indeed implemented as a one-liner. We discuss two com-
ponents: a restructuring component and a migration component. The �rst component
restructures a MOVE CORR statement with more than one receiving �eld into separate
MOVE CORR statements containing the OS=VS COBOL statement connector THEN. It
takes one equation by hand to construct this component. The other functions have
default behaviour so the generated part takes care of that.
In Fig. 45 we display the mct component; mct stands for MOVE CORR transformation.

B-exp stands for basic expression which can be a variable, a string, a literal, etc. Data-
name stands for a variable name. From here onwards -p after a variable means one or
more occurrences of it.
Only at the statement level (Stat) we want special behavior: a MOVE CORR with one

or more Data-names should be changed into a MOVE CORR with statement connectors
THEN. This is recursively de�ned in equation [1]. In Fig. 46 we give a simple example

Fig. 45. Implementation of the mct component.

252 M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266

Fig. 46. The original MCT-DEMO program.

Fig. 47. The MCT-DEMO program processed by mct.

program called MCT-DEMO. The buttons at the left-hand part of the window correspond
to components we used.
The code is very simple, and the PROCEDURE DIVISION contains one paragraph,

with one sentence. When we press the mct button, we obtain the desired output. We
depict this in Fig. 47. As we can see, the compound sentence is divided into parts with
THEN statement connectors.
Next, we discuss a component that migrates the THEN statement connector (COBOL

74 speci�c) into multiple statements. In COBOL=370 (a COBOL 85 dialect) THEN as
a statement connector is obsolete. We have to change three equations by hand.
The abbreviation rth stands for remove THEN. Equations [1-3] (see Fig. 48) treat

all the di�erent cases of occurrences of THEN as a statement connector: at the beginning
of a sentence [1] and at the end of a sentence [2]. Equation [3] takes care of the
THEN inside IF-constructions. Note that rth does not remove the THEN which is part
of an IF statement. We mention for the sake of completeness that the context-free
grammar rule for THEN on the Stat level in SDF is:

Stat "THEN" Stat -> Stat {right}

where {right} indicates that the binary statement connector THEN is right associative.
Therefore, it is not necessary to process the Stat1 subtree in the right-hand sides.

M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266 253

Fig. 48. Implementation of the rth component.

Fig. 49. The MCT-DEMO program processed by mct and rth.

Recursively, the statements which form a sentence or a list of statements are processed
and if a THEN connector is found it is removed. We press the rth button in Fig. 47
and we obtain the result in Fig. 49. We explain why it is useful to transform and
migrate in this way.
Pressing the rth button removes the THEN statement connector. Now we explain

why we do these things in small steps. First, mct transforms the COBOL 74 code
into COBOL 74 code with a statement connector. Then rth removes the statement
connectors. We use an extra phase because we want to keep components as small
as possible. It is possible to equip mct with the extra functionality so it could make
from one statement an arbitrary number of statements, which is in this example from
one to three, however this would make the component more complicated. In prac-
tice, transformations from n to m statements often occur. Therefore, we perform such
transformations in two phases: �rst we use THEN as a statement connector to keep the
number of statements constant and in the end we use the rth transformation to remove
the connectors. Another example of the use of rth can be found in Section 8.4; in that
example we use rth to transform one statement into two. In fact, what we see here is

254 M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266

a tiny renovation assembly line in a renovation factory. Since the purpose of this paper
is not to explain renovation problems but to explain how we implement components for
renovation factories to solve such problems we will not dive into the very important
subject of assembly lines. For more details on assembly lines we refer to some of the
papers mentioned in Section 1.1. Apart from that, it is not a new insight that it is better
to have many small understandable steps rather than a large single transformation. In
[11] this approach is also advocated and applied.

8.3. A restructuring component

Transformations that are more complex than the one we treated above are, for in-
stance, implicit to explicit scope terminating transformations in COBOL. In COBOL
74 dialects there is, for instance, no way to explicitly terminate an IF statement. A
separator period (.) terminates all open IF clauses. When we have nested IF state-
ments an ELSE closes a higher IF clause. Note that a separator period is not possible
in nested IF statements since that would close all open IF statements. Already in 1978
the Codasyl COBOL committee announced that explicit scope terminators should be
included in COBOL to support structured programming [2, loc. cit. p. XVII-7] and
this has been e�ectuated in the COBOL 85 standard. Thus, in COBOL 85 dialects an
explicit scope terminator END–IF has been introduced. Although the END–IF is optional
in COBOL 85 dialects, much of the company code that we have seen uses this feature
and abandons the implicit termination options since it is error prone.
There are not only END–IF terminators but also, e.g., END–READ, END–STRING, and

END–WRITE scope terminators in COBOL 85 dialects. We will discuss the construc-
tion of a restructuring component that transforms the implicit scope terminators for
conditionals into an END–IF. We note that other implicit to explicit scope termination
components are constructed analogously, but simpler since their grammar is simpler.
Typically, those components are one-liners using our approach.
First, we discuss a fragment of the COBOL grammar in SDF. These grammar

rules recognize COBOL 74 programs without scope terminators as well as COBOL
85 programs with or without scope terminators (this is an example of an I=O grammar
depicted in Fig. 11). The grammar of the conditionals is rather complicated, due to the
design decision that COBOL should resemble natural language. We recall the scope
delimiting rules from the ANSI Standard [2]: The scope of the IF statement may be
terminated by any of the following:

a. An END–IF phrase at the same level of nesting.
b. If nested, by an ELSE phrase associated with an IF statement at a higher level of
nesting.

c. A separator period.

