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1 Motivation and Simplicial Complexes

The idea of Topological Data Analysis (TDA) is to assign topological invariants to data. Data
however is typically presented as a discrete sample whose topology is rather uninteresting.
Therefore we must transform the data into a ”continuous” object which (hopefully) is topolog-
ically similar to the shape of the underlying geometric object from which the data is sampled.
Take for example the discrete set of data points in the figure below. Clearly, there is a ”circular
structure” to the data and our pattern-seeking brains have no trouble inferring such informa-
tion. Topology per se does not measure this circularity but after thickening every point by
a well-chosen thickness an annulus appears. This is a topological object with a well-defined
”circular structure”.

Such circular structures appear in one of the early motivations behind TDA. Namely, the need
to robustly detect tunnels in protein molecules [22].

Ultimately, the resulting continuous spaces need to be discretized in order to process them on
a computer, and this discretization process is typically done by means of simplicial complexes.
In this section we discuss simplicial complexes in general and three constructions in particular:
the Cech, Vietoris–Rips, and alpha complexes

1.1 Simplices

A set of points {p0, . . . , pn} ⊂ Rd is said to be geometrically independent1 if for any (real)
scalars {ti}ni=0, the equations

n∑
i=0

ti = 0
n∑
i=0

tipi = 0 (1)

imply that t0 = t1 = . . . = tn = 0. This is clearly equivalent to the vectors {p1−p0, . . . , pn−p0}
being linearly independent (exercise).

1Or affinely independent.
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Figure 1: Examples of simplices of dimensions 0, 1, 2 and 3.

Definition 1.1. Let {p0, . . . , pn} be a geometrically independent set in Rd. We define the
n-simplex σ spanned by the points pi to be the set of all points x ∈ Rd of the form

x =

n∑
i=0

tipi

where
∑n

i=0 ti = 1, and ti ≥ 0 for all i. The point x is a convex combination of the points
p0, . . . , pn, and the uniquely determined numbers ti are called the barycentric coordinates.

One immediately observes that any point is a 0-simplex, any two distinct points form a
1-simplex (a line), three non-collinear points form a 2-simplex (a triangle), four non-coplaner
points form a 3-simplex (a tetrahedron) and so forth. Note that there can be no n-simplex in Rd
for n > d. The points p0, . . . , pn that span a simplex σ are called the vertices of σ; the number
n is the dimension of σ. A simplex is regular if all its edges have the same length. The
standard n-simplex ∆n spanned by the endpoints of the unit vectors along the coordinate
axes in Rn+1 is a regular simplex.

By definition, any subset of {p0, . . . , pn} is again geometrically independent and thus defines
a simplex in its own right. We say that τ is a face of σ if τ is spanned by a subset of the vertices
defining σ. We denote this by τ ⊆ σ or τ ⊂ σ if τ is a proper face of σ, i.e. τ 6= σ. The union
of the proper faces of σ is called the boundary of σ and is denoted by Bd(σ). The simplex σ
is a (proper) coface of τ if τ is a (proper) face of σ.

1.2 Simplicial Complexes

By gluing simplices along faces we obtain topological spaces whose properties are determined
by their combinatorial properties.

Definition 1.2. A simplicial complex K in Rd is a finite2 collection of simplices in Rd such
that:

1. Every face of a simplex of K is in K.

2. The non-empty intersection of any two simplices of K is a face of each of them.

The dimension of K is the maximum dimension of its simplices and is denoted by dimK.
If L is a subcollection of simplices that contains all faces of its elements, then L is a simplicial
complex in its own right; it is called a subcomplex of K. The p-skeleton K(p) of K is the
collection of all simplices of K of dimension at most p. In particular, K(0) is the vertex set of
K.

Let |K| denote the subset of Rd given by the union of all the simplices in K, equipped with
the subspace topology. This space is called the underlying space of K. A polyhedron is a
subset of Rd that can be realized as the underlying space of a simplicial complex.

2We will only consider finite simplicial complexes in this course.
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Figure 2: Left: A simplicial complex of dimension 3. Middle: This is not a simplicial complex
as the intersection of the two simplices is not a face. Right: Not a simplicial complex.

1.3 Abstract Simplicial Complexes

Often the precise geometry of the simplicial complex is not important. We now introduce a
purely combinatorial description of simplical complexes under which two objects are isomorphic
if and only if their geometric counterparts are linearly isomorphic.

Definition 1.3. An abstract simplicial complex is a finite collection A of finite non-empty
sets, such that if α is an element of A, then so is every nonempty subset of α.

We call the elements of A simplices and the dimension of α ∈ A is dimα = |α| − 1.
As above the dimension of A is given by dimA = maxα∈A dimα. We say that B ⊆ A is a
subcomplex of A if B is an abstract simplicial complex. The vertices VA of A is the union
of the one-point elements of A. We say that two simplical complexes A and B are isomorphic
if there is a bijective correspondence f : VA → VB satisfying {a0, . . . , an} ∈ A if and only if
{f(a0), . . . , f(an)} ∈ B.

A (geometric) simplicial complex K defines an abstract simplicial complex A by identifying
any simplex in K with its vertices. We say that A is the vertex scheme of K.

Example 1.4. The 1-simplex connecting p0 and p1 has vertex scheme {{p0}, {p1}, {p0, p1}}.

If A is the vertex scheme of K, then we say that K is a geometric realization of A. It is
easy to see that any abstract simplicial complex on d+ 1 vertices can be geometrically realized
as subcomplex of any d-simplex in Rd. The next lemma shows that we often can do considerably
better.

A finite subset P ⊂ Rd is in general position if any subset of at most d + 1 points is
geometrically independent.

Remark 1.5. Most point-sets are in general position, and those that are not can be brought into
general position by an arbitrary small perturbation. One may verify that any subset of at most
r + 1 points in the image of the curve γ : R → Rr defined by γ(t) = (t, t2, . . . , tr) is in general
position (exercise).

Lemma 1.6. An abstract simplicial complex A with dimA = d has a geometric realization in
R2d+1.

Proof. Let h : VA → R2d+1 be any function such that h(VA) is in general position, e.g. let h be
such that h(VA) = γ(S) where γ is the function from Remark 1.5 and |S| = |VA|. Any simplex
α ∈ A has at most d+1 vertices, and thus its vertices correspond to a geometrically independent
set under the function h. We denote this set by h(α), and the associated geometric simplex by
σα. It remains to show that the intersection of any two simplices is a face of both the simplices.
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Let α and β be any two simplices and observe that |α ∪ β| ≤ 2(d + 1), and therefore
h(α)∪h(β) forms a geometrically independent set. It follows that any point x ∈ σα∩σβ can be
uniquely represented as a convex combination of the vertices h(α)∪h(β). Hence the barycentric
coordinates of x can be non-zero only for ti ∈ h(α ∩ β). We conclude that x ∈ σα∩β.

1.4 Triangulations

Definition 1.7. A topological space X is triangulable if there exists a simplicial complex
K whose underlying space is homeomorphic to X. Any homeomorphism h : |K| → X is a
triangulation.

Example 1.8. Abstract simplicial complexes can be very useful in defining triangulations of
spaces; see Fig. 3 for an example of how to specify a triangulation of the cylinder (of finite
height).

Figure 3: Using an abstract simplicial complex to generate a triangulation of the cylinder.

Remark 1.9. It is a well-known fact that any closed surface can be triangulated and the same
holds true for 3-dimensional manifolds. The situation becomes significantly more complicated
in dimension 4 where manifolds need not admit a triangulation. The comb space is an example
of a compact, path-connected subset of the plane that cannot be triangulated. To see this, note
that a simplicial complex is locally connected, whereas the comb space is not.

1.5 The Cech and Vietoris–Rips Simplical Complexes

We now turn our attention to two of the most widely used simplicial complexes constructed
in topological data analysis. We shall return to them for a more formal treatment later in the
course. In what follows P = {p0, . . . , pn} ⊂ Rd, and Br(p) := {x′ ∈ Rd : ||x− x′|| ≤ r} denotes
the closed ball of radius r centered at p.

Definition 1.10. The Cech complex of P at scale r is the simplicial complex

Cechr(P ) = {σ ⊆ P :
⋂
p∈σ

Br(p) 6= ∅}.

Remark 1.11. |Cechr(P )| is homotopy equivalent to
⋃
p∈P Br(P ). This will be proven later in

the course.

The Cech complex may contain high dimensional simplices even for planar point sets; see
Fig. 4. Determining if σ ∈ Cechr(P ) may appear unwieldy for simplices of large cardinality.
The following theorem shows that we need not consider all possible intersections as long as the
embedding dimension is low.
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Figure 4: The Cech complex at scale r of a planar point set.
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Figure 5: A set of points in the plane and the minimal enclosing ball.

Theorem 1.12 (Helly’s Theorem). Let F denote a finite collection of closed, convex sets in
Rd. If the intersection of any d+ 1 sets is non-empty, then the whole collection has non-empty
intersection.

Proof. See e.g. [17, III.2].

Hence, if P ⊂ R3, then computing all quadruple intersections will be sufficient for deter-
mining Cechr(P ). Furthermore, one observes that σ ∈ Cechr(P ) if and only if there exists a
ball of radius r containing all the elements of σ. The unique (exercise) smallest enclosing ball
containing a set of points σ ⊆ P is called the minimal enclosing ball, and it can be effectively
computed with the miniball algorithm; see e.g. [17, III.2].

Recall that the diameter of a subset σ ⊆ P is given by diam(σ) = maxpi,pj∈P ||pi − pj ||.

Definition 1.13. The Vietoris–Rips complex of P at scale r is the simplicial complex

VRr(P ) = {σ ⊆ P : diam(σ) ≤ 2r}.

It is straightforward to verify that Cechr(P ) ⊆ VRr(P ) ⊆ Cech2r(P ). The latter bound can
however be significantly sharpened.
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Theorem 1.14 (Jung’s Theorem). Let Q be a finite point set in Rd. Then Q is contained in a

closed ball with radius r ≤ δ · diam(Q) where δ =
√

d
2(d+1) .

Proof. Working inductively, we first observe that the result is true for d = 1.
To prove the result in dimension d, it suffices to consider the case where |Q| = d + 1, and

the points are geometrically independent. Indeed, if the points of Q are not geometrically
independent, or |Q| < d + 1, then Q can be isometrically embedded in Rd−1. The result then
follows from the inductive hypothesis. For |Q| > d+1 we note that Jung’s theorem is equivalent
to the assertion that ⋂

q∈Q
Bδ·diam(Q)(q) 6= ∅.

From Helly’s theorem (Theorem 1.12) it is thus sufficient to verify that the intersection is
non-trivial for subsets of Q containing d+ 1 points.

Assume that the minimal enclosing ball B of Q has center z and radius r. Observe that
z is contained in the simplex σ spanned by Q. If it were not, then there would exist a point
q ∈ Q, such that z and q are separated by the affine (d− 1)-dimensional plane spanned by the
points in Q− {q} (see Exercise 2(c)). The orthogonal projection of z onto this plane would be
strictly closer to all of the points of Q, contradicting that the minimal enclosing ball has center
z. Hence, z can be written (uniquely) as a convex combination of the points {q1, . . . , qd+1} = Q
as follows

z =
d+1∑
i=1

tiqi,
d+1∑
i=1

ti = 1, ti ≥ 0.

Furthermore, we may assume that every point pi is contained in the boundary of B. To see
this, let Q′ = Q ∩ ∂B denote the set of boundary points, and let H be the hyperplane spanned
by the points in Q′. Then a sufficiently small translation of z in the direction of the orthogonal
projection onto H gives a point z′ satisfying ||z′ − qi|| < r for all qi ∈ Q, contradicting that B
was minimal.

Without loss of generality we will assume that z = 0. For a fixed 1 ≤ k ≤ d+ 1 we get

d+1∑
i=1,i 6=k

ti||qi − qk||2 =
d+1∑
i=1

ti||qi − qk||2 =
d+1∑
i=1

ti||qi||2 − 2qk ·
d+1∑
i=1

tiqi + ||qk||2
d+1∑
i=1

ti

= r2 − 0 + r2 = 2r2.

