
Software as strong as a dyke

C. Verhoef
Free University of Amsterdam, Amsterdam, The Netherlands,

x@cs.vu.nl

Abstract

The Dutch storm surge barrier’s failure rates are designed and certified to fail
maximally once every ten thousand years. Recent audits question this failure rate.
Software is mentioned as a major cause and quantifying it and its reliability turned
out to be a problem. We show how to quantify and assess the software and its
failure rates using minimal data. The results are applicable to other dependable
systems.

Keywords and Phrases: safety-critical systems, failure rate, residual errors, de-
pendable systems

Introduction
We all remember the catastrophic flooding of New Orleans in 2005. In the Netherlands,
in 1953 there was a large flood as well, and to prevent this from happening ever again, a
long-term program called the Delta Project was embarked upon which was completed
in 1998 with the Rotterdam storm surge barrier. This so-called Maeslantkering intends
to protect 1.3 million people in the hinterland and one of the largest harbors in the world
by closing the river temporarily. The Netherlands could suffer hundreds of billions of
Euros in damage if Rotterdam’s protection works were to fail. The overall reliability
demand for the Delta Project is that flooding should not exceed a chance of once in ten
thousand years.

The American Society of Civil engineers chose the Netherlands North Sea Pro-
tection Works as one of the seven wonders of the modern world to pay tribute to the
greatest civil engineering achievements of the 20th century. So it’s not a surprise that
a delegation of fifty Louisiana officials from national, state and local levels visited the
Dutch water protection works, including the Maeslantkering. This movable storm surge
barrier is closed during extreme storm conditions. The closure operation is initialized
and carried out by a software system. The system is triggered when both the predicted
storm surge level and the river discharge are expected to exceed a certain level. After
this stage, the barrier gates are submerged to a level where forces of river discharge
and pressure from the sea are in balance. The ”residual” net forces acting on the gates
are diverted via two steel constructions larger and stronger than Eiffel towers to ball-
and-socket-joints. Each ball-diameter is ten meter and cast in 52000 tons of concrete.
These gigantic hip-constructions reside on the riverbanks. See Figure 1 for an aerial
view of the Maeslantkering.

1

Figure 1: The Maeslantkering during a test closure. The twin-rotating gates are closed
and ready to submerge. To give an idea of dimensions, each steel door is 22 meters
high and 210 meters long. The tiny spots on the roads are automobiles.

Reliability
The software running the Maeslantkering is essential, and is supposed to be as strong
as the Dutch dykes: it may fail only once every ten thousand years. It turned out that
human control of the storm surge barrier displayed a failure rate in the order of one in
thousand for the complex task of decision-, closure- and opening-management. This
violated the reliability requirements of the Dutch government. Therefore, computers
plus software were chosen to completely autonomously control the barrier. Apparently,
important decision makers were convinced that this was feasible. The failure rate de-
mands for this system were required to be 1 : 10000 for not closing when this was
actually necessary, and 1 : 100000 for not opening the barrier when requested. This
asymmetry is caused by the fact that if the sea surge barrier does not reopen, the river
discharge can lead to flooding from the inside.

This safety-critical software system is delivered and is running since 1998. Its de-
sign, development and construction is in accordance with the IEC 16508 standard de-
scribing functional safety of electrical, electronic, or programmable electronic safety-
related systems. This standard prescribes for software development a set of best prac-
tices. The IEC warns that many factors affect software safety integrity, so it is not pos-
sible to combine the best practices to guarantee success in any given application. The
recommended software techniques must be chosen with care. For instance, personal
competences, experience with certain techniques, familiarity with the domain, size and
complexity, industry sector recommendations and recognized best practices plus other
standards all play a role. Still a certified safety integrity level for IEC 61508 compliant
code is sometimes interpreted as the failure rate of the software. Of course, when you
adhere to a set of best practices, the intention is to minimize error, and therefore, fail-
ure. But as the IEC warns: compliance with standards does not imply a guarantee on
quantitatively defined failure rates.