We have expressed the above rules in our context-free grammar of COBOL. Let us
�rst explain that conditional expressions in COBOL 85 dialects come in three
avors:

M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266 255

Fig. 50. The context-free grammar of the COBOL IF.

the good, the bad, and the ugly. The good ones use the explicit scope terminator END–
IF (rule a). The bad ones come in nested conditional COBOL constructs and seem,
due to the nature of the implicit scope termination rules, to be incomplete (rule b).
The expression IF L-exp Stat1 ELSE Stat2 is an example of a bad conditional.
The ugly ones are terminated with a separator period (rule c).
We explain the grammar fragment we displayed in Fig. 50. Since also normal state-

ments can occur in the body of an IF statement, we �rst created a non-terminal called
Cond-body in which those statements occur, possibly ended by a bad conditional
(called Bad-cond). Then we are able to de�ne what a Bad-cond is: an IF statement
that is not explicitly terminated and that can contain such not terminated IF statements
as well. Then we say that with the addition of an END–IF we can turn an incomplete
IF statement into a complete Statement, called Stat. Finally, we express in the last
two rules how to complete an IF with the addition of a separator period. Let us recall
that a COBOL sentence (Sent) is one or more statements followed by a separator
period. Note that this implies that in COBOL 74 dialects an IF can only be the end of
a sentence so that an IF statement does not exist (see [89] for details on such issues).
Note that the production rules for the IF statement are only a selection of a complete

modular grammar de�nition of COBOL in SDF (see [15] for more details on COBOL
grammars). An example of a code fragment that can be parsed by the above grammar
fragment and that contains all three conditional
avors is the not transformed version
of the slight–slot program in Fig. 52; we indicated the three possible IF statements
in there, with good, bad, and ugly tags.
We discuss the transformation component that turns bad and ugly conditionals into

good ones; it is a tool called aei which stands for add END–IF. It is the component
that inserts an END–IF at the appropriate places. We displayed the hand-written part
of this component in Fig. 51.
We have to �nd an alternative for three of the generated generic equations. This

is not surprising, since we have three places in the grammar where and END–IF is
missing and an implicit scope terminator takes care of the scope of the IF statement.
They are the one that de�nes Bad-cond (that one misses an explicit scope terminator)

256 M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266

Fig. 51. Implementation of the aei component.

Fig. 52. The original SLIGHT-SHOT program and the converted one containing only good IF statements.

and the two that take care of the separator period (they use a dot as terminator instead
of an END–IF). Furthermore, we need an auxiliary component that removes a separator
period from a sentence; it is called rsp which stands for remove separator period.
In Fig. 52 we have depicted a COBOL program that shows the word SLINGSHOT.

Depending on the value of X the program’s output is either SLIGHT or SLOT. We
tagged the various IF statements with good, bad, and ugly (of course now the program
does not parse anymore in the window). At the right-hand side of Fig. 52 we display
the result of pressing the aei button. Let us brie
y discuss how aei processes the
slight-slot program so that the implementation of aei becomes clear.

M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266 257

In order to explain what happens exactly, we should display the syntax tree of this
code fragment, and walk the tree as we did with the Cat example in Section 5.2. Since
the trees become quite large, this is not possible. Therefore, we describe what happens
without a parse tree.
First, the generated function aei Program is applied to the example program. Via

the generated traversal functions we will reach the relevant parts of the code for aei
where it will perform the desired modi�cations. Suppose we arrived at the ugly IF in
this way. Then we recognize that this piece of code is a COBOL sentence. It matches
with equation [3] of Fig. 51. This results in removing the separator period by rsp and
then adding END–IF followed by a separator period as can be seen in the right-hand
side program. We continue with the remaining construction inside the ugly IF. This
happens to be a Cond-body consisting of a Stat and a Bad-cond. On a simple Stat
the function aei is having default behavior. We arrive at the bad conditional Bad-
cond. According to equation [1] it adds an END–IF and continues with the inside
of the second IF. In the body of that IF we �nd a simple statement and a good
conditional, which is also a statement. Now the body of that conditional is examined.
Since the body consists of only two simple statements we are done.