Summing over all 1 ≤ k ≤ d+ 1 gives

(d+ 1) · (2r2) =

d+1∑
k=1

d+1∑
i=1,i 6=k

ti||qi − qk||2 ≤
d+1∑
k=1

d+1∑
i=1,i 6=k

ti(diam(Q))2

=
d+1∑
k=1

(1− tk)(diam(Q))2 = d(diam(Q))2.

We conclude that

r ≤
√

d

2(d+ 1)
· diam(Q).

The bound is tight for regular d-simplices in Rd (exercise).

Corollary 1.15. Cechr(P ) ⊆ VRr(P ) ⊆ Cech2δr(P ) where 2δ = 2
√

d
2(d+1) =

√
2d
d+1 .
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1.6 The Alpha Complex

For a set of points P ⊂ Rd, the alpha complex at scale r is a comparatively small subcomplex
of Cechr(P ) capturing the ”same topology”; see Theorem 4.11. While the construction of the
alpha complex suffers from ”curse of dimensionality”, i.e., its complexity grows exponentially
in the ambient dimension, it is by far the most popular construction in TDA for d ∈ {2, 3}.

The Voronoi cell of p is

V (p) := {x ∈ Rd : ||x− p|| ≤ ||x− q|| for all p 6= q ∈ P}.

Closely related to the Cech complex, we have the following definition.

Definition 1.16. The alpha complex of P ⊂ Rn at scale r ≥ 0 is the simplicial complex

Alphar(P ) = {σ ⊆ P :
⋂
p∈σ

(V (p) ∩Br(p)) 6= ∅},

and
Alpha∞(P ) = {σ ⊆ P :

⋂
p∈σ

V (p) 6= ∅}.

The latter case is also known as the Delauney triangulation.

The efficacy of the alpha complex stems from the following theorem which we shall not
prove; see e.g., [5] for a complete discussion.

Theorem 1.17. Let P ⊂ Rd and assume that no d+ 2 points lie on the same (d− 1)-sphere3.
Then, the following holds:

1. Alpha∞(P ) has a geometric realization in Rd defined by mapping an abstract k-simplex σ
to the geometric k-simplex spanned by the points in σ,

2. the number of simplices in Alpha∞(P ) grows as O(|P |d d2 e),

3. Alpha∞(P ) can be computed in time O(|P | log |P |+ |P |d d2 e).

Note that the same theorem applies to any finite r by restriction. Furthermore, for planar
points, the number of simplices in the alpha complex grows linearly in the data points. This
is in contrast to the Cech and Vietoris–Rips complexes, for which there for any point set P is
2|P | − 1 simplices in total at large scales, of which

(|P |
3

)
are 2-simplices.

3This condition is known as spherical general position.
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(a)

a

b

c

(b)

Figure 6: (a) The alpha complex of a point cloud superimposed on the Voronoi cells. (b)
Intersecting the Voronoi cells with balls of radius r results in the regions colored gray. As there
is no triple intersection, the triangle is not filled in.

Figure 7: Alpha complexes of a point cloud P for two radii r1 < r2.
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1.7 Exercises

1. Verify that the points in {p0, . . . , pn} are geometrically independent if and only if {p1 −
p0, . . . , pn − p0} is a linearly independent set.

2. Let P = {p0, . . . pn} ⊂ Rd be a geometrically independent set.

(a) Show that every point x in the affine plane spanned by the points in P can be written
uniquely as x =

∑n
i=0 piti where

∑n
i=0 ti = 1.

(b) Show that all ti ≥ 0 if and only if x is contained in the n-simplex σ spanned by P .

(c) Assume n = d, and observe that for each i, the affine plane Ei spanned by the points
P − {pi} defines two halfspaces whose union is Rd and whose intersection is Ei.
Let Hi denote the halfspace containing the point pi, and denote by σ the n-simplex
spanned by the points in P . Show that

σ =

n⋂
i=0

Hi.

3. Which topological space is this?

4. ... and what about this space? (It’s not the torus!)

5. Verify that the Cech and Vietoris–Rips complexes are abstract simplicial complexes.

6. Show that any r + 1 points are the image of the curve γ : R → Rr defined by γ(t) =
(t, t2, . . . , tr) are geometrically independent.

7. Let P be the vertex set of a regular d-simplex in Rd with edge lengths equal to 2r. Show

that VRr(P ) 6⊆ Cechr′(P ) for r′ < r
√

2d
d+1 . In order words, show that the bound in Jung’s

theorem is tight.

8. Give an example of a point cloud P ⊂ R2 for which dim Alpha∞(P ) > 2.

9. (a) Define the join of two (disjoint) abstract simplicial complexes K and L to be the
simplicial complex K ∗L with vertex set VK ∪VL and all simplices {σ∪τ : σ ∈ K, τ ∈
L}. Verify that K ∗L is a simplicial complex, and show that ∆n ∗∆m is isomorphic
to ∆n+m+1.

12



(b) Show that if K and L admit geometrical realizations |K| ⊂ Rm, |L| ⊂ Rn, then K ∗L
has a geometric realization in Rm+n+1. (Hint: embed |K| in Rm × {0, . . . , 0} and
|L| in {0, . . . , 0} × Rn × {1}. ) Note: One can also check that |K ∗ L| ∼= |K| ∗ |L|
where ∗ is the join as defined for topological spaces; this gives a combinatorial way
to compute the join of triangulable spaces.

10. Show that the minimal enclosing ball of a finite set of points in Rd always exists (hint:
use a compactness argument). Show uniqueness for d = 2.
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2 The Euler Characteristic and Simplicial Homology

Distinguishing topological spaces is a notoriously difficult problem: deciding if two simplicial
complexes are homeomorphic (or homotopy equivalent) is an undecidable problem. Roughly
speaking, this means that there exists no algorithm which takes as input two simplicial com-
plexes and outputs ”true” if and only if they are homeomorphic. This is even the case if the
simplicial complexes are assumed to be triangulations of four-dimensional manifolds. Hence,
to show that two spaces are not homeomorphic, it is often more fruitful to show that they
look different under the lens of a tool which is insensitive to homeomorphism (or other forms of
equivalence). Algebraic topology offers one such approach: algebraic invariants such as homology
and homotopy groups are associated to topological spaces. We shall focus on the former of these
two as its computation reduces to simple linear algebra whereas the latter is exceptionally hard
to compute. Although the outputted homology invariants can be hard to interpret, we shall
see that for low-dimensional simplicial complexes, the invariants have a clear interpretation
in terms of connectivity, ”circularity” and cavities. Our first topological invariant, the Euler
characteristic, will illustrate this.

Definition 2.1. Let K be a simplicial complex and let Ki denote the number of i-simplices in
K. The Euler characteristic of K is the integer

χ(K) =
∑
i≥0

(−1)iKi.

It is not at all clear that this number depends only on the homemorphism type of the
underlying space |K|, and we will return to that fact in the next lecture. For now, we will try
to see what it represents by considering some familiar topological spaces.

Example 2.2. Consider the planar simplicial complex of Fig. 8. Its Euler characteristic is

χ = #vertices−#edges + #triangles = 11− 17 + 3 = −3.

We see that |χ| is one less than the number of ”holes” in the graph. The reader may verify that
the same relation holds for other planar simplicial complexes. This is no coincidence: in the
exercises you will prove that for a connected planar simplicial complex the following is always
true

2 = #vertices−#edges + #faces.

where number of faces is given by:

#faces = #triangles + #holes + 1(the unbouded component).

Hence,
1−#holes = #vertices−#edges + #triangles = χ.

Example 2.3. The regular tetrahedron and regular icosahedron are two of the five platonic
solids (see Fig. 9). They are both triangulations of the sphere and one can easily verify that
their Euler characteristics coincide.

χ(tetrahedron) = 4− 6 + 4 = 2

χ(icosahedron) = 12− 30 + 20 = 2.

14



Figure 8: The Euler characterstic counts the number of circular holes.

Figure 9: Left: tetrahedron. Right: icosahedron.

Figure 10: Left: A triangulation of the torus. Right: The torus and two independent loops
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The torus on the other hand has a triangulation as shown in Fig. 10. The Euler characteristic
of the triangulation is χ = 9−27+18 = 0. Again this is no coincidence: for a simplicial complex
K embedded in R3 the following relation holds:

χ(K) = #connected components−#independent loops + #voids.

There are no non-trivial loops on the sphere, whereas the torus has two, as depicted in Fig. 10.

The fact that the Euler Characteristic is invariant under homeomorphism allows us one talk
about the Euler characteristic of a triangulated topological space. Hence, the previous example
shows that the torus and the sphere are not homeomorphic.

Remark 2.4. Remarkably, two closed, oriented surfaces are homeomorphic if and only if they
have the same Euler characteristic: the Euler characteristic of a genus g surface is 2 − 2g.
In light of the introduction above, this can clearly not be the case for manifolds of arbitrary
dimension (why?).

2.1 Free Vector Spaces

We briefly recap the construction of a free vector space on a finite set. Let S be a finite set and
k an arbitrary field. We define the free k-vector space generated by S to be the vector
space F (S) with elements given by formal linear combinations

∑
si∈S aisi where each ai ∈ k

and si ∈ S. Here addition is defined component-wise in the obvious way:∑
si∈S

aisi +
∑
si∈S

bisi =
∑
si∈S

(ai + bi)si,

where ai + bi ∈ k. The resulting k-vector space has a canonical vector space basis given by the
elements in S.

Example 2.5. Let k = Z2 be the field of two elements and S = {a, b, c} a set of three elements.
Then F (S) is the 3-dimensional vector space with elements {0, a, b, c, a + b, a + c, b + c} and a
basis {a, b, c}. Addition is straight-forward: (a+ b) + (a+ c) = (2a) + b+ c = b+ c.

Example 2.6. If we instead let k = Z3 and S = {a, b} then

F (S) = {0, a, 2a, b, 2b, a+ b, a+ 2b, 2a+ b, 2a+ 2b}.

We observe that F (S) has dimension |S| and cardinality |S||k|.

2.2 The Betti Number and the Euler Characteristic

We shall now construct a family of topological invariants which measure ”connectedness” in a
given dimension. By means of this we can make the interpretation of the Euler characteristic
precise. For the time being we shall assume that k = Z2.

Definition 2.7. Let n ≥ 0 be an integer and K a simplicial complex. The vector space of
n-chains in K is the free Z2-vector space Cn(K) generated by the n-simplices of K.

By defining the boundary of an n-simplex to be the formal sum of its (n − 1)-dimensional
faces, we get a linear transformation ∂n : Cn(K)→ Cn−1(K). Formally, for a simplex {p0, . . . , pn},
let {p0, . . . , p̂i, . . . , pn} denote the (n− 1)-simplex obtained by omitting the vertex pi.

16



Figure 11: The cycle to the left is the sum of three other cycles.

Definition 2.8. The boundary operator ∂n : Cn(K)→ Cn−1(K) is the linear transformation
defined on simplices by

∂n({p0, . . . , pn}) =

n∑
i=0

{p0, . . . , p̂i, . . . , pn}

The following lemma is what makes the theory work. Intuitively, it states that a boundary
has no boundary.

Lemma 2.9. The composition ∂n ◦ ∂n+1 = 0 for all n ≥ 0.

Proof. By linearity it suffices to shown that ∂n ◦ ∂n+1(σ) = 0 for an (n + 1)-simplex σ =
{p0, . . . , pn+1}.

∂n ◦ ∂n+1(σ) = ∂n

(
n+1∑
i=0

{p0, . . . , p̂i, . . . , pn+1}
)

=

n+1∑
i=0

∂n({p0, . . . , p̂i, . . . , pn+1})

=
n+1∑
i=0

n+1∑
j=0,j 6=i

{p0, . . . , p̂j , . . . , p̂i, . . . , pn+1}.