The software of the Maeslantkering is certified at the highest safety integrity level
(SIL 4) by the International Atomic Energy Agency. SIL 4 implies a failure rate of
one in ten thousand per demand or once per 100 million hours (in fact SIL levels
provide a bandwidth of one order of magnitude around certain failure rates). Indeed,

2

certification confirms that the software is delivered in accordance with the guidelines of
IEC 61508, but not that the accompanying failure rates are achieved. We are not aware
of scientific evidence that ties the SIL 4 failure rate to these best practices. This is also
recognized by the people involved in building the Maeslantkering software given their
comment [12]:

Some people, though not many and sometimes only for publicity reasons,
claim that formal methods can guarantee correct software and that no other
method can. It will hardly need argumentation to refute this claim: there
is not a single method which can achieve perfection. Apart from simply
being not true, it is a dangerous claim, because it sets high expectations
on formal methods and it presupposes an all-or-nothing attitude towards
formal methods.

We entirely agree with this statement, and in fact, there are two major problems
with the current practice to allocate SIL levels to software as noted by Bishop [3].

• A safety integrity level is actually associated with a safety function, in our case
the safety function to open or close the barrier. The mapping from the SIL label
for the function to requirements for the subsystems and associated software does
not explicitly recognize the contribution of the system architecture. For example,
there is no credit for implementing diverse means to activate the barrier—the
software in each subsystem still has to meet the requirements associated with the
top-level SIL label. Similarly, no account is taken of the fact that some software
components are less critical to safety than others. This has been partly resolved in
the draft revision of the IEC61508 standard, where rules are defined for relaxing
the SIL requirements for software.

• There is no technical basis for the linkage between recommended software tech-
niques and a target software failure rate implied by a SIL label. Any linkage
can at best be shown on average, and it is not certain that a specific development
process will achieve a given dangerous failure rate. This leads to an abuse of the
standard where compliance with SIL-mandated techniques is deemed sufficient
to claim that the dangerous failure rate is in the stated SIL band.

The increasing dependability of our society on safety-critical software-intensive
systems justifies that we rethink the SIL-idea for software so that measurable software
development techniques can be correlated with failure rates. Furthermore, given the
criticality of the Maeslantkering, we will use all the data that is available to us to assess
whether its failure rate is within the SIL 4 band. We hope to provide useful input to
the maelstrom of failure estimates that politicians, journalists, and others poured out in
the Dutch media. These range from alarming failure rates in the order of one in ten to
reassuring rates of one in many thousands. The software seems one of the causes for
this volatility, as an external assessment put it: software has a major contribution to the
entire barrier-process. However, the numerical contributions are based on engineering
judgement to which no absolute value judgement can be given.

The available data
The Dutch government is very reluctant with disclosure of data concerning potential
problems with the Maeslantkering, moreover, the software organizations involved are

3

not allowed to communicate with others. Therefore, it is difficult to obtain data, and
we need creativity to ”read the IT-leaves”. Fortunately, we recovered from various
sources the following data points for the Maeslantkering software. The system contains
450000 lines of C++ code of which 200KLOC is operational code, and 250KLOC for
simulating, testing and supporting the operational code [12]. It took about 25 person
year, and the duration of the project was three year [6]. It was a fixed-price project
and completed in October 1998. During development 1655 problems were reported,
and 119 were found during customer acceptance testing. Of those 119 about 27% of
the problems were found in critical modules, and 31% in core modules. So during
acceptance testing the customer detected 32 problems in critical modules and 37 in
core modules. While in operation three residual faults were found until October 2000.
During development 85% of the problems were found, during reliability testing another
8%, and customer acceptance another 7% and in operation 0.18% [11, 12].

A millennium of experience
The Dutch have a millennium of experience in building dykes, yet thousand years of
experience is no guarantee for absence of design flaws. The Dutch pittoresque village
of Wilnis was surprised by a flood on August 26th 2003, when an already weakened
dyke of a ring-canal failed due to lack of water instead of too much water. The warmest
and driest summer in fifty years lowered the density of the upper part of the dyke
culminating in horizontal shear failure [2]: 50 meters of dyke shifted into the village,
creating two breaches through which canal-water entered (see Figure 2). The dyke
strength assumed a surplus of water, giving the dyke its structural integrity. Centuries
of experience could not prevent this flood, since floods are only rarely caused by a
shortage of water [2].

The history of information technology spans only 50-odd years. We all know that
there are many and major problems with software, and this seems also true for the
barrier-software. Namely, a Dutch newspaper reported that since 2001 at least 11 mil-
lion Euro was spent on improving the barrier-software and its decision process. It was
not stated which percentage to which activity, but it is clear that the decision process
is expressed in software. So despite the low number of reported faults since Oktober
2000, something must have been wrong after all.