8.4. A migration component

In this section we will discuss a migration component with more advanced func-
tionality than the rth component. This migration component transforms the OS=VS
COBOL CURRENT-DATE special register to the special register DATE that is supported
by both OS=VS COBOL and COBOL=370. We recall that CURRENT-DATE has the
8-byte alphanumeric format MM/DD/YY which is a common way of representing month,
day, and year. DATE has the 6-byte alphanumeric format YYMMDD which is more geared
towards comparison of dates. CURRENT-DATE is allowed as sending �eld in a MOVE

statement; DATE is only valid as sending �eld in an ACCEPT statement. We have to
deal with two issues for this component. First, we have to take care of the incompat-
ible formats of the special registers and, second, we have to take care of the actual
transformation of certain MOVE statements into ACCEPT statements. But before we can
migrate, we �rst need to know if an input program needs a CURRENT-DATE transforma-
tion at all. Therefore, we construct a component that analyzes a program and returns
true if CURRENT-DATE occurs in it. We will �rst discuss this component and then the
transformation component.
The component cda (CURRENT-DATE analyzer) checks whether or not CURRENT-

DATE occurs in a program. We display the handwritten equations for cda in Fig. 53.
Equation [0] takes care of the correct initialization of the default value d and the

binary operator o (see Section 5.2 for details). We introduce this extra equation to give
the cda component its default values. Note that the default is false so we assume
no occurrences of CURRENT-DATE by default. The operator or is used to combine the
results of the cda analyzer on subtrees. Equation [1] recognizes a MOVE CURRENT-

DATE TO expression and returns true.

258 M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266

Fig. 53. Implementation of the cda component.

Fig. 54. The original CDT-TEST program, with a solution provided by IBM.

We will use cda in the de�nition of the cdt component (this stands for CURRENT-
DATE transformer). Before we display its equations, we discuss a way to implement
the CURRENT-DATE transformation, we do this using example programs depicted in
Fig. 54.
The input program is the program on the left of Fig. 54. This programs displays the

current date as day, month, and year separately. In the IBM migration guide [49], it
is proposed to change the type of variable TMP from PIC X(8) to X(6) and to change
MOVE CURRENT-DATE into an ACCEPT statement. This is expressed in the right-hand
side of Fig. 54. This solution breaks down as soon as TMP is used in a context assuming
the original format X(8). H-DATE is such a context. The output the transformed program

M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266 259

Fig. 55. The CDT-TEST program processed by the cdt component.

yielded on the date 04=14=97:

DAY = 41

MONTH = 97

YEAR =

Obviously this is entirely wrong: there is no DAY 41, no MONTH equals 97, moreover
the YEAR �eld is empty. We observed that in more recent versions of the IBM Migration
guide, this erroneous transformation advise has been corrected.
Our cdt component returns the program that we displayed in Fig. 55. It introduces

a fresh variable F-DATE to store DATE in its (fresh) sub�elds: F–YY, F–MM, F–DD.
Subsequently, we simulate the format of CURRENT–DATE by using the STRING statement.
In this way the format of TMP is exactly the same as before the migration so the above-
mentioned error will not arise.
Next, we discuss the construction of cdt. We depicted its four equations in Fig. 56.

Equation [0] de�nes the function cdt Program under the condition that no CURRENT-

DATE occurs in Program: then cdt Program just returns the input unchanged. Equation
[1] de�nes cdt Program on Program0 to be the rth Program (remove THEN, see
Fig. 48) of another program Program1 under the following conditions. First, there
is a CURRENT-DATE, this is checked by cda Program. Second, the input program is
extended with a fresh record, yielding Program1. The function id is another example
of a lexical access function that we already saw in Section 5.2. We use it here to
inject identi�ers into attributes. We use Attr* as memory so that we can both declare
the fresh variables in the working storage section and use the fresh variables in the
PROCEDURE DIVISION. So, we make a change at two di�erent locations in the program.
This means that we perform a global transformations using the Attr* mechanism. We

260 M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266

Fig. 56. Implementation of the cdt component.

could also have implemented this transformation using a global pattern. For examples
of global patterns we refer to the papers we mentioned in Section 1.1. Equation [2]

takes care of the insertion of the fresh variables in the WORKING-STORAGE SECTION.
It matches the one or more present records in that section with variable Data-desc-p
and it adds the fresh record F-Date to it. Finally in equation [3], on the statement
level, cdt matches the MOVE CURRENT-DATE TO phrase and returns a new statement
consisting of the ACCEPT part and the simulation part. Note that the THEN is removed
in equation [1]. This is done to keep the number of statements a constant while
transforming (see Section 8.2 for details).
Of course, cdt is not
awless: in order to migrate automatically, we have to know

that the variables are fresh, so we have to check that with an analyzer. If there are
nonfresh variables, we should make them fresh automatically. We will not describe
these extra components here since the purpose of the example transformation is to
illustrate how to implement components for a software renovation factory and not
how to implement the ideal assembly line that automatically solves the CURRENT-DATE
problem in all its facets. We are aware of the
aws of cdt and we can construct an
assembly line that is more sophisticated. This assembly line uses the methods described
in this paper.
Let us conclude this section with the remark that a component that takes care of the

transformation of the OS=VS COBOL TIME-OF-DAY special register to the COBOL=370

M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266 261

TIME special register can be constructed analogously to the CURRENT-DATE transfor-
mation.