For i 6= j we see that the (n − 1)-simplex {p0, . . . , p̂j , . . . , p̂i, . . . , pn+1} appears precisely two
times in the sum. Since we are working over Z2, the result follows.

We say that c ∈ Cn(K) is an n-cycle if ∂n(c) = 0 and we denote the associated vector space
of n-cycles by Zn(K) = ker ∂n = {c ∈ Cn(K) : ∂n(c) = 0}. If c is in the image of ∂n+1, that
is, c = ∂n+1(d) for some (n + 1)-chain d, then c is an n-boundary. We denote the associated
vector space of n-boundaries by Bn(K) = Im ∂n+1 = {∂n+1(d) : d ∈ Cn+1(K)}.

Example 2.10. Consider the simplicial complex in Fig. 11. Observe that the cycle c to the
left can be written as a linear combination c = c1 + c2 + c3. In fact, it is not hard to see that
{c1, c2, c3} forms a basis for the cycles in Z1(K); any ”hole” in in the simplicial complex can
be expressed as a linear of those cycles. We are however interested in counting the number of
”unbounded holes” and therefore we ignore any contribution from the cycles of B1(K) = {c3}.
The number of ”circular holes” is thus dimZ1(K)− dimB1(K) = 3− 1 = 2.

With the previous example fresh in mind we define

Definition 2.11. The n-th Betti number of K is βn(K) = dimZn(K)− dimBn(K).

For simplicial complexes in R3 the interpretation of the Betti numbers is clear: β1 is the
number of loops, and β2 is the number of cavities. In general, interpreting the betti numbers
can be quite subtle. The following is however always true.
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Definition 2.12. We say that a simplicial complex K is path-connected if any two vertices
in K are connected by an edge path.

Remark 2.13. A simplicial complex K is path-connected if and only if |K| is path-connected in
the topological sense. Proof: Assume that |K| is path-connected. Fix a vertex p in K and let
K0 denote the simplicial complex (verify this) consisting of all simplices with the property that
all of its vertices can be joined to p by an edge path. We let K1 denote the subcomplex of K
consisting of all simplices that are not in K0. Hence, K = K0 ∪K1 and K0 ∩K1 = ∅. Since
|K0| and |K1| are closed subsets of |K|, it follows from connectivity that K1 = ∅. The converse
statement is immediate.

Lemma 2.14. β0(K) equals the number of path-connected components of |K|.

Proof. Assume that K is path-connected, and let {p1, . . . , pm} denote the vertex set of K. A
basis for Z0(K) is given by ∪ui=1{p1, p2+p1, . . . , pm+p1}. Since K is path-connected, we can find,
for every j 6= 1, a c ∈ C1(K) such that ∂1(c) = p1+pj . This shows that β0(K) ≤ 1. To show that
β0 = 1, observe that a vertex cannot be in the image of ∂1: for any c ∈ C1(K), ∂1(c) is either 0 or
a non-trivial sum of an even number of vertices. Hence, β0(K) = dimZ0(K)− dimB0(K) = 1.
For the more general case, observe that if K = K1 ∪K2 where K1 and K2 are disjoint, then
the boundary operator decomposes as a direct sum

∂1 : C1(K) = C1(K
1)⊕ C1(K

2)
∂11⊕∂21−−−−→ C0(K

1)⊕ C0(K
2) = C0(K).

Where ∂i1 : C1(K
i)→ C0(K

i) is the first boundary operator for Ki. In particular,

β0(K) = K0 − dim Im ∂1 = K1
0 +K2

0 − dim Im ∂11 − dim Im ∂21 = β0(K
1) + β0(K

2).

The result follows by induction.

Theorem 2.15 (Euler-Poincare formula). For a simplicial complex K,

χ(K) =
∞∑
i=0

(−1)iKi =
∞∑
i=0

(−1)iβi(K).

Proof. From linear algebra we remember that for a linear transformation T : V → W we have
dimV = dim kerT + dim ImT . In our context this implies Ki = dimCi(K) = dimZi(K) +
dimBi−1(K). Letting B−1(K) = 0 we get the following:

χ(K) =
∞∑
i=0

(−1)iKi =
∞∑
i=0

(−1)i(dimZi(K) + dimBi−1(K))

=
∞∑
i=0

(−1)i(dimZi(K)− dimBi(K))

=
∞∑
i=0

(−1)iβi(K).
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Computation Computing βn(K) comes down to elementary linear algebra: for i ∈ {n, n+1}
represent ∂i in the canonical bases of Ci(K) and Ci−1(K) and reduce the resulting matrix
to diagonal form using elementary row and column operations. From the diagonal forms it
is easy to read off dim Im ∂n+1 = dimBn(K) as the number of non-zero diagonal terms, and
dim ker ∂n = dimZn(K) as the number of zero columns. The following example will make it
clear.

Example 2.16. Let K be the faces of a 2-simplex {1, 2, 3}. By identifying a simplex with its
vertices and representing the matrices ∂2 and ∂1 in their standard bases we obtain

∂2 =

123( )12 1
13 1
23 1

∂1 =

12 13 23( )1 1 1 0
2 1 0 1
3 0 1 1

∼ row/column operations ∼
( )1 0 0

0 1 0
0 0 0

We conclude that dimB1(K) = 1 and dimZ1(K) = 1, and therefore β1(K) = 1− 1 = 0.

2.3 A Remark on the Choice of Coefficients

The previous discussion has been for the field k = Z2. Homology is well-defined for coefficients in
any other field, or more generally, in any abelian group. For simplicial complexes in R3 the Betti
numbers are independent of the choice of coefficients. In higher dimensions however, the Betti
numbers may depend on the underlying field. Instead of developing a full theory of simplicial
homology in this more general setting, we shall limit ourselves to an example illustrating the
subtleties arising.

The boundary operator Let k be any field and let Cn(K; k) denote the free k-vector space
on the n-simplices of K. In order for the boundary operator to satisfy ∂n∂n+1 = 0 the simplices
need to be ordered. Intuitively, this means that we add a direction to every edge, and a left- or
right-handed coordinate system to any 2-simplex, and so forth for higher dimensions. One way
of obtaining such an orientation is to give a total order to the vertices of K:

p0 < p1 < . . . < pm.

The boundary of the simplex {p0, p1} is then ∂1({p0, p1}) = p1 − p0, and more generally,
∂n({p0, . . . , pn}) =

∑n
i=0(−1)i{p0, . . . , p̂i, . . . , pn}. It is now a simple exercise to show that

the boundary of the boundary vanishes. Hence, one gets cycle and boundary vector spaces
satisfying Bn(K; k) ⊆ Zn(K; k).

Example 2.17. Let K be the faces of a 2-simplex with vertex set {1, 2, 3} and k any field. By
identifying a simplex with its vertices and representing the matrices ∂2 and ∂1 in their standard
bases we obtain

∂2 =

123( )12 1
13 −1
23 1
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Figure 12: The projective plane, RP 2.

∂1 =

12 13 23( )1 −1 −1 0
2 1 0 −1
3 0 1 1

∼ row/column operations ∼
( )1 0 0

0 1 0
0 0 0

Hence the betti numbers are independent of the choice of coefficients.

Example 2.18. The projective plane RP 2 is an unoriented closed surface which does not admit
an embedding in R3. A triangulation of RP 2 can be seen in Fig. 12. Note that for k = Z2, the
boundary operator of the sum of all the 2-simplices is trivial. Since there are no 3-simplices,
this implies that β2(RP 2) ≥ 1 but it does not contain a ”cavity” in the intuitive sense. Indeed,
working with k = Z3 this ”cavity” disappears!

From what we have learned, it is possible to write down the associated boundary matrices
(preferably on a computer!) and verify that the Betti numbers differ between the choices k = Z3

and k = Z2:

β0(RP 2;Z3) = 1 β1(RP 2;Z3) = 0 β2(RP 2;Z3) = 0

β0(RP 2;Z2) = 1 β1(RP 2;Z2) = 1 β2(RP 2;Z2) = 1.

This computation could be significantly simplified if we worked with CW-complexes rather than
simplicial complexes. Note that the Euler characteristic is obviously independent of the field.

2.4 Simplicial Homology

The modern approach to defining the Betti numbers is by means of vector spaces. Working
with vector spaces, rather than mere integers, allow us to push homological information along
continuous maps. This property, called functoriality, is instrumental in showing invariance
under topological invariance and in the development of persistent homology.
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Definition 2.19. The n-th simplicial homology vector space of a simplicial complex K is
the quotient space Hn(K) = Zn(K)/Bn(K).

It follows from the definition that βn(K) = dimHn(K). We say that two cycles z1 and z2
are homologous if z1 = z2 + b where b is a boundary. We write [z1] = [z2] for the associated
equivalence class in Hn(K). Intuitively, two homologous cycles represent the same ”hole” in
the sense that their sum is either trivial or cycles around boundaries.

Lemma 2.20. Let V ⊆ W be two finite-dimensional vector spaces (over some field). A basis
B′ for V extends to a basis B for W . Furthermore, the elements of B \B′ are representatives of
a basis for W/V .

Proof. Left to the reader.

The previous lemma provides us with an algorithm for computing a basis for Hn(K): first
find a basis B′ for Bn(K) and then extend this basis to a basis B for Zn(K). Then the elements
of B \B′ provide us with a basis for Hn(K). Doing so by hand however can involve a significant
amount of row reductions even for rather small simplicial complexes. Therefore we shall let the
computer do the job!

Example 2.21. We return to the simplicial complex depicted in Fig. 11. The vector space
H0(K) is generated by [pi] for any vertex pi. Furthermore, Hi(K) = 0 for any i > 1. We have
already seen that B1(K) = {c3}. Hence {[c1], [c2]} is a basis for H1(K) ∼= Z2

2.
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2.5 Exercises

1. Give an example of two non-homeomorphic triangulated spaces with Betti numbers β0 = 1,
β1 = 2 and β2 = 1.

2. Let G be a finite, connected, and piecewise-linear planar graph, i.e. a connected 1-
dimensional simplicial complex geometrically realized in R2. Let v denote the number
of vertices, e the number of edges and f the number of faces (regions bounded by edges,
including the outer, infinitely large region).

(a) Show that v − e+ f = 2. (Hint: start by first considering a spanning tree and then
inductively add edges.) Observe from the Euler-Poincare formula that β1 counts the
number of unbounded faces.

(b) Use a) to construct a 1-dimensional simplicial complex that cannot be geometrically
realized in R2.

3. Show that if K is a simplicial complex with subcomplexes K1 and K2 such that K1∪K2 =
K, then χ(K) = χ(K1) + χ(K2) − χ(K1 ∩ K2). Does the same relation hold for the
individual Betti numbers βi(K)?

4. Let K be the disjoint union of two simplicial complexes K1 and K2. Show that Hn(K) ∼=
Hn(K1)⊕Hn(K2).

5. Construct a triangulation of the n-ball Bn = {p ∈ Rn : ||p|| ≤ 1} and find a basis for its
homology vector spaces in all dimensions. Do the results resonate with your intuition?

6. Let T be a simplicial complex that triangulates the torus. Define T#T to be the simplicial
complex obtained by removing a 2-simplex from two copies of T , and then identifying the
resulting simplicial complexes along the resulting boundary. What surface in R3 does
T#T triangulate? Compute χ(T#T ) and interpret the results geometrically.

7. Consider the following triangulation of the cylinder. Denote the associated simplicial
complex by K, and show that H1(K) ∼= Z2. What are the shortest cycles (in terms of
number of edges) z ∈ Z1(K) for which 0 6= [z] ∈ H1(K)?
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3 Computation, Induced Maps and Invariance

This week will discuss the ”standard algorithm” for computing simplicial homology, as well as
induced maps, and invariance of homology.

3.1 The Standard Algorithm

Denote the i-th column of a matrix M by Mi. If Mi is non-zero, then we define low(Mi) =
max{j : Mji 6= 0}. For a zero-column Mi we let low(Mi) = 0. We say that M is reduced if
i 6= j implies low(Mi) 6= low(Mj) or 0 = low(Mi) = low(Mj).