Potential failures and problems
Input validation of the Maeslantkering software seems not watertight, given the follow-
ing testimonial from an insider. A maintenance engineer connected the software to a
water sensor upstream where the Rhine enters the Netherlands. This level is uniformly
too high, so the barrier started the closing procedure. If this is true, no intelligent input
validation is being performed, since the combination of calm maintenance weather plus
a virtual thunderous 4 meters above maximum discharge was taken to be valid input
and acted upon. Another insider could not confirm this testimonial.

Another near-failure seems to have occurred at the Eastern Scheldt storm surge
barrier. This barrier consists of a four-kilometer bridge that turns into a dyke by closing
62 steel doors each 42 meters wide, cast in 65 concrete pillars each the size of a 10-store
building (see Figure 3 for an aerial view). This barrier has a maintenance mode, and
after maintenance it must be reset to operational mode again. When one maintenance
engineer forgot about that, the steel doors went further up when weather conditions
made closure necessary. This software failure was solved by humans on-site. If this

4

Figure 2: An aerial view of the horizontal shear failure in a small village near Amster-
dam, due to lack of water causing the dyke to shift by the pressure of the canal water.
Notice the small blue spot in the canal which is a grounded yacht.

Figure 3: An aerial view of the Eastern Scheldt storm surge barrier. The steel doors are
open showing a stratified pattern in the water. Notice the ship in the sea, which is small
compared to this barrier.

is really true, mode-monitoring was not implemented properly: the system should not
tacitly assume a maintenance mode for more than a predefined time-frame.

external assessment Our inside information is not inconsistent with the findings of a
confidential external assessment that is in our posession, where dominant contributions
to failure probabilities are formulated for the entire Maeslantkering. The decision part
of the software can fail due to acceptance of erroneous external data. The risks are

5

aggravated by the fact that problem solution takes too much time. Moreover, a config-
uration management system is recommended that should monitor, control, and capture
the status of the Maeslantkering components such as valves and switches. For instance
the position of so-called needle-valves in the hydraulic system of the ball-joints, and
the switches of the 10kV automatons should be saved and restored after maintenance.

The point we like to make here is that the approach taken towards operator-error
should not be naive. It is known for a long time that 60–80% of major accidents with
complex systems such as nuclear power plants, dams, tankers, and airplanes triggered
by operators were not solely attributable to carelessness. Other important failure fac-
tors include flawed system design, poor training and poor quality control [10]. The
rumors about the near-accidents with the Dutch storm surge barriers and the external
audit rather indicate design flaws than carelessness by operators. So we agree with the
external audit’s recommendation to reduce operator-error by adapting the software in
such a manner that carelessness cannot cause catastrophic failure.

0 10 20 30 40

percentage

data streams

software

decision system

control system

power supply

locomobiles

ballast system

ball

docking system

internal fire

external events

operator error

combination mechanism

fysical failure

0.0094

0.0053

0.005

0.00067

0.0012

0.011

0.0036

0.041

0.0053

0.0027

0.0014

0.0034

0.001

8.5e−6

Figure 4: A bar plot with absolute failure estimates for nonclosure, plus their relative
contribution as a percentage of the whole. The data is taken from a summary of an
assessment report on the Maeslantkering.

In Figure 4 we provide an overview of the various failure probabilities for non-
closure mentioned in the external assessment. It is interesting to notice that failure

6

probabilities are estimated for the software parts. These probabilities were established
via fault tree analysis. The estimated failure probability of all software-related issues
totals to a failure rate of 0.02037, the relative contribution of software to the failure rate
is 22.2%. This is the second largest contribution, the largest being problems with the
ball-joint that takes 5 weeks of repair after each closure operation.

Seiches
In accordance with IEC 61508 some parts of the software were specified with formal
methods. However neither formal specifications nor correctness proofs exclude re-
quirements errors. Also in the case of the Maeslantkering, requirements errors cannot
be excluded. We provide an example of a potential requirements problem.

This concerns the presence of co-called seiches: a standing wave in a body of
water, due to wind, weather, or seismic activity. In the period 1995–2001 the harbor
of Rotterdam encountered 51 seiche events with an amplitude between 0.25 and 1.69
meter. After the barrier became operational an audit revealed that the effect of seiches
on the water level was not accounted for in the software.