9. Conclusions

We have developed a powerful generic approach to construct two types of compo-
nents for software renovation factories: components to analyze code and components to
transform code. We explained that our approach uses a context-free grammar as input
and that it generates from that grammar those generic components. We showed that
switching from one dialect to another can be done easily while maximally reusing com-
ponents constructed using our approach. This is an important feature since in software
renovation factories one should be able to use di�erent dialects in a
exible way. The
components constructed using our approach are robust. We addressed the scalability of
our approach: we applied the generation process to a substantial language: COBOL.
We constructed components using our generic technology that play a realistic role in a
COBOL renovation factory. We elaborately discussed some applications. Our approach
has been successfully applied for COBOL in the realm of system analysis and reno-
vation. After the extended abstract of this paper was published [14] this approach has
been in use in real-world projects that all deal with real-world system renovation and
system analysis.
We hope to have shown that our approach allows the rapid construction of reliable

components with advanced functionality. Also, we belief that a software renovation
factory is an appropriate paradigm to deal with massive amounts of code, and that the
generation of components for such a factory is of economic importance.

Acknowledgements

We thank Paul Klint (CWI=UvA) for his valuable comments and input on the history
of the ASF+SDF Meta-Environment. We thank Jasper Kamperman (Reasoning Inc.)
and Pum Walters (Babel�sh B.V.) for their input on comparisons between Software
Re�nery and the ASF+SDF Meta-Environment. We thank Prem Devanbu (Univer-
sity of California) for interesting discussions on GENOA=GENII. Thanks to Arie van
Deursen (CWI) for mentioning related work ([78]). Finally, we thank the referees for
their constructive remarks.

References

[1] H. Alblas, B. Melichar (Eds.), International Summer School on Attribute Grammars, Applications and
Systems, Lecture Notes in Computer Science, Vol. 545, Springer, Berlin, 1991.

[2] American National Standards Institute, Inc. Programming Language – COBOL, ANSI X3.23-1985
edition, 1985.

262 M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266

[3] J.W. Backus, The syntax and semantics of the proposed international algebraic language of the Zurich
ACM-GAMM conference, in: S. de Picciotto (Ed.), Proc. Int. Conf. on Information Processing, Unesco,
Paris, 1960, pp. 125–131.

[4] R. Bahlke, G. Snelting, The PSG system: from formal language de�nitions to interactive programming
environments, ACM Trans. Programming Languages Systems 8 (1986) 547–576.

[5] R.A. Ballance, S.L. Graham, M.L. van de Vanter, The Pan language-based editing system, ACM Trans.
Software Eng. Methodol. 1 (1992) 95–127.

[6] V.R. Basili, G. Caldiera, G. Cantone, A reference architecture of the component factory, ACM Trans.
Software Eng. Methodol. 1 (1992) 53–80.

[7] A. van den Bergh, Logical expressions: analysing, normalising and generalising – adapting a scienti�c
implementation in a commerical environment, MS Thesis, University of Amsterdam, Programming
Research Group, 1999.

[8] J.A. Bergstra, J. Heering, P. Klint, The algebraic speci�cation fomalism ASF, in: J.A. Bergstra,
J. Heering, P. Klint (Eds.), Algebraic Speci�cation, ACM Press Frontier Series, The ACM Press
in co-operation with Addison-Wesley, New York, Reading, MA, 1989, pp. 1–66.

[9] P. Borras, D. Cl�ement, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang, V. Pascual, Centaur: the system,
SIGPLAN Notices 24 (2) (1989) 14–24; Proc. ACM SIGSOFT=SIGPLAN Software Engineering
Symp. on Practical Software Development Environments.

[10] J.M. Bolyle, A transformational component for programming language grammar, Technical Report
ANL-7690, Argonne National Laboratory, Argonne, Illinois, 1970.

[11] J.M. Boyle, T.J. Harmer, V.L. Winter, The TAMPR program transformation system: design and applica-
tions, in: The SciTools’96 Electronic Proc., 1996, 13 p. http:==www.oslo.sintef.no=SciTools96=Contrib=
boyle=scitlpap.912.ps.

[12] M.G.J. van den Brand, A. van Deursen, P. Klint, S. Klusener, E.A. van der Meulen. Industrial
applications of ASF+SDF, in: M. Wirsing, M. Nivat (Eds.), Algebraic Methodology and Software
Technology (AMAST’96), Lecture Notes in Computer Science, Vol. 1101, Springer, Berlin, 1996,
pp. 9–18.

[13] M.G.J. van den Brand, P. Klint, C. Verhoef, Term rewriting for sale, in: C. Kirchner, H.
Kirchner (Eds.), Second International Workshop on Rewriting Logic and its Applications, Electronic
Notes in Theoretical Computer Science, Springer, Berlin, 1998. Available at: http:==adam.wins.uva.
nl=˜ x=sale=sale.html.

[14] M.G.J. van den Brand, M.P.A. Sellink, C. Verhoef, Generation of components for software
renovation factories from context-free grammars, in: I.D. Baxter, A. Quilici, C. Verhoef (Eds.),
Proc. 4th Working Conf. on Reverse Engineering, pp. 144–153, 1997. Available at http:==adam.wins.
uva.nl=˜ x=trans=trans.html.

[15] M.G.J. van den Brand, M.P.A. Sellink, C. Verhoef, Obtaining a COBOL grammar from legacy code for
reengineering purposes, in: M.P.A. Sellink (Ed.), Proc. 2nd Int. Workshop on the Theory and Practice
of Algebraic Speci�cations, electronic Workshops in Computing, Springer, Berlin, 1997. Available at
http:==adam.wins.uva.nl=˜ x=coboldef=coboldef.html.