The following algorithm reduces the matrix M to a reduced matrix R with R = MV where
V is a upper-triangular and of full rank.

Algorithm 1: The standard algorithm.

Data: m1 ×m2 matrix M .
Result: Reduced m1×m2 matrix R, full-rank upper-triangular V , such that R = MV .
R←M ;
V ← Im2 (the m2 ×m2 identity matrix);
for j ∈ {1, 2, . . . ,m2} do

while there exists i < j with 0 6= low(Ri) = low(Rj) do
add column i of R to column j of R;
add column i of V to column j of V ;

end

end

Observe that the algorithm runs in O(m1m
2
2).

3.1.1 The Homology of a Triangle

We illustrate the algorithm on the simplicial complex given by the boundary of a triangle,
K = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}. The first step is to stack all the boundary operators
together in one big boundary matrix D and define a corresponding identity matrix V :

R := D =

1 2 3 12 13 23


1 0 0 0 1 1 0
2 0 0 0 1 0 1
3 0 0 0 0 1 1
12 0 0 0 0 0 0
13 0 0 0 0 0 0
23 0 0 0 0 0 0

, V =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

Observe that D is a linear transformation D : C0(K)⊕ C1(K)→ C0(K)⊕ C1(K) and that we
may identify every simplex with its corresponding basis vector in C0(K)⊕ C1(K) in a natural
way, i.e. the column vector (100000)T corresponds to the simplex {1}, (000100)T corresponds to
{1, 2} and (000111)T corresponds to the linear combination {1, 2}+{1, 3}+{2, 3}. Likewise, we
see that kerD = Z0(K)⊕Z1(K) and ImD = B0(K)⊕B1(K) as subspaces of C0(K)⊕C1(K).

We will now bring D into reduced form by adding columns from left to right, and at the
same time adding the corresponding columns in V . By iterating from the left to right, we check
for every column j, if there exists a non-zero column i < j with low(Ri) = low(Rj). By adding
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column 5 to column 6, and then adding column 4 to column 6, we obtain the following two
matrices

R := D =

1 2 3 12 13 13 + 12 + 23


1 0 0 0 1 1 0
2 0 0 0 1 0 0
3 0 0 0 0 1 0
12 0 0 0 0 0 0
13 0 0 0 0 0 0
23 0 0 0 0 0 0

, V =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 1

 .

where R = DV . The non-zero columns of a reduced matrix must necessarily be linearly indepen-
dent, and therefore the non-zero columns corresponding to elements of C1(K) will define a basis
for B0(K). Indeed, following the notation introduced above we see that {(110000)T , (101000)T }
forms a basis for B0(K).

By construction, the i-th column of V corresponds precisely to the linear combination of
simplices whose images under D adds up to the i-th column of R. In other words, a basis
for Z0(K) ⊕ Z1(K) is given by the columns of V corresponding to 0-vectors in R. Hence,
{(100000)T , (010000)T , (001000)T } ∪ {(000111)T } constitutes a basis for Z0(K)⊕Z1(K). Since
B1(K) = 0 it follows that H1(K) ∼= Z2 with a basis {[(000111)T ]}. Next step is to extend the
basis for B0(K) into a basis for Z0(K), and then use Lemma 2.20 to obtain a basis for H0(K).
Consider the two bases:

ΣB0 = {(110000)T , (101000)T }
Σ̃Z0 = {(100000)T , (010000)T , (001000)T }

Since low((100000)T ) 6∈ {low((11000)T ), low((101000)T ), the set ΣB0 ∪ {(100000)T )} must nec-
essarily be linearly independent. (This can be seen by constructing a matrix with the three
vectors as column vectors and observing that the resulting matrix is reduced.) Furthermore,

it contains the same number of basis elements as Σ̃Z0 which spans Z0(K). Hence, ΣZ0 :=
ΣB0 ∪ {(100000)T )} forms a basis for Z0(K) and H0

∼= Z2 has a basis {[(100000)T ]}.

3.1.2 The Algorithm

Let K be a simplicial complex of dimension d, and let

D : C0(K)⊕ . . .⊕ Cd(K)→ C0(K)⊕ . . .⊕ Cd(K)

denote the boundary operator represented in the standard basis given by the simplices of all
dimensions.

1. Use Algorithm 1 to obtain a decomposition R = DV .

2. The columns Ri with low(i) 6= 0 form a basis ΣB = ΣB0∪. . .∪ΣBd for B0(K)⊕. . .⊕Bd(K),

3. The columns Vi such that Ri = 0 form a basis Σ̃Z = Σ̃Z0∪. . .∪Σ̃Zd for Z0(K)⊕. . .⊕Zd(K),

4. Let ΣE = Σ̃Z \ {Vi ∈ Σ̃Z : ∃Rj with low(Rj) = low(Vi) = i}.

(a) ΣB ∪ ΣE is a basis for Z0(K)⊕ . . .⊕ Zd(K),

(b) {[Vi] : Vi ∈ ΣE} is a basis for H0(K)⊕ . . .⊕Hd(K).

24



Although the steps are justified in the example above, we briefly re-iterate the explanations.

1. -

2. The columns are linearly independent and all other columns are trivial. Hence they must
span the image of the linear transformation.

3. The zero-columns of R correspond to the kernel of D. By construction, the basis elements
for the kernel can be found in the corresponding columns of V .

4. (a) From the correctness of Algorithm 1, low(Ri) 6= low(Rj) for any Ri 6= Rj ∈ ΣB,

and low(Vi) 6= low(Vj) for any Vi 6= Vj ∈ Σ̃Z . Since ΣB spans a subset of Σ̃Z in

C0(K)⊕ . . .⊕Cd(K), there must exist exactly |Σ̃Z |− |ΣB| vectors Vi in Σ̃Z such that
low(Vi) 6= low(Rj) for all Rj ∈ ΣB.

(b) By Lemma 2.20.

The total running time is O(N3) where N is the number of simplices in K.

3.2 Simplicial Maps and their Induced Maps in Homology

Let K and L be abstract simplicial complexes with vertex sets VK and VL, respectively. A
simplicial map f : K → L is a function such that for every simplex {p0, . . . , pn} in K its
image {f(p0), . . . , f(pn)} is a simplex in L. Associated to a simplicial map we get an induced
linear map in all dimensions:

f# : Cn(K)→ Cn(L), f#(σ) =

{
f(σ) if dim f(σ) = dimσ,

0 otherwise.
.

Example 3.1. Let K denote the 2-simplex defined on the vertices {a, b, c} and let L = K −
{a, b, c}. Then f : K → L defines a simplicial map by f(a) = a, f(b) = f(c) = b. It follows that
f# : C2(K)→ C2(L) is the zero-map, and that f# : C1(K)→ C1(L) has matrix representation

ab ac bc( )ab 1 1 0
ac 0 0 0
bc 0 0 0

.

Lemma 3.2. We have the following commutative diagram

Cn(K) Cn−1(K)

Cn(L) Cn−1(L)

∂n

f# f#

∂n

I.e., f# ◦ ∂n = ∂n ◦ f#.

Proof. It suffices to prove the result for a single simplex σ = {p0, . . . , pn}.
Case 1: dim f(σ) = dimσ. In this case we have that

f#(∂n(σ)) =

n∑
i=0

f#({p0, . . . , p̂i, . . . , pn}) =

n∑
i=0

{f(p0), . . . , f̂(pi), . . . , f(pn)} = ∂n ◦ f#(σ).
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Case 2: dim f(σ) ≤ dimσ − 2. It is immediate that ∂n ◦ f#(σ) = 0. Furthermore,

dim{f(p0), . . . , f̂(pi), . . . , f(pn)} ≤ dimσ − 2, and therefore

n∑
i=0

f#({p0, . . . , p̂i, . . . , pn}) =
n∑
i=0

0 = 0.

Case 3: dim f(σ) = dimσ − 1. It is immediate that ∂n ◦ f#(σ) = 0. Assume without

loss of generality that f(p0) = f(p1). Then dim{f(p0), . . . , f̂(pi), . . . , f(pn)} ≤ dimσ− 2 for all
2 ≤ i ≤ n. Thus,

n∑
i=0

f#({p0, . . . , p̂i, . . . , pn}) = f#({p1, p2, . . . , pn}) + f#({p0, p2, . . . , pn})
f(p0)=f(p1)

= 0.

Corollary 3.3. A simplicial map f : K → L induces a well-defined map f∗ : Hn(K) → Hn(L)
defined by f∗([c]) = [f#(c)].

Proof. Since Hn(K) = Zn(K)/Bn(K) and Hn(L) = Zn(L)/Bn(L), it suffices to show that
f#(Zn(K)) ⊆ Zn(L) and f#(Bn(K)) ⊆ Bn(L).

Assume that ∂n(c) = 0 for c ∈ Cn(K). Then by Lemma 3.2 we have ∂n(f#(c)) = f#(∂n(c)) =
0. We conclude that f#(c) ∈ Zn(L). Now assume that c = ∂n+1(d) for some d ∈ Cn+1(K).
Then f#(c) = f#(∂n+1(d)) = ∂n+1(f#(d)). Hence f#(c) ∈ Bn(L).

3.3 Simplicial Approximations and Invariance of Homology

In order to put the homology vector spaces on a firm footing we need to prove that if |K| is
homeomorphic to |L|, then Hn(K) ∼= Hn(L). A complete proof of this fact is no easy task
and we will not discuss the proof in detail. The goal of this part is merely to outline how a
continuous map h : |K| → |L| induces a map h∗ : Hn(K) → Hn(L) in homology, and that this
construction is functorial. An easy consequence will be that h∗ is an isomorphism whenever h
is a homeomorphism. The full story can be found in [25].

3.3.1 Simplicial Maps Revisited

For geometric simplicial complexes K and L we define a simplicial map f : K → L to be a
function f : K(0) → L(0) such that if σ is spanned by p0, . . . , pn, then the simplex spanned by
f(p0), . . . , f(pn) is contained in L.

Remark 3.4. Recall that any geometric simplicial complex K can be identified with an abstract
simplicial complex through its vertex scheme, i.e. by identifying every geometric simplex with
the vertices that span it. A simplicial map of geometric simplicial complexes induces a simplicial
map between the associated vertex schemes. Hence, a simplicial map f : K → L between
geometric simplicial complexes induces a map f∗ : Hn(K)→ Hn(L) in homology.

The simplicial map f : K → L induces a continuous (affine) map |f | : |K| → |L| given by

f

(
n∑
i=0

tipi

)
=

n∑
i=0

tif(pi), where
n∑
i=0

ti = 1, and 0 ≤ ti ≤ 1.
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Figure 13: A continuous map and a simplicial approximation; see Fig. 13

3.3.2 Simplicial Approximations

We shall now see how a well-defined morphism h∗ : Hn(K) → Hn(L) can be associated to any
continuous map h : |K| → |L|.
Definition 3.5. Let K and L be geometric simplicial complexes and h : |K| → |L|. We say
that f : K → L is a simplicial approximation to h, if for each x ∈ |K|, |f |(x) is contained
in the minimal simplex which contains h(x).

The following theorem makes it clear why simplicial approximations are relevant.

Theorem 3.6. If f1, f2 : K → L are simplicial approximations to h : |K| → |L|, then f1,∗ =
f2,∗ : Hn(K)→ Hn(L).

In particular, for any continuous map h that admits a simplicial approximation f , we have
a well-defined map f∗ : Hn(K) → Hn(L) in homology. However, not all maps admit such
approximations.

Example 3.7. Let K be the triangulation of the triangle shown in Fig. 13, and let L be the
triangulation of a filled rectangle with a hole in the same figure. The curve in |L| shows the
image of |K| under a continuous mapping h. We see that h admits a simplicial approximation
f : K → L which is obtained by pushing the images of the vertices of K onto the corresponding
vertices of L as indicated by arrows. Note that if |K| had a less refined triangulation given by
{{a}, {b}, {c}, {a, b}, {a, c}, {b, c}} then h would not admit a simplicial approximation.