In [9] it is shown that all 51 seiches coincided with the passage of a low-pressure
weather system, and that when there was also a sharp cold-front, numerical simulations
could reproduce the seiche events. In a 2004 PhD Thesis of one of the just cited authors
we can read: ”Because of specific circumstances that can occur during the deployment
of the barrier, the trough of a seiche in the Waterway Basin can cause a critical situation
when the water level on the sea side of the barrier drops below the level on the river
side. In extreme situations, this could cause the failure of the storm surge barrier since
it is primarily designed for protection against high water levels on the sea side. If the
net force directed towards the sea side of the barrier becomes too large, this could cause
the ball-joints to be pushed out of their sockets, similar to the dislocation of a shoulder.”
As with the dyke that failed due to lack of water, the barrier might fail due to low water
levels while designed to protect against high levels.

Our conjecture is corroborated by Vrancken [13] who reported that: ”[t]he prob-
lem was detected already in the development phase in 1997, but its solution caused one
year of delay in the delivery of the barrier.” So, seiches were taken into account but
later and apparently ad hoc: ”the water level is monitored on both sides of the barrier
and a system of pumps and valves ensures that the barrier floats to the surface in case
the water level on the sea side drops below the level on the river side. This approach
is expected to avoid damage to the barrier. However, an actual seiche-prediction sys-
tem is not available for the closure-management of the Rotterdam storm surge barrier”
writes de Jong in his PhD Thesis [8]—he developed an award-winning method for the
prediction of the occurrence of seiche episodes.

Best-in-class comparisons
Using benchmark information we can create a more quantitative view on the software
and its potential faults. Particularly insightful in this realm are the benchmarks by
Capers Jones [7]. Namely, Jones not only provides industry averages but also extreme
values. So, best-in-class results can be compared to the data of the Maeslantkering
software, which is considered best-in-class, too. The category of software that is most
close to Jones’ industry partition is either systems software or military software. We
will provide relevant extreme values of his benchmarks for both types of software and
compare them to data for the Maeslantkering software.

7

We convert the 450000 Lines of C++ into function points via backfiring: on av-
erage it takes 53 lines of C++ to create one function point of software. This yields
8490 function points. We assume that real object-orientation is used, since the C++
was converted by hand from formal Z++ specifications (otherwise a factor of 128 for
plain C would have been more appropriate). This tells us that the software is in the
10K function point range. The industry benchmarks stem from 1995–1999, the same
period as the Maeslantkering software. The systems software benchmark contains 345
new and 575 enhancement projects; for the military benchmark there are 130 and 135
respectively.

assignment scope The highest assignment scope for systems software development
measured by Jones is 315. Note that 25 person year in three years, is on average
8+ persons per year. We positively estimate that the system was made with 12 staff
at most, so their assignment scope is at most 8490/12 = 707. In other words, the
amount of function points being dealt with per person is more than twice as high as the
maximal value in a benchmark of 345 systems software projects. For military software
the highest assignment scope measured is 290, which leads to an even larger deviation.

defect removal efficiency The best-in-class defect removal efficiency for systems
software in the 10K function point range is 98% (average: 92%). The best-in-class
number of delivered defects is 800 of which 96 high-severity defects (averages: 4400
and 660 respectively). Since this is 2% of the defects, there must have been 40K
defects in the software before delivery (average 55K). Public records testified that 1655
problems were reported in the Maeslantkering software [11]. So they reported a factor
24 less defects than best-in-class systems software. Likewise for military software
the highest measured defect removal efficiency is 99%, delivering 400 defects, and
48 high-severity ones. Also in this case a factor 24 less errors were reported for the
Maeslantkering software.

staff size Best-in-class staff size of systems software in the 10K function point range
is 45 (average staff size is 67). The Maeslantkering software used a team of at most 12,
which is a factor 3.8 less than the maximal value (and a factor 5.6 less than the average).
Likewise for military software the best-in-class size amounts to 50, a factor 4.2 less
(average is 77, or a factor of 6.4 less).

duration Best-in-class systems software takes a minimal value of 25 months in the
10K function point range (average is 36 months). The duration of the Maeslantkering
software took three years, which does not deviate from best-in-class data. Best-in-class
military software takes minimally 40 months (average is 52 months). So this is in line
with best-in-class durations for software under military standards.