[16] M.G.J. van den Brand, M.P.A. Sellink, C. Verhoef, Control
ow normalization for COBOL=CICS
legacy systems, in: P. Nesi, F. Lehner (Eds.), Proc. 2nd Euromicro Conf. on Maintenance and
Reengineering, 1998, pp. 11–19. Available at http:==adam.wins.uva.nl=˜ x=cfn=cfn.html.

[17] M.G.J. van den Brand, M.P.A. Sellink, C. Verhoef, Current parsing techniques in software renovation
considered harmful, in: S. Tilley, G. Visaggio (Eds.), Proc. 6th Int. Workshop on Program
Comprehension, 1998, pp. 108–117. Available at http:==adam.wins.uva.nl=˜ x=ref=ref.html.

[18] M.G.J. van den Brand, E. Visser, Generation of formatters for context-free languages, ACM Trans.
Software Eng. Methodol. 5 (1996) 1–41.

[19] J.C. Cleaveland, Building application generators, IEEE Software 5 (4) (1988) 25–33.
[20] J.C. Cleaveland, C.M.R. Kintala, Tools for building application generators, AT & T Technical J. 67

(4) (1988) 46–58.
[21] W.F. Clocksin, C.S. Mellish, Programming in Prolog, Springer, Berlin, 1985.
[22] J.R. Cordy, C.D. Halpern-Hamu, E. Promislow, TXL: a rapid prototyping system for programming

language dialects, Comput. Languages 16 (1) (1991) 97–107.
[23] T. Despeyroux, Typol: a formalism to implement Natural Semantics, Technical Report 94, INRIA

Sophia-Antipolis, 1988.

M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266 263

[24] A. van Deursen, An overview of ASF+SDG, in: A. van Deursen, J. Heering, P. Klint (Eds.), Language
Prototyping: An Algebraic Speci�cation Approach, AMAST Series in Computing, Vol. 5, World
Scienti�c, Singapore, 1996, pp. 1–29.

[25] A. van Deursen, J. Heering, P. Klint (Eds.), Language Prototyping: An Algebraic Speci�cation
Approach, AMAST Series in Computing, Vol. 5, World Scienti�c, Singapore, 1996.

[26] A. van Deursen, T. Kuipers, Finding classes in legacy code using cluster analysis, in: S.
Demeyer, H. Gall (Eds.), Proc. ESEC=FSE’97 Workshop on Object-Oriented Reengineering, Report
TUV-1841-97-10, Technical University of Vienna, 1997.

[27] A. van Deursen, L. Moonen, Type inference for COBOL systems, in: M.R. Blaha, A. Quilici,
C. Verhoef (Eds.), Proc. 5th Working Conf. on Reverse Engineering, IEEE Computer Society, Silver
Spring, MD, 1998, pp. 220–230.

[28] A. van Deursen, S. Woods, A. Quilici, Program plan recognition for year 2000 tools, in: I.D. Baxter,
A. Quilici, C. Verhoef (Eds.), Proc. 4th Working Conf. on Reverse Engineering, 1997, pp. 124–133.
Also in: Science of Computer Programming 36 (2000) 303–324.

[29] P.T. Devanbu, GENOA – a language and front-end independent source code analyzer generator, in:
Proc. 14th Int. Conf. on Software Engineering, IEEE, 1992, pp. 307–319.

[30] P.T. Devanbu, D.R. Rosenblum, A.L. Wolf, Generating testing and analysis tools with Aria, ACM
Trans. Software Eng. Methodol. 5 (1) (1996) 42–62.

[31] V. Donzeau-Gouge, G. Huet, G. Kahn, B. Lang, Programming environments based on structured
editors: the Mentor experience, Technical Report No. 26, INRIA, Rocquencourt, France, 1980.

[32] V. Donzeau-Gouge, G. Huet, G. Kahn, B. Lang, Programming environments based on structured
editors: the Mentor experience, in: D.R. Barstow, H.E. Shrobe, E. Sandewall (Eds.), Interactive
Programming Environments, McGraw-Hill, New York, 1984, pp. 128–140.

[33] H. Ehrig, B. Mahr, Fundamentals of Algebraic Speci�cations, Vol. I, Equations and Initial Semantics,
Springer, Berlin, 1985.

[34] S.M. Eker, A comparison of OBJ3 and ASF+SDF, Report CS-R9223, CWI, Amsterdam, 1992.
[35] Emendo Software Group, The Netherlands. Emendo Y2K White paper, 1998. Available at http:==www.

emendo.com=.
[36] G. Engels, C. Lewerentz, M. Nagl, W. Sch�afer, A. Sch�urr, Building integrated software development

environments part I: tool speci�cation, ACM Trans. Software Eng. Methodol. 1 (2) (1992) 135–167.
[37] W.J. Fokkink, C. Verhoef, Conservative extension in positive=negative conditional term rewriting with

applications to software renovation factories, in: J.-P. Finance (Ed.), Proc. 2nd Conf. on Fundamental
Approaches to Software Engineering, Lecture Notes in Computer Science, Vol. 1577, Springer,
Amsterdam, 1999, pp. 98–113.