The previous example shows that for a given K and L, and a function h : |K| → |L|, there
need not exist a simplicial approximation f : K → L to h. However, it seems plausible that one
can always ”subdivide” the simplices of K to be so ”small” that we can push the image of its
vertices onto the vertices of L in a way that gives a well-defined simplicial map.

Definition 3.8. A simplicial complex K ′ is a subdivision of a simplicial complex K if |K ′| =
|K| and each simplex of K ′ is contained in a simplex of K.

Subdivisions are particularly useful because of the following non-trivial result.

Theorem 3.9. Let K ′ be a subdivision of K, and let g : K ′ → K be a simplicial approximation
to the identity on |K|. Then g∗ : Hn(K ′)→ Hn(K) is an isomorphism.

One way to subdivide a simplicial complex K is through barycentric subdivision. Let
σ ∈ K be a simplex in Rk spanned by vertices {p0, . . . , pn}. The barycenter of σ is

σ̂ =
1

n+ 1
(p0 + . . .+ pn).
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Figure 14: A simplicial complex together with its first two barycentric subdivisions.

The first barycentric subdivision of K is the simplicial complex Sd(K) consisting of all
simplices spanned by vertices σ̂0, . . . , σ̂r where σ0 ⊂ σ1 . . . ⊂ σr is a sequence of different
simplices in K. In particular, the vertex set of Sd(K) is {σ̂ : σ ∈ K}.
Remark 3.10. Sd(K) is a simplicial complex and | Sd(K)| = |K|.

For j > 1 we define the j-th barycentric subdivision Sdj(K) to be the barycentric subdivision
of Sdj−1(K).

Example 3.11. Fig. 14 shows a simplicial complex K together with its first two barycentric
subdivisions Sd(K) and Sd2(K). Observe that any function f : Sd(K)(0) → K(0) which maps
a vertex σ̂ to any vertex of σ defines a simplicial map.

We state the following important theorem due to Alexander without a proof.

Theorem 3.12 (Simplicial Approximation Theorem). Let K and L be simplicial complexes and
h : |K| → |L| a continuous map. Then h admits a simplicial approximation f : Sdj(K)→ L for
some sufficiently large j.

In conjunction with Theorem 3.6 this shows that h induces a map f∗ : Hn(Sdj(K))→ Hn(L)
for some sufficiently large j. To complete our construction of an induced map in homology, we
need the following lemma whose proof is left as an exercise.

Lemma 3.13. Let f : Sd(K)(0) → K(0) denote any map which sends a vertex σ̂ in Sd(K) to any
vertex of σ. Then f is a simplicial map and an approximation to the identity id|K| : |K| → |K|.

We are now ready to associate a map in homology to a continuous map h : |K| → |L|.
Choose a subdivision K ′ of K and simplicial maps g : K ′ → K and f : K ′ → L that approximate
id|K| and h, respectively. Such f, g and K ′ exist by Theorem 3.12 and repeated application of
Lemma 3.13. This yields the following zigzag of vector spaces and linear maps:

Hn(K)
g∗←− Hn(K ′)

f∗−→ Hn(L)

From Theorem 3.9, g∗ : Hn(K ′) → Hn(K) is an isomorphism, and we thus obtain a map in
homology:

h∗ := f∗ ◦ (g∗)
−1 : Hn(K)→ Hn(L). (2)

Theorem 3.14. Let h∗ be as in Eq. (2).

• The map h∗ is well-defined, i.e. it does not depend of the choice of K ′, f and g.

• The construction is functorial, i.e. (id|K|)∗ = idHn(K) and (h′ ◦ h)∗ = h′∗ ◦ h∗ for any pair
of continuous maps h : |K| → |L| and h′ : |L| → |M |.

We end this section by observing that homology is invariant under homeomorphism. In
particular, the homology of a topological space is independent of the triangulation.
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Corollary 3.15. If h : |K| → |L| is a homeomorphism, then h∗ is an isomorphism.

Proof. If h : |K| → |L| is a homeomorphism, then

idHn(K) = (id|K|)∗ = (h−1 ◦ h)∗ = (h−1)∗ ◦ h∗ : Hn(K)→ Hn(K),

idHn(L) = (id|L|)∗ = (h ◦ h−1)∗ = h∗ ◦ (h−1)∗ : Hn(L)→ Hn(L).

Hence, f∗ is an isomorphism.
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3.4 Exercises

1. Compute β1 for the cube below. How does β1 correspond to the number of ”holes”?

2. Show that Sd(K) is a simplicial complex.

3. Prove Lemma 3.13.

4. Consider the triangulation K of the circle and the triangulation L of the torus shown
below.

A basis for H1(L) is given by {[w], [z]} where w = {A,D} + {D,E} + {A,E} and z =
{A,B} + {B,C} + {C,A}. Let [γ] be the generator of H1(K). Represent g∗([γ]), h∗([γ])
and s∗([γ]) in the basis {[w], [z]}, where g, h, s : K → L are simplicial given by

g(a) = A, g(b) = B, g(c) = F, g(d) = E, g(e) = H, g(f) = B

h(a) = A, h(b) = B, h(c) = C, h(d) = A, h(e) = E, h(f) = D

s(a) = A, s(b) = G, s(c) = F, s(d) = H, s(e) = H, s(f) = A

5. Given a finite set of points P in Rn, one common approach to analyzing its ”topological
structure” is by means of the associated Betti curve in dimension i. The Betti curve in di-

mension 1 is the function b1 : R≥0 → {0, 1, 2, . . .} given by b1(r) = β1(Cechr(P ))
thm. not yet proved

=
β1(∪p∈PBr(P )). This construction does not capture the ”size” of the ”holes” in the data
and can be very sensitive to perturbations. Construct examples illustrating this and try
to think of ways this can be rectified.
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4 Homotopy Equivalence, Relative Homology and Sensor Net-
works

4.1 Homotopy Equivalence

In the last lecture we outlined how a continuous map h : |K| → |L| between polyhedra induces
a linear map in homology, and that this map is an isomorphism if h is a homeomorphism. We
shall now discuss a weaker condition on h for which the induced map is an isomorphism. All
functions are assumed to be continuous.

Definition 4.1. A homotopy between two maps f, g : X → Y is a map F : X × [0, 1] → Y ,
such that F (x, 0) = f(x) and F (x, 1) = g(x) for all x ∈ X. (X × [0, 1] is equipped with the
product topology.)

If there is a homotopy between f and g then we say that f and g are homotopic and denote
this by f ' g.

Remark 4.2. Homotopy defines an equivalence relation.

Example 4.3. Fig. 15 shows an example of a homotopy between two functions f, g : [0, 1]→ R2.

Example 4.4. The two functions f, g : [0, 1]→ {0, 1} defined by f(x) = 0 and g(x) = 1 for all
x are not homotopic.

Figure 15: A homotopy between two functions f and g.

We will however need a stricter version of homotopy. Let A ⊆ X and B ⊆ Y . A map of
pairs f : (X,A) → (Y,B) is a map f : X → Y such that f(A) ⊆ B. A homotopy of pairs
between f, g : (X,A) → (Y,B) is a homotopy F : X × [0, 1] → Y between f and g such that
Ft(A) ⊆ B for all t ∈ [0, 1].

Example 4.5. Let X = [0, 1], A = {0, 1}, Y = R2 − {0} and B = {p} where 0 6= p ∈ R2.
The equivalence classes of homotopic maps constitute the fundamental group of R2−{0} (w.r.t
point p); see Fig. 16a.

Definition 4.6. The spaces (X,A) and (Y,B) are homotopy equivalent if there exists maps
f : (X,A)→ (Y,B) and g : (Y,B)→ (X,A) such that g ◦ f ' id(X,A) and f ◦ g ' id(Y,B).

We write (X,A) ' (Y,B) if (X,A) and (Y,B) are homotopy equivalent. If i : (Y,B) ↪→
(X,A) denotes an inclusion of a subspace, and r : (X,A) → (Y,B) is such that r ◦ i = id(Y,B)

and i ◦ r ' id(X,A), then (Y,B) is a deformation retract of (X,A). If (X,A) ' {pt} then
(X,A) is contractible; see Fig. 16b.

Our interest in homotopic maps stems from the following theorem.

Theorem 4.7. If f ' g : |K| → |L| then f∗ = g∗ : Hn(K)→ Hn(L).
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(a)

(b)

Figure 16: a) The functions f and g are homotopic, but neither of them is homotopic to h. (b)
The disk deformation retracts down onto its origin and is thus contractible. The disk with a
hole in the middle deformation retracts onto the circle (and is therefore not contractible).

Corollary 4.8. If f : |K| → |L| is a homotopy equivalence of polyhedra, then is f∗ : Hn(K)→
Hn(L) an isomorphism.

Proof. Let g be such that g ◦ f ' id|K| and f ◦ g ' id|L|. Since homology is functorial:

idHn(K) = (id|K|)∗ = (g ◦ f)∗ = g∗ ◦ f∗ : Hn(K)→ Hn(K),

idHn(L) = (id|L|)∗ = (f ◦ g)∗ = f∗ ◦ g∗ : Hn(L)→ Hn(L).

Hence, h∗ is an isomorphism.

Remark 4.9. While it is possible to show that simplicial homology defines a homology theory
for triangulated spaces (see e.g. [25, Section 27] for a detailed discussion), there is a more
natural construction that applies to any topological space. This homology theory is called
singular homology. With a bit of work, one can show that singular and simplicial homology
coincide when restricted to polyhedra. That is, whenever X ' |K|, we can compute its singular
homology HS

n (X) by means of the simplicial homology Hn(K). Furthermore, if f : X → Y with
|K| ' X and Y ' |L| then there is the following commutative diagram where f̂ is the map

given by the composition |K| → X
f−→ Y → |L|,

HS
n (X) HS

n (Y )

Hn(K) Hn(L).

∼=

f∗

∼=
f̂∗

In conclusion: from time to time we need to consider the homology of a topological space X
which is not a polyhedron and we will simply denote its homology by Hn(X) where this is to
be understood as the simplicial homology of any polyhedron homotopy equivalent to X. We
will not consider spaces that are not homotopy equivalent to a simplicial complex.

4.2 The Nerve Theorem

A particular instance of a homotopy equivalence is the nerve theorem.
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Figure 17: The Nerve (right) associated to the cover to the left.

Let F be a finite collection of closed, convex sets in Euclidean space. Define the nerve of
F to be the abstract simplicial complex

N (F ) := {G ⊆ F :
⋂
Fi∈G

Fi 6= ∅}.

Example 4.10. Consider the set F = {F1, F2, F3} in Fig. 17. Then

N (F ) = {{F1}, {F2}, {F3}, {F1, F2}, {F2, F3}, {F1, F3}}

which is (isomorphic to) the abstract simplicial complex associated to the boundary of a 2-
simplex. Clearly, F1 ∪ F2 ∪ F3 ' |N (F )|.

Theorem 4.11 (The (Persistent) Nerve Theorem).

1. Let F = {F1, . . . , Fm} denote a collection of closed and convex sets in Euclidean space.
Then, ⋃

Fi∈F
Fi ' |N (F )|.