cost Costs of the project are not disclosed, although we heard that they do not ex-
ceed 1% of the total cost of the Maeslantkering (660 million Euro). For an effort of
25 person year we take the highest burdened compensation rates in Jones’ benchmark:
his maximum is 252K per year. Since the exact price is not disclosed, we will use
252K as a censored data point. This is consistent with the 1% we heard of, since our
total is 6.3 million Euro. Best-in-class cost per function point in the 10K range is
$1598.47 (average is $3388.73). The Maeslantkering software is built for at most 742
Euro per function point despite the exceptionally high compensation that we used. So,

8

the barrier-software defeats the best-in-class benchmarks significantly. Likewise, for
military software the best-in-class cost per function point is $2985.80 (avg $6055.47),
so a factor 4+ more than the Maeslantkering software.

productivity Jones also provides productivity per line of code. Best-in-class systems
software development in the 10K function point range amounts to 1095 LOC per staff
month. The barrier-software took 300 staff months, so a productivity of 1500 LOC per
staff month. This is a factor 1.4 higher than best-in-class. For military software the
best-in-class productivity measured is 628 LOC per staff month, which is a factor 2.4
lower than the barrier-productivity.

year project integrity size defects/KLOC LOC/wday
1992 ATC display SIL 2 197000 0.75 13
1997 Helicopter landing system SIL 4 27000 0.22 7
1999 Smart card security ITSEC E6 100000 0.04 29
2002 Aircraft test set SIL 0 35000 < 0.1 28
2003 Secure biometrics CC EAL 5+ 10000 0.00 38

Table 1: Sample rates for deployed certified code taken from [1].

other certified software Peter Amey [1] is one of the few who published produc-
tivity rates for deployed certified code including all lifecycle phases and management
overhead for five systems. Table 1 displays a small SIL 4 system with a productiv-
ity of 7 LOC per workday, or 140 LOC per staff month. This is a factor 10 lower
than the barrier-software. The other tabulated systems with various certifications dis-
play a productivity of 13–38 LOC per workday. These rates are in the same range as
Jones’ best-in-class benchmarks: 36 for system software and 21 LOC per workday for
military software. Furthermore, the number of defects per 1000 lines of code for the
SIL 4 helicopter landing system is 0.22, extrapolated to 450000 LOC this amounts to
99 defects—a small fraction of which are severe. This could mean that there are only
a few severe errors in the barrier-software, but comparison should also take velocity of
defect removal into account.

defect removal velocity Table 1 also shows a 100K smart card system with 4 deliv-
ered defects. The ITSEC E6 is certainly equivalent to SIL 4 in requirements process
rigor. The barrier-software delivered 3 faults in the first 2 years of operation. However,
during customer testing 119 faults were found. In the smart card system 421 defects
were found, of which 10 during a customer test, and 4 in operation (3 code errors, 1
specification error) [1]. Multiplying 421 by 4.5 provides 1895 defects, which is the
same order of magnitude as the barrier-software. But here 119 errors were detected
during customer testing. So the defect removal velocity is much lower compared to the
smart card system. Extrapolating this too, it is not unlikely that there are more than
the three reported defects in the barrier-software. This is consistent with the reported
significant spending on the software while in operation.

appropriateness of the benchmarks Since formal methods, extreme rigor, and many
obligatory software development methods were used to construct the Maeslantkering
software, one could object against using industry benchmarks. That is why we used
the extreme values, and not industry averages. These extremes can serve as bounds.

9

The hypothesis is that the Maeslantkering software should be better than the extremes
in a consistent manner. But comparison indicates inconsistencies: you would expect a
lower assignment scope, given the many extra activities, but we found a higher scope
than ever measured. You would expect a larger staff size due to the extra activities, but
we found a much lower staff size than ever measured. Development schedules are com-
parable but you would expect longer durations, since more activities took place. You
would expect a higher price, but we found a much cheaper price than ever measured.
Since the system is certified at SIL 4, fault detection and diagnosis techniques must
have been used. Still, an extremely low amount of errors is reported during develop-
ment: only 1655. This is a factor 24 less than the lowest values in Jones’ benchmarks.

one size fits all Another objection could be that the size of 8490 function points is
erroneous, since backfiring is not an exact science. In fact an insider told us that our
function point estimate is plain wrong, but could not provide us with other figures.
Another objection could be that the real size to look at is not 450K but 200K since
that is in operation, or that the 200K only contains a small amount of critical code, so
that we only need to look at subsets of the system. However, IEC 61508 guidelines
do not make such distinctions. Indeed, lower function point sizes lead to much lower
high-severity errors. If we reduce the size to an unrealistically low minimum in the
range of about a thousand function points the minimal number of high-severity defects
delivered is two (military software).