[38] D.P. Freedman, G.M. Weinberg, Handbook of Walkthroughs, Inspections and Technical Reviews,
Dorset House, 3rd Ed. 1990, Originally published by Little, Brown & Company, 1982.

[39] J.A. Goguen, C. Kirchner, H. Kirchner, A. M�egrelis, J. Meseguer, T. Winkler, An introduction to OBJ3,
in: S. Kaplan, J.-P. Jouannaud (Eds.), Conditional Term Rewriting Systems (CTRS’88), Lecture Notes
in Computer Science, Vol. 308, Springer, Berlin, 1988, pp. 258–263.

[40] M. van der Graaf, A speci�cation of Box to HTML in ASF+SDF, Technical Report P9720,
University of Amsterdam, Programming Research Group, 1997. Available at http:==ftp.wins.uva.nl=
pub=programming-research=reports=1997=P9720.ps.Z.

[41] R.W. Gray, V.P. Heuring, S.P. Levi, A.M. Sloane, W.M. Waite, Eli: a complete,
exible compiler
construction system, Comm. ACM 35 (2) (1992) 121–131.

[42] A.N. Habermann, D. Notkin, Gandalf: Software development environments, IEEE Trans. Software Eng.
SE-12 (1986) 1117–1127.

[43] B. Hall, Year 2000 tools and services, In Symposium=ITxpo 96, The IT Revolution Continues:
Managing Diversity in the 21st Century, Gartner Group, 1996.

[44] T. Harmer, P. McParland, J. Boyle, Using knowledge-based transformations to reverse engineer
COBOL programs, in: 11th Knowledge-Based Software Engineering Conference, IEEE-CS-Press, 1996.

[45] J. Heering, P.R.H. Hendriks, P. Klint, J. Rekers, The syntax de�nition formalism SDF – reference
manual, SIGPLAN Notices 24 (11) (1989) 43–75.

[46] J. Heering, G. Kahn, P. Klint, B. Lang, Generation of interactive programming environments, in: The
Commission of the European Communities (Ed.), Esprit’85 – Status Report of Continuing Work 1,
North-Holland, Amsterdam, 1986, pp. 467–477.

264 M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266

[47] J. Heering, P. Klint, The prehistory of ASF+SDF (1980–1984), in: M.G.J. van den Brand, A. van
Deursen, T.B. Dinesh, J.F.T. Kamperman, E. Visser (Eds.), ASF+SOF’95: A Workshop on Generating
Tools from Algebraic Speci�cations, Technical Report P9504, FWI, 1995, pp. 1–4.

[48] J.M. Hullot, CEYX, a multiformalism programming environment, Technical Report No. 210, INRIA,
Rocquencourt, France, 1980.

[49] IBM Corporation, COBOL=370 Migration Guide, release 1 ed., 1992.
[50] INRIA, Rocquencourt. LeLisp, Version 15.23, reference manual, 1990.
[51] INRIA, A Centaur Tutorial, 2.0 ed., 1994. Available at http:==www.inria.fr=croap=centaur=tutorial=

tutorial.ps.
[52] S.C. Johnson, YACC – Yet Another Compiler–Compiler. Technical Report Computer Science No. 32,

Bell Laboratories, Murray Hill, New Jersey, 1975.
[53] Capers Jones, The Year 2000 Software Problem — Quantifying the Costs and Assessing the

Consequences, Addison-Wesley, Reading, MA, 1998.
[54] N. Jones, Year 2000 market overview, Technical Report, Gartner Group, Stamford, CT, USA, 1998.
[55] G. Kahn, Natural Semantics, in: F.J. Brandenburg, G. Vidal-Naquet, M. Wirsing (Eds.), Fourth Symp.

on Theoretical Aspects of Computer Science (STACS’87), Lecture Notes in Computer Science, Vol.
247, Springer, Berlin, 1987, pp. 22–39.

[56] G. Kahn, B. Lang, B. M�el�ese, E. Morcos, Metal: a formalism to specify formalisms, Sci. Comput.
Programming 3 (1983) 151–188.

[57] J.F.T. Kamperman, Compilation of term rewriting systems, Ph.D. Thesis, University of Amsterdam,
1996.

[58] S. Kaplan, Conditional rewrite rules, Theoret. Comput. Sci. 33 (2) (1984) 175–193.
[59] S. Kaplan, A compiler for conditional term rewriting systems, in: P. Lescanne (Ed.), Proc. 1st Int.

Conf. on Rewriting Techniques, Lecture Notes in Computer Science, Vol. 256, Springer, Berlin, 1987,
pp. 25–41.

[60] S. Kaplan, Positive=negative conditional rewriting, in: S. Kaplan, J.-P. Jouannaud (Eds.), Conditional
Term Rewriting Systems, of Lecture Notes in Computer Science, Vol. 308, Springer, Berlin, 1988, pp.
129–143.

[61] B.W. Kernighan, D.M. Ritchie, The C Programming Language, Prentice-Hall, Englewood Cli�s, NJ,
1978.