2. Let F be as above and let F ′ = {F ′1, . . . , F ′m} be a collection of closed and convex sets
such that Fi ⊆ F ′i for all i. Denote by j the inclusion

⋃
Fi∈F Fi ↪→

⋃
F ′i∈F ′

F ′i , and let

σ : N (F ) → N (F ′) be the simplicial map that sends Fi to F ′i . The following diagram
commutes:

Hn(
⋃
Fi∈F Fi) Hn(

⋃
F ′i∈F ′

F ′i )

Hn(N (F )) Hn(N (F ′))

j∗

∼= ∼=
σ∗

Proof. The idea of the proof is the following. Consider the subspace ∆F of |N (F )| × ∪Fi∈FFi
defined by the disjoint union

∆F =
⊔

S∈N (F )

|S| ×
⋂
Fi∈S

Fi,

under the equivalence relation (s, x) ∼ (t, x) if s ∈ |S|, t ∈ |T |, S ⊆ T , and s = t. We have
continuous projection maps π1 : ∆F → |N (F )| and π2 : ∆F → ∪iFi, given by projecting onto
the first and second component, respectively. This is illustrated in Fig. 18. With some work,
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π2 π1

F1

F2F =

∪

∆F N (F )

Figure 18: The space ∆F in the proof of Theorem 4.11 for two overlapping segments in R.

one can show that both of these projections are homotopy equivalences; see for instance [20] for
a proof4.

This gives the following commutative diagram⋃
i Fi

⋃
i F
′
i

∆F ∆F ′

N (F ) N (F ′)

j

π2 '

π1'

π2 '

π1'

σ

Passing to homology, the projection maps become isomorphisms and we obtain the commutative
diagram in the statement.

4.2.1 The Cech Complex

Let P ⊂ Rn be a finite set of points. By definition of the Cech complex we have that
Cechr(P ) = N (F ) where F = {Br(p) : p ∈ P}, and it follows from Theorem 4.11 that the
geometric realization of the Cech complex is homotopy equivalent to the union of closed r-balls.
This shows that the Betti numbers associated to the Cech complex can be interpreted as ”holes”
of various dimension formed by the associated union of balls in Euclidean space; see Fig. 19.
We leave it as an exercise to prove that the Alpha complex is homotopy equivalent to the Cech
complex.

4.3 Relative Homology

Let K0 ⊆ K be a subcomplex. The vector space of relative n-chains is the quotient vector
space Cn(K,K0) = Cn(K)/Cn(K0). Since ∂n(Cn(K0)) ⊆ Cn−1(K0) by construction, it follows
that ∂ descends to a boundary map

∂n : Cn(K,K0)→ Cn−1(K,K0)

4This proof is given for an open cover, but we can reduce our problem to this by replacing the closed convex
sets with slightly larger open sets such that the nerve remains the same.
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Figure 19: The union of balls is homotopy equivalent to the associated nerve (middle).

such that ∂n ◦ ∂n+1 = 0. Hence, we get associated relative homology groups given by

Hn(K,K0) =
Zn(K,K0)

Bn(K,K0)
:=

ker ∂n : Cn(K,K0)→ Cn−1(K,K0)

Im ∂n+1 : Cn+1(K,K0)→ Cn(K,K0)
.

Example 4.12. Let K denote the simplicial complex given by a 2-simplex and all its faces,
and let K0 denote its 1-skeleton. It follows that:

dimC2(K) = 1 dimC2(K0) = 0

dimC1(K) = 3 dimC1(K0) = 3

dimC0(K) = 3 dimC0(K0) = 3

We conclude that H2(K,K0) ∼= Z2, H1(K,K0) = H0(K,K0) = 0.

The previous example generalizes to any n-simplex: let K be denote a n-simplex with its
faces, and K0 its (n− 1)-skeleton. Then Hn(K,K0) ∼= Z2 and all other homology vector spaces
are trivial. The following theorem explains why.

Theorem 4.13. Let K0 ⊆ K. Then, Hn(K,K0) ∼= Hn(|K|/|K0|) for all n ≥ 1.

Here |K|/|K0| need not be a simplicial complex; see Remark 4.9.

Example 4.14. Returning to the previous example we see that |K|/|K0| ' S2 ' Bd(∆3) (the
boundary of the standard 3-simplex). Thus, H2(K,K0) ∼= H2(|K|/|K0|) ∼= H2(Bd(∆3)) ∼= Z2.

Next we observe that if f : (K,K0)→ (L,L0) is a (geometric) simplicial map of pairs, then
f#(Cn(K0)) ⊆ Cn(L0). Therefore the induced map f# : Cn(K,K0) → Cn(L,L0) defined by
f#([c]) = [f(c)] is well-defined. Furthermore, it follows from Lemma 3.2 that

∂n ◦ f#([c]) = [∂n ◦ f#(c)] = [f# ◦ ∂n(c)] = f# ◦ ∂n([c]).

Just as in the proof of Corollary 3.3 this gives an induced map in relative homology

f∗ : Hn(K,K0)→ Hp(L,L0).

Theorem 4.15. If f, g : (|K|, |K0|) → (|L|, |L0|) are homotopic, then f∗ = g∗ : Hn(K,K0) →
Hn(L,L0).

Corollary 4.16. If f : (|K|, |K0|) → (|L|, |L0|) is a homotopy equivalence, then f∗ an isomor-
phism.

Proof. See the proof of Corollary 4.8.
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Example 4.17. Let S1 ⊆ D2 denote the unit circle and disk, respectively. Then (D2 −
{0}, S1) ' (S1, S1) and therefore H2(D

2 − {0}, S1) ∼= 0. On the other hand, (D2, S1) '
(∆2,Bd(∆2)) and therefore

H2(D,S
1) ∼= H2(∆

2/Bd(∆2)) ∼= H2(S
2) ∼= H2(Bd(∆3)) ∼= Z2.

The following linear transformation will be important in the next section.

Theorem 4.18. Let K0 ⊆ K. The linear map δ∗ : Hn(K,K0) → Hn−1(K0) given by δ∗([c]) =
[∂n(c)] is well-defined, and if f : (K,K0)→ (L,L0) is a simplical map of pairs, then the following
diagram commutes:

Hn(K,K0) Hn−1(K0)

Hn(L,L0) Hn−1(L0).

δ∗

f∗ f∗

δ∗

Proof. Left as an exercise.

4.4 Sensor Networks

We now show how relative homology can be used to determine if a region is covered by a finite
set of simple sensors. We will prove [13, Theorem 1]. For a beautiful overview of homological
sensor networks see [14].

4.4.1 The Covering Problem

The problem is as follows: assume that you are given a collection of nodes X (i.e. a finite point
set) contained in a domain D ⊂ R2, where each node can sense, broadcast, and cover a region of
a given radius. Does the collection of coverage disks of X cover the domain? In the illustration
above we see that the answer is ”yes” in the left case and ”no” in the right case. Assuming
the location of every sensor is known, then this is a trivial task. But we will work under the
assumption that we do not know the specific location of the sensors - merely which sensors are
close to each other.

We will work under four assumptions:

1. The nodes broadcast their unique ID numbers. Each node can detect the identity of any
node within broadcast radius rb.

2. The nodes have radially symmetric covering domains of cover radius rc ≥ rb/
√

3.
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3. The nodes X lie in a compact connected domain D ⊂ R2 whose boundary ∂D is connected
and piecewise-linear with vertices marked fence nodes Xf .

4. Each fence node x ∈ Xf knows the identities of its neighbors on ∂D and these neighbors
both lie within distance rb of x.

For simplicity we use the notation R := VRrb/2(X) and we let F = VRrb/2(Xf ) denote the
1-dimensional cycle associated to the boundary nodes, i.e. ∂D is a geometric realization of F .
Lastly, recall from Theorem 4.18 that there is a well-defined morphism δ∗ : H2(R,F )→ H1(F ).

Theorem 4.19. If there exists [α] ∈ H2(R,F ) such that 0 6= δ∗([α]) = [∂2(α)] ∈ H1(F ), then
the union U = ∪x∈XBrc(x) covers D.

Proof. Let z : |R| → R2 be the affine map which sends a vertex vi of |R| to its corresponding node
in the plane, and which is extended linearly to all higher-dimensional simplices: z(

∑n
i=0 tivi) =∑n

i=0 tiz(vi). First we observe that z(|R|) ⊆ U . Indeed, let Q = {q1, . . . , qn} be a set of nodes
which form a simplex τ in R, i.e., diam(Q) ≤ rb. Then, by Theorem 1.14, the intersection⋂
x∈QBrb/

√
3(x) is non-empty. This implies that any point in z(τ) is at distance at most rb/

√
3

from a point in Q. To see this, let p = t0q0 + . . . + tnqn for
∑

i ti = 1 and ti ≥ 0, and let
c̃ = c − p where c is the center of the minimal enclosing ball of Q. For q̃i = qi − p, we have
0 = t0q̃0 + . . . tnq̃n, and

0 = t0q̃0 · c̃+ . . .+ tnq̃n · c̃.
In particular, for some i, q̃i · c̃ < 0. In that case,

(rb/
√

3)2 = ||qi − c||2 = ||q̃i − c̃||2 = ||q̃i||2 − 2q̃i · c̃+ ||c̃||2 ≥ ||q̃i||2 = ||qi − p||2.

From here we get

z(τ) ⊆
⋃
x∈Q

Brb/
√
3(x) ⊆

⋃
x∈Q

Brc(x) ⊆ U.

Since this holds for every simplex τ , it follows that z(|R|) ⊆ U .
From Theorem 4.18 we have the following commutative diagram:

H2(R,F ) H1(F )

H2(R2, ∂D) H1(∂D).

δ∗

z∗ ∼=z∗

δ∗

In particular, z∗([α]) = z∗ ◦ δ∗([α]) 6= 0. Assume for the sake of contradiction that there is
a p ∈ D which is not contained in U . Then, the map z factors as

(|R|, |F ]) (R2, ∂D)

(U, ∂D) (R2 \ {p}, ∂D)

z

z

and applying homology yields the following commutative diagram of vector spaces,

H2(R,F ) H2(R2, ∂D)

H2(U, ∂D) H2(R2 \ {p}, ∂D)

z∗

z∗ .
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Observe that (R2 \ {p}, ∂D) ' (D \ {p}, ∂D) ' (∂D, ∂D) and thus

H2(D \ {p}, ∂D) ∼= H2(∂D, ∂D) = 0.

This contradicts that z∗([α]) 6= 0.

Corollary 4.20. Let α be as in Theorem 4.19. The restriction of U to those nodes which make
up α covers D.

4.5 Exercises

1. Construct two topological spaces which have the same Betti numbers but which are not
homotopy equivalent.

2. Let K consist of a p-simplex and its faces. How many p-simplices belong to the barycentric
subdivision of K?

3. There is a stronger version of the Nerve theorem that allows one to replace the condition
that the sets are convex with the following: all possible intersections of the sets Fi’s are
contractible. This is clearly satisfied if the sets Fi are convex.

Let P be a finite collection of paths that cover a tree. That is, each node and each edge
of the tree belongs to at least one path. Prove that the nerve of P is contractible. Is the
result still true if we allow subtrees in the collection? What about subforests?

4. Let v be a vertex of K. Show that Hn(K) ∼= Hn(K, v) for all n ≥ 1 without using the
theorem that says Hn(K, v) ∼= Hn(|K|/|v|).

5. Verify that the linear map of Theorem 4.18 is well-defined.

6. The condition for sensor coverage is an [α] ∈ H2(R,F ) such that 0 6= [∂α] ∈ H1(F ).
What does this condition mean intuitively? Furthermore, give an example showing that
the condition [∂α] 6= 0 is necessary.

7. Let r ≥ 0 and P ⊂ Rn a finite set. Show that |Alphar(P )| ' |Cechr(P )|.
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M(K)

Rch(K)

K

Figure 20: The medial axis and reach.

5 Topology & Homology Inference and Persistent Betti Num-
bers

5.1 Topology & Homology Inference

Given a compact subset K ⊆ Rd and a set of points P which lie ”close” to K, is it possible
to infer the topology of K from P assuming the sample is dense enough and with little noise?
We shall state one theorem which answers that question to the affirmative under quite strong
assumptions on K.

For K and P as above and x ∈ Rd, define

dK(x) = min
y∈K
||x− y||, dP (x) = min

y∈P
||x− y|

where the norm is the standard 2-norm. For a given x ∈ Rd we define

ΠK(x) = {y ∈ K : dK(x) = ||x− y||}.

Note that |ΠK(x)| ≥ 1 for all x.