Linking fault to failure
Depending on the argument used you’ll find more or less residual defects. However,
even the most optimistic arguments show that a few high-severity defects are likely
to reside in the barrier-software. Is a few faults low, high, or good enough? Let’s
approach this issue from the other side: how many residual defects are acceptable
for safety integrity level 4? Then we have to link fault to failure. For, one could
argue that if these defects never surface there is no problem after all. Or put more
formally: the failure rate distribution could be such that no failure materializes, and
since we have no knowledge about this distribution, we cannot conclude anything. Is
there a justifiable way of linking dangerous software faults to dangerous equipment
failures without knowing the failure rate distributions? To some extent there is. Bishop
and Bloomfield were instrumental in developing a distribution-free result [4, 5, 3] that
shows that, under the following conditions:

• a test interval T using an unchanging operational profile

• there are N residual faults in the software

• a fault is fixed once d failures have occurred

the worst-case failure rate λ after time T is bounded by:

λ ≤ Nd/eT ≤ 10λ

where e is the basis of the natural logarithm (e ≈ 2.718). The theory gives a worst
case bound for a given operational profile, and there are empirical arguments that the
best case failure rate should be no more than an order of magnitude better than the
bound, hence the 10 in the upper bound.

10

The distribution-free fault-to-failure bounds show that the reliability of software
increases when the operating interval T increases. So the longer the system is in oper-
ation without failing the more reliable we expect it to become. Furthermore, the model
is robust over the long term with respect to a number of assumption violations: non-
stationary input distributions, faulty corrections and imperfect diagnosis [4]. In practice
this implies that over long periods of time volatile input distributions are averaged out
and faulty corrections approximate the expected failure rate again. For imperfect diag-
nosis we should use a d > 1 since poor diagnosis has the effect of scaling up the failure
rate contribution of each fault. However for a high SIL system, we would expect all
faults to be fixed so we assume that d = 1.

We can use the worst case bound formula in reverse to compute the number of
residual faults needed to achieve a given failure target (given some level of operational
testing). For example, if we assume:

• pre-release testing is ten years, so T = 10

• a failure target of 10−4 per year after testing T years, so λ = 10−4

then from the above formula we require that e · 10−3 < N < e · 10−2. This is a
so-called fractional error which should be interpreted as follows. In the worst-case if
we implemented the software 368 times we would only expect 1 dangerous fault to be
found after delivery to the customer, and in the best-case only one dangerous fault in
37 implementations of the software.

In Table 1, the helicopter landing system SIL 4 software contains 2.2 · 10−4 faults
per line of code, which is in the order of 10−4 faults per line of code. Best-in-class
benchmarks show delivery of 38 defects for systems software in the 1000 function
point range [7]. For C++ code this amounts to 7.2 · 10−4 faults per line of code. So
one could say that best practice can achieve in the order of 10−4 faults per LOC. With
the required fractional error band of e · 10−3 < N < e · 10−2, we need the software to
be at most 27 lines of code. Even if we assume that only 10% of faults are dangerous
and the actual failure rate is only 10% of the worst case bound, the maximum program
size would be 2700 lines.

So even with generous assumptions about test time and dangerous fault percent-
ages, we cannot be certain we can reach this goal for realistic software. If we use
more realistic figures, e.g., a 200K line program and a fault density of 5 · 10−4/LOC
at the start of customer acceptance we would expect 100 residual faults at the start of
customer acceptance (indeed 119 were found for the Maeslantkering). If we further as-
sume that customer acceptance testing is equivalent to 10 operational years, the worst
case bound theory predicts a worst case failure rate at the start of operation of 3.7 fail-
ures/year and the best case failure rate is 0.37 failures/year. The observed rate of 3
faults in the first 2 years of operation of the Maeslantkering software is within the band
predicted by the theory.