[62] P. Klint, A survey of three language-independent programming environments, Technical Report IW
240=83, Mathematisch Centrum, Department of Computer Science, 1983. Also appeared as INRIA
Report RR 257.

[63] P. Klint, A meta-environment for generating programming environments, ACM Trans. Software Eng.
Methodology 2 (2) (1993) 176–201.

[64] P. Klint, The ASF+SDF Meta-Environment user’s guide, 1995. Available via: ftp==ftp.cwi.nl=pub=gipe=
reports=SysManual.ps.Z.

[65] P. Klint, C. Verhoef, Evolutionary software engineering: a component-based approach, in: R.N.
Horspool (Ed.), IFIP WG 2.4 Working Conference: Systems Implementation 2000: Languages,
Methods and Tools, Chapman & Hall, London, 1998, pp. 1–18. Available at: http:==adam.wins.
uva.nl=˜ x=evol-se=evol-se.html.

[66] J.W. Klop, Term rewriting systems, in: Handbook of Logic in Computer Science, Vol. II, Oxford
University Press, Oxford, 1992, pp. 1–116.

[67] J.W.C. Koorn, GSE: a generic text and structure editor, in: J.L.G. Diets (Ed.), Computing Science in
the Netherlands (CSN92), SION, 1992, pp. 168–177.

[68] J.W.C. Koorn, Connecting semantic tools to a syntax-directed user-interface, in: H.A. Wijsho� (Ed.),
Computing Science in the Netherlands (CSN93), SION, 1993, pp. 217–228.

[69] J.W.C. Koorn, Generating uniform user-interfaces for interactive programming environments, Ph.D.
Thesis, University of Amsterdam, 1994.

[70] B. Lang, Deterministic techniques for e�cient non-deterministic parsers, in: J. Loeckx (Ed.), Proc. 2nd
Colloquium on Automata, Languages and Programming, Lectures Notes in Computer Science, Vol. 14,
Springer, Berlin, 1974, pp. 255–269.

[71] M.E. Lesk, E. Schmidt, LEX – A lexical analyzer generator, Bell Laboratories, UNIX Programmer’s
Supplementary Documents, Vol. 1, (PS1) edition, 1986.

[72] J.R. Levine, T. Mason, D. Brown, lex & yacc, 2nd Edition, O’Reilly & Associates, Inc., 1992.
[73] T.J. McCabe, A complexity measure, IEEE Trans. Software Eng. SE-12 (3) (1976) 308–320.

M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266 265

[74] R. Medina-Mora, Syntax-directed editing: towards integrated programming environments, Ph.D. Thesis,
Carnegie-Mellon University, Department of Computer Science, 1982.

[75] R. Medina-Mora, D.S. Notkin, ALOE users’ and implementors’ guide, Technical Report CMU-CS-
81-145, Carnegie-Mellon University, Department of Computer Science, 1981.

[76] L. Moonen, A generic architecture for data
ow analysis to support reverse engineering, in: M.P.A.
Sellink (Ed.), Proc. 2nd Int. Workshop on the Theory and Practice of Algebraic Speci�cations,
electronic Workshop in Computing, Springer, Berlin, 1997.

[77] E. Morcos-Chounet, A. Conchon, PPML: a general formalism to specify pretty printing, in: H.-J.
Kugler (Ed.), Information Processing 86, Elsevier, Amsterdam, 1986, pp. 583–590.

[78] P.H. Newcomb, M. Scott, Requirements for Advanced Year 2000 Maintenance Tools, IEEE Computer
30 (3) (1997) 52–57.

[79] Reasoning Systems, Palo Alto, California, DIALECT user’s guide, 1992.
[80] Reasoning Systems, Palo Alto, California, INTERVISTA user’s guide, 1992.
[81] Reasoning Systems, Palo Alto, California, Re�ne User’s Guide, 1992.
[82] J. Rekers, Parser generation for interactive environments, Ph.D. Thesis, University of Amsterdam,

1992. Available via ftp:==ftp.cwi.nl=pub=gipe=reports=Rek92.ps.Z.
[83] T. Reps, T. Teitelbaum, The synthesizer generator, SIGPLAN Notices, 19(5) (1984) 42–48, Proc.

ACM SIGSOFT=SIGPLAN Software Eng. Symp. on Practical Software Development Environments.
[84] T. Reps, T. Teitelbaum, The Synthesizer Generator: A System for Constructing Language-Based

Editors, 3rd Edition, Springer, Berlin, 1989.
[85] H. Reubenstein, R. Piazza, S. Roberts, Separating parsing and analysis in reverse engineering tools,

Proc. 1st Working Conf. on Reverse Engineering, 1993, pp. 117–125.
[86] G. Riedewald, The LDL – Language Development Laboratory, in: U. Kastens, P. Pfahler (Eds.),

Compiler Construction (CC’92), Lecture Notes in Computer Science, Vol. 641, Springer, Berlin, 1992,
pp. 88–94.

[87] A. Sch�urr, Introduction to PROGRESS, an attribute graph grammar based speci�cation language,
Lecture Notes in Computer Science, Vol. 411, Springer, Berlin, 1989.