Definition 5.1.

• The medial axis of K is the set M(K) := {x : |ΠK(x)| ≥ 2}.

• The reach of K is given by

Rch(K) := min
y∈K

d(y,M(K))

where M(K) denotes the topological closure of M(K).

See Fig. 20 for an illustration.

Definition 5.2. The Hausdorff distance between two non-empty subsets X,Y ⊆ Rd is
defined by

dH(X,Y ) := max

{
sup
x∈X

inf
y∈Y
||x− y||, sup

y∈Y
inf
x∈X
||y − x||

}
.

Associated to the functions dK , dP : Rd → R we have the following filtrations of Rd:

Kr := d−1K (−∞, r], Pr := d−1P (−∞, r] =
⋃
p∈P

Br(p).

Remark 5.3. If K has positive reach, then one can show (not surprisingly) that the map Kr → K
defined by mapping x to ΠK(x) is a homotopy equivalence for all r < Rch(K).
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Theorem 5.4 (Nioygi, Smale, Weinberger (2006)). Let K be a compact submanifold of Rd with

positive reach. Let P be a point set such that dH(K,P ) = ε <
√

3
20Rch(K). Then for any

r ∈ (2ε,
√

3
5Rch(K)), the offset Pr deformation retracts onto K.

This shows that the topology of K can be recovered under fairly strong assumptions. By
replacing the reach with the weak feature size these results can be generalized substantially, but
that is beyond the scope of this course; see Chapter 4 and 5 of [26].

We now proceed to give an elementary proof of the fact that the homology of a (not nec-
essarily compact) space can be recovered from the persistent homology of a sufficiently good
sampling.

Theorem 5.5. Let K ⊆ Rd, P ⊆ Rd a finite point set and ε, δ > 0 such that

1. K ⊆ Pδ (sampling density),

2. P ⊆ Kε (sampling error: points need not lie on K),

3. The inclusion K ↪→ Kδ+ε induces an isomorphism Hn(K)
∼=−→ Hn(Kδ+ε),

4. The inclusion Kδ+ε ↪→ K2(ε+δ) induces a monomorphism Hn(Kδ+ε) ↪→ Hn(K2(ε+δ)).

Then Hn(K) ∼= Im(Hn(Pδ)→ Hn(P2δ+ε)).

Proof. Assumptions 1. and 2. yield the following commutative diagram of inclusions

K Kδ+ε K2(δ+ε)

Pδ P2δ+ε

which induces the following commutative diagram in homology (see Remark 4.9 and Theo-
rem 3.6)

Hn(K) Hn(Kδ+ε) Hn(K2(δ+ε))

Hn(Pδ) Hn(P2δ+ε)

∼=

b

mono

a

Since the top-left morphism is an isomorphism, we must have that a is surjective. Similarly, b
must be a monomorphism. We conclude that

Hn(K) ∼= Hn(Kδ+ε) ∼= Im b = Im b ◦ a = Im(Hn(Pδ)→ Hn(P2δ+ε)).

Fig. 21 shows a point sample from an embedding of the circle that fails to recover the right
homology dimensions for any fixed scale. However, we see that 1 = dimH1(S1) = Im(Hn(Pr1)→
Hn(Pr2) for reasonable choices of r1 and r2; see Theorem 5.5.
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(a) (b) (c)

Figure 21: There exists no ”right” scale that captures the hole encircled by the data points.
Persistent homology on the other hand detects this feature. The figure is due to Ulrich Bauer.

Figure 22: A point set together with its (single-linkage) dendrogram.

5.2 Persistent Betti Numbers

For a point set P ⊆ Rd, the Betti numbers βi(Pr) are very unstable in the scale parameter
r. That is, a small perturbation of P may result in completely different Betti numbers. Fur-
thermore, while a ”right” scale exists for a good enough sampling of a sufficiently nice space
(Theorem 5.4), fixing a scale may not be reasonable in practice (Fig. 21).

As suggested by Theorem 5.5 and Fig. 21, these issues can be rectified by considering a
multi-scale view of the data. We shall see later in the course that the resulting invariants are
stable with respect to perturbation. Let us first consider β0 - the connected components. In this
setting things are particularly simple and we can use a tool from statistics called a dendrogram.
The dendrogram is a planar tree that tracks the evolution of the connected components as the
scale parameter increases.

Example 5.6. Consider the points P = {(1, 1), (1, 6), (3, 1), (3, 4), (4, 3)} of Fig. 22. When
considered at a sufficiently small scale, Pr consists of 5 connected components (clusters). For
r =
√

2, there are 4 connected components, and in the end there is one giant component. The
corresponding dendrogram is shown in the same figure.

Example 5.7. Fig. 23 shows a set of points in the plane together with its associated single-
linkage dendrogram. The dendrogram suggests the existence of three clusters.

Persistent homology in dimension 0 will turn out to be closely related to that of a dendrogram
provided that you forget precisely which points belong to each cluster.

Definition 5.8. A filtration of a simplicial complex K is a collection of subcomplexes {Ki ⊆
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(a)

(b)

Figure 23: (a) Data. (b) Single-linkage dendrogram.

K}mi=0 such that
K0 ⊆ K1 ⊆ . . . ⊆ Km = K.

Applying simplicial homology to a filtration of K yields the following induced maps in
homology

f i,j∗ : Hn(Ki)→ Hn(Kj)

for all i ≤ j. The associated n-th persistent Betti numbers are given by βi,jn = dim Im f i,j∗ .

Example 5.9. Consider the filtration depicted in Fig. 24. Some persistent Betti numbers are:
β1,20 = 1, β2,40 = 2, β2,50 = 2, β2,60 = 2, β2,70 = 1, β7,81 = β7,91 = 1, β8,91 = 1 and β7,101 = 0.

Let 0 6= [c] ∈ Hn(Ki). Then we say that c is born at Ki if [c] 6∈ Im f i−1,i∗ . If [c] is born
at Ki, then it dies at Kj if it merges with an older class as we go from Kj−1 to Kj . That is,

f i,j−1∗ ([c]) 6∈ Im f i−1,j−1∗ but f i,j∗ ([c]) ∈ Im f i−1,j∗ .

Example 5.10 (Example 5.9 continued). We see that there is a class [c] ∈ H1(K7) born at
K7 that dies at K10. Likewise, there are two classes born at H1(K8) that both die in K9. One
of them gets filled in, and the other one coincides with an older class. This is the elder rule:
precedence is given to the class with the earliest birth time.

To capture the evolution of the homological features along the filtration of a simplicial
complex we introduce the following two families of integers:

µi,jn = (βi,j−1n − βi,jn )− (βi−1,j−1n − βi−1,jn ), µi,∞n = βi,mn − βi−1,mn . (3)

The integer µi,jn counts the number of linearly independent homology classes in dimension n
born at index i that die at index j. Equivalently,

µi,jn = dim
Im f i,j−1∗ ∩ ker f j−1,j∗

Im f i−1,j−1∗ ∩ ker f j−1,j∗
.

Likewise, µi,∞n counts the number of linearly independent homology classes born at index i that
never vanish. Observe that,

dimHn(K) =
m∑
i=0

µi,mn .

The integers µi,jn are usually visualized the following two ways:
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Figure 24: A filtered simplicial complex.

Figure 25: The barcodes and persistence diagrams of Example 5.9.

• The barcode in dimension n is obtained by interpreting every non-zero µi,jn as the
interval [i, j) (representing the time when the ”feature” was alive), and stacking all the
intervals on top of each other in the plane; see Fig. 25.

• The persistence diagram in dimension n is obtained by plotting (i, j) (with multi-
plicity) in the plane for every non-zero µi,jn ; see Fig. 25.

Example 5.11 (Example 5.10 continued). We see that the only non-zero µi,jn ’s are the following:

µ1,∞0 = 1 µ2,70 = 1 µ3,50 = 1 µ4,60 = 1

µ7,101 = 1 µ8,91 = 1

The associated barcodes and persistence diagrams are shown in Fig. 25.
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5.2.1 The Cech and Vietoris–Rips Filtrations

The Cech Filtration Let P ⊂ Rd. Then, by the Nerve lemma (Theorem 4.11), we have the
following commutative diagram of vector spaces and linear morphisms

Hn(Pr0) Hn(Pr1) Hn(Pr2) · · · Hn(Prm)

Hn(Cechr0(P )) Hn(Cechr1(P )) Hn(Cechr2(P )) · · · Hn(Cechrm(P ))

∼= ∼= ∼= ∼= ∼=

It is not difficult to prove that the persistent Betti numbers for the two rows coincide, and
therefore the barcode/persistence diagram of the Cech filtration has a clear geometric interpre-
tation: it captures the evolution of ”holes” of a given dimension formed by balls of increasing
radius around the points in P . The same holds true for the alpha complex.

The Vietoris-Rips Filtration For a given scale r, it need not be the case that VRr(P ) ' Pr,
and therefore it may appear unclear how to interpret the persistent Betti numbers associated
to a filtration of the form

VRr0(P ) ↪→ VRr1(P ) ↪→ VRr2(P ) ↪→ · · · ↪→ VRrm(P ).

However, from Corollary 1.15 we have the following chain of inclusions

Cechr(P ) ⊆ VRr(P ) ⊆ Cech2δr(P ) ⊆ VR2δr(P )), where δ =

√
d

2(d+ 1)
.

Applying homology yields the following commutative diagram of vector spaces:

Hn(Cechr(P )) Hn(Cech2δr(P ))

Hn(VRr(P )) Hn(VR2δr(P )

This diagram shows that any class in Hn(VRr(P )) which has non-zero image in Hn(VR2δr(P ))
must be non-zero in Hn(Cech2δr(P )). Importantly, this means that it represents a true topo-
logical feature of P2δr(P ). Conversely, any class of Hn(Cechr(P )) which has non-zero image in
Hn(Cech2δr(P )) must factor through Hn(VRr(P )). Summarized: sufficiently long intervals in
the barcode of the Cech filtration give rise to intervals in the barcode of the Vietoris–Rips filtra-
tion, and conversely, any sufficiently long interval in the barcode of the Vietoris–Rips filtration
corresponds to a true geometrical feature. This relation will be made precise later in the course
when we discuss the theory of interleavings.

With this obvious drawback of the Vietoris–Rips complex, one may wonder why consider it
at all. There are primarily two reasons for doing so:

• Computation from a distance matrix. To construct the Cech complex one needs the
coordinates of the points in Rd, whereas the Vietoris–Rips is built exclusively from pairwise
distances. Furthermore, this allows us to construct filtered simplicial complexes for points
that do not embed in Rd for any d. An example could be a distance matrix obtained
through correlations of genes expression data, neural cells, etc.

• Computations. Working with the Rips complex allows for certain heuristics to be imple-
mented which in practice yield significant speed-ups.
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Figure 26: Vietoris–Rips filtration w/ associated barcode.

Example 5.12. Any finite metric space has an associated Vietoris–Rips filtration. As an
example, consider the metric space consisting of three points {p1, p2, p3, p4} and distance matrix

0 1 1 2
1 0 2 1
1 2 0 1
2 1 1 0


By defining VRr(P ) = {σ ⊆ P : diam(σ) ≤ 2r} as before, we obtain a filtration:

VR0(P ) ⊆ VR1/2(P ) ⊆ VR1(P ).

See Fig. 26 for a (non-isometric) visualization of this filtration.

Example 5.13. Fig. 27 shows the persistence diagram of a the Vietoris–Rips filtration associ-
ated to a planar point set.
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(a)

(b)

Figure 27: (a) A planar point set. (b) The persistence diagrams in dimension 0 and 1 of the
associated Vietoris–Rips filtration. Computed using Python Ripser [30, 1].

5.3 Exercises

1. Let P ⊂ Rd. Show that the barcodes of the Cech and alpha filtrations of P coincide (for
every homology degree p).

2. Construct a finite metric space whose associated Vietoris–Rips filtration has the following
barcodes in dimensions 0,1 and 2 respectively: {[0,∞), [0, 2)5}, {[2, 3)}, {[3, 4)}.