Although we know there were at least 3 observed faults, we will use the inequalities
to calculate the acceptable bandwidth of dangerous residual defects, for the SIL 4 level
of the barrier-software. We need to solve N from the inequalities below:

λi ≤ Nd/eT ≤ 10λi

where λi is the maximum dangerous failure rate permitted in the SIL i band (i =
1, 2, 3, 4). We assume that faults are always fixed, so d = 1. We take i = 4, since the
barrier-software was certified at the SIL 4 level. From public records, we can estimate

11

the upper-bound of the test interval T . A publication of October 2000 reports three
faults in the Maeslantkering software since the system became operational, which was
October 1998 [11]. This means that in the best case the test interval is two years divided
by three faults, which amounts maximally to 5844 hours of uninterrupted testing the
system while in operation. The maximal SIL 4 dangerous failure rate is 10−8/h. So
solving N amounts to the following dangerous residual failure band 1/6294 ≤ N ≤
1/629. Recall that N is a fractional error: at best that if we implement over six hundred
software systems for the surge barrier only one dangerous fault may be present in one
of those 600 systems. Fact is that we know that there were 119 errors during customer-
acceptance testing, and 3 after, so N is at least 3. We also know that no catastrophes
occurred, so let us optimistically assume that our testing interval T is the total operating
time of the barrier, which is at the time of writing eight years. This yields a band of
dangerous residual fractional errors of: 1/524 ≤ N ≤ 1/52. So even with these
optimistic assumptions we are way off the required failure band.

What about per demand?
In the above calculations we used a time-frame of continuous operation, and some
may argue that a per demand calculation is more appropriate, given the low usage-
frequency. On a per demand basis, the same model can be used, only the time inter-
val T becomes the number of test demands D in a realistic operational profile, and the
SIL bands take other values. A presentation by people involved in the construction of
the barrier-software given at February 4, 2000 stated: ”Since then it has rightly been in
alert twice”, which refers to the barrier-software that was alert and took the right deci-
sion. It was never necessary to close it due to bad weather conditions. Although test
closures are done by perfect weather conditions (see Figure 1) we will count all seven
test-closures. There is a simulator supporting development, and potentially also the op-
erational software. The difficulty with such testing could be that the simulation omits
key elements of the true operational profile, like specific weather conditions, changes
in operating mode, input/output failures, configuration errors, computing system fail-
ures, restarts (think of a power outage), extended intervals between demands that could
lead to internal state corruption (like memory leaks), and more. So we are hesitant to
count such virtual closures. Therefore, the number of realistic test demands is set to 9.
Our analogous formula uses the same notation as before with two exceptions:

Λi ≤ Nd/eD ≤ 10Λi

here Λi is the maximum dangerous failure rate per demand permitted in the SIL i
band (i = 1, 2, 3, 4) and D is the number of test demands during an unchanging opera-
tional profile. For the given SIL level 4, the per-demand failure-rate is 10−4. Using the
above formula we find that 1/408 ≤ N ≤ 1/41. So, despite the per demand variant,
the conclusion remains the same: such fractional residual dangerous fault rates are in
our opinion unrealistic.

simulations There may be reasons for believing that even the best-case dangerous
failure rate the theory predicts is still lower than in reality. For instance, only a small
percentage of failures are actually dangerous, because only a small subset of the faults
are safety-critical. Or the worst-case-bound prediction is far too pessimistic, e.g., be-
cause all the faults are likely to be found in customer acceptance or early operation. Or
there has been a lot of realistic demand-based testing to accelerate test time using the

12

simulator to accelerate testing time (simulation of formal models was used). Using the
demand-based variant and the 119 found errors during customer acceptance testing we
need up to 437776 test demands to reach 10−4 per demand. If we generously assume
the 8 years of operation to be test-time, this implies up to 150 simulations per day dur-
ing its 8 years of operation. We do not have any information to determine whether such
a mitigating factor applies in the case of the barrier-software.

Conclusions
Affordable, high-speed production of super-reliable software is the holy grail of soft-
ware engineering, and we do not exclude the possibility that this is achieved in case
of the barrier-software. However, the published data in combination with our analysis
suggests that it is highly unlikely that the failure rate of the software controlling the
Maeslantkering falls within the SIL 4 band: once every ten thousand years.