[88] M.P.A. Sellink, H.M. Sneed, C. Verhoef, Restructuring of COBOL=CICS legacy systems, in: P. Nesi,
C. Verhoef (Eds.), Proc. 3rd Eur. Conf. on Maintenance and Reengineering, 1999, pp. 72–82. Available
at http:==adam.wins.uva.nl=˜ x=cics=cics.html.

[89] M.P.A. Sellink, C. Verhoef, Re
ections on the evolution of COBOL, Technical Report P9721,
University of Amsterdam, 1997. Available at http:==adam.wins.uva.nl=˜ x=lib=lib.html.

[90] M.P.A. Sellink, C. Verhoef, Development, assessment, and reengineering of language descriptions, in:
Proc. 13th Int. Autom. Software Eng. Conf., IEEE Computer Society, Silver Spring, MD, 1998, pp.
314–317. Full version in [91].

[91] M.P.A. Sellink, C. Verhoef, Development, assessment, and reengineering of language descriptions, in: J.
Ebert, C. Verhoef (Eds.), Proc. 4th European Conf. on Software Maintenance and Reengineering, IEEE
Computer Society, Silver Spring, MD, 2000. Available at: http:==adam.wins.uva.nl=˜ x=cale=cale.html.

[92] M.P.A. Sellink, C. Verhoef, Native patterns, in: M.R. Blaha, A. Quilici, C. Verhoef (Eds.), Proc. 5th
Working Conf. on Reverse Engineering, IEEE Computer Society, Silver Spring, MD, 1998, pp. 89
–103. Available at http:==adam.wins.uva.nl=˜ x=npl=npl.html.

[93] M.P.A. Sellink, C. Verhoef, An architecture for automated software maintenance, in: D. Smith, S.G.
Woods (Eds.), Proc. 7th Int. Workshop on Program Comprehension, 1999, pp. 38–48. Available at
http:==adam.wins.uva.nl=˜ x=asm=asm.html.

[94] M.P.A. Sellink, C. Verhoef, Generation of software renovation factories from compilers, in: H.
Yang, L. White (Eds.), Proc. Int. Conf. on Software Maintenance, 1999, pp. 245–255. Available
via http:==adam.wins.uva.nl=˜ x=com=com.html.

[95] I.L. Sindelar, Speci�cation-driven tool technology, Proc. SUN User Group 1990 Conf., 1990,
pp. 209–219.

[96] D.R. Smith, G.B. Kotik, S.J. Westfold, Research on knowlegde-based software environments at Kestrel
institute, IEEE Trans. Software Eng. SE-11 (11) (1985) 1278–1295.

[97] H.M. Sneed, Architecture and functions of a commercial software reengineering workbench, in:
P. Nesi, F. Lehner (Eds.), Proc. Second Euromicro Conf. on Maintenance and Reengineering, 1998,
pp. 2–10.

266 M. van den Brand et al. / Science of Computer Programming 36 (2000) 209–266

[98] F. Tip, Generic techniques for source-level debugging and dynamic program slicing, in: P.D. Mosses,
M. Nielsen, M.I. Schwartzback (Eds.), Theory and Practice of Software Development (TAPSOFT’95),
Lecture Notes in Computer Science, Springer, Berlin, 1995, pp. 516–530.

[99] F. Tip, Generation of program analysis tools, Ph.D. Thesis, University of Amsterdam, 1995.
[100] F. Tip, A survey of program slicing techniques, J. Programming Languages 3 (1995) 121–189.
[101] M. Tomita, E�cient Parsing for Natural Languages – A Fast Algorithm for Practical Systems, Kluwer

Academic Publishers, Dordrecht, 1986.
[102] E. Visser, Scannerless generalized-LR parsing, Technical Report P9707, Programming Research Group,

University of Amsterdam, July 1997. Available at http:==www.wins.uva.nl=pub=programming-research=
reports=1997=P9707.ps.

[103] H.H. Vogt, S.D. Swierstra, M.F. Kuiper, Higher order attribute grammars, SIGPLAN Notices,
24 (7) (1989) 131–145; Proc. ACM SIGPLAN’89 Conf. on Programming Language Design and
Implementation.

[104] L. Wall, R.L. Schwartz, Programming Perl, O’Reilly & Associates, Inc., 1991.
[105] H.R. Walters, Hybrid implementations of algebraic speci�cations, in: H. Kirchner, W. Wechler (Eds.),

Proc. 2nd Int. Conf. on Algebraic and Logic Programming, Lecture Notes in Computer Science, Vol.
463, Springer, Berlin, 1990, pp. 40–54.

[106] H.R. Walters, On equal terms – implementing algebraic speci�cations, Ph.D. Thesis, University of
Amsterdam, 1991.

[107] D.A. Watt, Programming Language Syntax and Semantics, Prentice-Hall, Englewood Cli�s, NJ, 1991.
[108] G.M. Weinberg, Quality Software Management: Vol. 1 Systems Thinking, Dorset House, 1992.
[109] D.S. Wile, Toward a calculus of abstract syntax trees, in: R. Bird, L. Meertens (Eds.), Algorithmic

Languages and Calculi: IFIP TC2 WG2.1 International Workshop on Algorithmic Languages and
Calculi, Chapman & Hall, London, 1997, pp. 324–353.