On a reassuring note, even if the software failure rate is higher than 10−4 per de-
mand, it does not necessarily imply that the overall barrier behavior is unsafe. Most
safety-related industries employ diversity to achieve top-level safety goals. For exam-
ple, in the nuclear industry, diverse reactor shutdown systems are used. In the case
of the storm surge barrier, the relatively slow response times make it feasible for the
diverse actuation to be implemented by manual override. Typical human error rates
are below 10−4 per operation, but can be increased with suitable procedures and inde-
pendent cross-checking. So a combination of computers and operators could achieve
high safety targets despite relatively low software reliability. Therefore, it is good news
that the Dutch government decided to put a 16-person team in place when closure is
apparent.

In nuclear plants, airplanes, dams, tankers, automobiles, more and more depend-
able software is present, and similar software reliability questions will need an answer.
In our opinion, both Jones’ benchmarks, and the empirically validated distribution-free
fault-to-failure bounds by Bishop and Bloomfield are useful for long-term predictions.
We can measure defect removal efficiency much easier than potential failure in the fu-
ture. There are techniques available to increase the defect removal efficiency, and with
historical data we can estimate the number of residual (high-severity) defects. We be-
lieve that the IEC 61508 approach recommending best practices is a good start, but this
should be augmented with software-specific integrity levels expressed in bandwidths of
residual high-severity defects. With the approach illustrated with the barrier-software
we can then provide defect removal efficiencies and bounds for failure rates, so that
realistic quantification of failure rates for safety-critical software-intensive systems be-
comes a reality.

References
[1] P. Amey. IEC 61508-conformant software development with SPARK, 2005.

www.rvs.uni-bielefeld.de/Bieleschweig/fifth/download/B5-Amey.pdf.

[2] S. van Baars. The horizontal failure mechanism of the Wilnis peat dyke. Géotechnique, 55(4):319–323,
2005.

[3] P.G. Bishop. SILs and Software. UK Safety Critical Systems Club Newsletter, 2005. Available via
www.adelard.com.

[4] P.G. Bishop and R.E. Bloomfield. A Conservative Theory for Long-Term Reliability Growth. IEEE
Trans. Reliability, 45(4):550–560, 1996.

13

[5] P.G. Bishop and R.E. Bloomfield. Worst Case Reliability Prediction Based on a Prior Estimate of
Residual Defects. In Proceedings of the Thirteenth International Symposium on Software Reliability
Engineering (ISSRE ’02), pages 295–303, 2002.

[6] M. Chaudron, J. Tretmans, and K. Wijbrans. Lessons from the Application of Formal Methods to the
Design of a Storm Surge Barrier Control System. In J.M. Wing, J. Woodcock, and J. Davies, editors,
FM’99 – World Congress on Formal Methods in the Development of Computing Systems II, volume
1709 of Lecture Notes in Computer Science, pages 1511–1526. Springer-Verlag, 1999.

[7] C. Jones. Software Assessments, Benchmarks, and Best Practices. Information Technology Series.
Addison-Wesley, 2000.

[8] M.P.C. de Jong. Origin and prediction of seiches in Rotterdam harbour basins. PhD thesis, Delft
University of Technology, 2004.

[9] M.P.C. de Jong, L.H. Holthuijsen, and J.A. Battjes. Generation of seiches by cold fronts over the
southern North Sea. Journal of Geophysical Research, 108(C4):14.1–14.10, 2003.

[10] C. Perrow. Normal Accidents – Living with High Risk Technologies. Princeton University Press, 1984.

[11] J. Tretmans, K. Wijbrans, and M. Chaudron. Software Engineering with Formal Meth-
ods: The Development of a Storm Surge Barrier Control System. Technical Re-
port SVC Report II-06-a-1.1, System Validation Centre, Telematics Institute, 2000.
https://doc.telin.nl/dscgi/ds.py/Get/File-11356/II-06-a.pdf.

[12] J. Tretmans, K. Wijbrans, and M. Chaudron. Software Engineering with Formal Methods: The De-
velopment of a Storm Surge Barrier Control System – Revisiting Seven Myths of Formal Methods.
Formal Methods in System Design, 19:195–215, 2001.

[13] J.L.M. Vrancken. The human factor in system reliability – The case of the Maeslant movable storm
surge barrier in the Netherlands, 2006. In submission.

14