3. Let K be a triangulation of the Möbius strip, and let K ′ denote the boundary of K (which
is a triangulation of the circle). What is the rank of the map f∗ : H1(K

′)→ H1(K) induced
by the inclusion K ′ ⊆ K? What is the rank if you work with coefficients in Z3?

4. Let P be six equidistant points on the unit circle in R2.

(a) Describe |VRr(P )| up to homeomorphism for every radius r ≥ 0.

(b) Make barcode plots in all dimensions for the associated Vietoris–Rips and Cech
filtrations.

5. Let P be such thatH2(VRr(P )) 6= 0. Prove that |P | ≥ 6. Is it possible thatH2(Cechr(Q)) 6=
0 for |Q| < 6?
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Figure 28: A filtered simplicial complex.

6 Algebraic Foundations

Last week we introduced the notion of persistent Betti numbers, and used them to compute
the barcode. In this lecture we will give an algebraic characterization of the barcode. A
more thorough discussion of the topics in this lecture can be found in any book on Quiver
Representations.

6.1 Motivation

Consider the filtered simplicial complex K shown in Fig. 28, together with the associated col-
lection of vector spaces and linear maps

H1(K1)→ H1(K2)→ H1(K3)→ H1(K4)→ H1(K5).

From the inclusion-exclusion formula in Eq. (3) it is an easy task to compute the barcode B1(K)
of K in dimension 1:

B1(K) = {[2, 5), [3, 4)}.
This barcode clearly does not depend on the particular basis we choose at each index as the
computation only amounts to rank considerations. From the algebraic point of view, however,
there are some bases which are to be preferred. We will now illustrate this with two examples.
In the first case, let {AB + BD + CD + AC}, {AB + BD + CD + AC,AC + CD + AD} and
{AB + BD + CD + AC} be the bases for K2,K3, and K4. In the second case we replace
{AB + BD + CD + AC,AC + CD + AD} with {AB + BD + CD + AC,AB + BD + AD}.
Representing the linear maps with respect to these bases yields:

0→ Z2

1
0


−−−→ Z2 ⊕ Z2

[
1 0

]
−−−−−→ Z2 → 0.

0→ Z2

1
0


−−−→ Z2 ⊕ Z2

[
1 1

]
−−−−−→ Z2 → 0.

The former of these two splits into a direct sum:

(0→ Z2
1−→ Z2

1−→ Z2 → 0)
⊕

(0→ 0→ Z2 → 0→ 0),

whereas the latter does not ”split up”. An advantage of such a decomposition is that the
barcode can be easily read off from the support of its components (summands):

µi,j1

(
(0→ Z2

1−→ Z2
1−→ Z2 → 0)

⊕
(0→ 0→ Z2 → 0→ 0)

)
=

µi,j1

(
0→ Z2

1−→ Z2
1−→ Z2 → 0

)
+ µi,j1 (0→ 0→ Z2 → 0→ 0) =

{
1 if (i, j) ∈ {(2, 5), (3, 4)}
0 otherwise.
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The goal of this section will be to prove that such a choice of basis always exists. This algebraic
characterization of the barcode will be important when proving stability later in the course.

6.2 Persistence Modules

Definition 6.1. A partially ordered set (poset) P is a set P together with a binary relation
≤ such that

1. p ≤ p, for all p ∈ P ,

2. p ≤ q and q ≤ p implies p = q,

3. p ≤ q and q ≤ r implies p ≤ r.

If p ≤ q and p 6= q, then we write p < q.

Here are some posets that appear in topological data analysis.

Example 6.2. The set [n] = {1, 2, . . . , n} is a partially ordered set under the standard ordering
of the natural numbers. It will be convenient to represent this poset as a graph in the following
way:

1• −→ 2• −→ · · · −→ n−1• −→ n•.
More generally, N,Z and R are posets in the obvious way.

Example 6.3. One can also assign a zigzag structure to {1, 2, . . . , n}:
1• ←− 2• −→ · · · ←− n−1• −→ n•

Example 6.4. The poset P = {a, b, c, d} with the binary relation a ≤ b, c ≤ d:

b• d•

a• c•

Definition 6.5. A P -indexed persistence module (P -module) V is a collection of vector
spaces {Vp}p∈P and linear maps {V (p ≤ q) : Vp → Vq}p≤q such that

1. V (p ≤ p) = id: Vp → Vp,

2. V (q ≤ r) ◦ V (p ≤ q) = V (p ≤ r).

Remark 6.6. A P -module is a functor from the partially ordered set P seen as a category in
the obvious way, to the category of vector spaces.

Example 6.7. A filtered simplicial complex K1 ⊆ K2 ⊆ · · · ⊆ Kn yields an [n]-module for
every integer i,

Hi(K1)→ Hi(K2)→ · · · → Hi(Kn).

Example 6.8. We can also consider a zigzag of inclusions: K1 ⊆ K2 ⊇ K3 ⊆ · · · ⊇ Kn,

Hi(K1)→ Hi(K2)← Hi(K3)→ · · · ← Hi(Kn).
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Example 6.9. Given a topological space X and a real-valued function f : X → R, we get an
R-module M by

Mt = Hi(f
−1(−∞, t])

together with maps Mt →Mt′ in homology induced by the inclusion f−1(−∞, t] ⊆ f−1(−∞, t′].

A morphism f : V → W between P -modules is a collection of linear maps {fp : Vp →
Wp}p∈P such that the following diagram commutes for all p ≤ q:

Vp Vq

Wp Wq.

fp

V (p≤q)

fq

W (p≤q)

We say that f is an epi-/mono-/isomorphism if fp is an epi-/mono-/isomorphism for all p.

Example 6.10. The following is an example of an epimorphism:

V : Z2 Z2

W : Z2 0.

f 1

1

0

0

Note that there are no non-zero morphisms from W to V .

The direct sum of two P -modules V and W is the P -module V ⊕W defined pointwise by
(V ⊕W )p = Vp ⊕Wp and on linear maps by:

Vp ⊕Wp

V (p ≤ q) 0
0 W (p ≤ q)


−−−−−−−−−−−−−−−−−−→ Vq ⊕Wq.

Definition 6.11. We say that V is decomposable if there exist non-zero W,W ′ such that
V ∼= W ⊕W ′. If no such W,W ′ exist, then we say that V is indecomposable.

For a P -module V , we define the total dimension of V by dimV =
∑

p∈P dimVp whenever
the sum exists.

Lemma 6.12. Let P be finite and assume that Vp is finite-dimensional for all p. Then

V ∼= W 1 ⊕ · · · ⊕W k

where each W i is indecomposable.

Proof. We will work inductively on the total dimension of V . If dimV = 1, then V is necessarily
indecomposable. So assume that the statement holds for dimV ≤ n and consider V with
dimV = n + 1. If V is indecomposable, then we are done. If not, we can write V = W ⊕W ′
where

dimV = dimW + dimW ′

and both of the terms to the right are non-zero. Hence, by the inductive property, W and W ′

decompose into a direct sums of indecomposables.
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A submodule V ′ of V is a collection of subspaces V ′p ⊆ Vp such that the following diagram
commutes for all p ≤ q

V ′p V ′q

Vp Vq

⊆ ⊆

If there exists a non-trivial submodule V ′′ ⊆ V such that V = V ′ ⊕ V ′′, then we say that
V ′ and V ′′ are summands of V . For a morphism f : V → W we get submodules ker f ⊆ V
and Im f ⊆ W by taking pointwise kernels and images. These submodules are in general not
summands.

Example 6.13.

ker(f) 0 0 Z2

V 0 Z2 Z2

W Z2 Z2 0

Im(f) 0 Z2 0

⊆ 1

f 1

1

1

⊆ 1

Lemma 6.14 (Fitting Lemma). Let P be finite and dimVp <∞ for all p. For every morphism
f : V → V there exists an n ≥ 1 such that

V = Im fn ⊕ ker fn.

Proof. Since f(V ) ⊇ f2(V ) ⊇ f3(V ) ⊇ · · · and dimV is finite, there must exists an l such that
f l(V ) = f l+1(V ) = f l+2(V ) = . . .. Define φ := f l : V → V . As we saw above, kerφ and Imφ
are both submodules of V . It remains to show that they are complementary summands.

For every v ∈ Vp, there exists a v′ ∈ Vp such that φp(v) = φ2p(v
′), and thus v−φp(v′) ∈ kerφp.

This shows that v = (v − φp(v′)) + φp(v
′) where v − φp(v′) ∈ kerφp and φp(v

′) ∈ Imφp.
To see that kerφ ∩ Imφ = 0, let v ∈ kerφp ∩ Imφp, and observe that v = φp(v

′) and
0 = φp(v) = φ2p(v

′). By our choice of φ, we know that φp : φp(Vp)→ φ2p(Vp) is an isomorphism,
and therefore φ2p(v

′) = 0 implies that v = φp(v
′) = 0.

Now we restrict our attention to the poset [n]. Let k be any field, and for a < b ∈ [n]∪{∞},
define [a, b) to be the subset of [n] given by the elements {i : a ≤ i < b}. We define the interval
module associated to [a, b) to be the [n]-module I [a,b) defined by

I
[a,b)
i =

{
k if i ∈ [a, b)

0 otherwise
,

together with the identity morphism idk : I
[a,b)
i → I

[a,b)
j whenever i, j ∈ [a, b).

Example 6.15. For n = 2 we have the following interval modules

k→ 0 0→ k k
idk−−→ k.
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Theorem 6.16. Let V be an [n]-module such that dimVp <∞ for all p ∈ [n]. Then

V ∼=
⊕

[a,b)∈B(V )

I [a,b)

where B(V ) is a multiset of intervals in [n] called the barcode of V .

Proof. We know from Lemma 6.12 that V decomposes into a direct sum of indecomposables.
Hence it suffices to show that if V is indecomposable, then V ∼= I [a,b) for some interval [a, b).
Assume without loss of generality that V1 6= 0 and choose 0 6= v ∈ V1. Let b denote the smallest
index for which V (1 ≤ b)(v) = 0 and let j = b − 1. If no such b exists, then let b = ∞ and
j = n.

First we define a (well-defined) monomorphism f : I [1,b) → V by fi(1k) = V (1 ≤ i)(v). Since
Vj is a vector space, we can extend {f(1k)} to a basis for Vj and thus define an epimorphism
gj : Vj → k which satisfies gj(fj(1k)) = idk. This extends to an (well-defined) epimorphism
g : V → I [1,b) by defining gi(w) = gj(V (i ≤ j)(w)) for i ≤ j, and 0 otherwise. Importantly,

g ◦ f = idI[1,b) .

From Lemma 6.14 there exists an m ≥ 1 such that

V = Im(f ◦ g)m ⊕ ker(f ◦ g)m.

Furthermore,

(f ◦ g)m(V ) = f ◦ (g ◦ f) ◦ (g ◦ f) ◦ · · · ◦ (g ◦ f) ◦ g(V ) = f ◦ g(V ) = f(I [1,b)),

where the last equality follows from g being an epimorphism. Since V was assumed to be
indecomposable, and since f is a monomorphism, it follows that

V = Im(f ◦ g)m = f(I [1,b)) ∼= I [1,b).

Proposition 6.17. Let V be as in Theorem 6.16. Then µi,jn counts the number of occurrences
of [i, j) in B(V ). In particular.

Proof. This follows from the following two observations

µi,jn (V ) = µi,j

 ⊕
[a,b)∈B(V )

I [a,b)

 =
∑

[a,b)∈B(V )

µi,j(I [a,b)),

and

µi,j(I [a,b)) =

{
1 if (i, j) = (a, b)

0 otherwise.
.

Just as the dimension of a vector space is independent of the choice of basis, the previous
result shows that although the particular decomposition in Theorem 6.16 is not unique, the
associated multiset B(V ) is in fact unique. We state this as a corollary.

51



Corollary 6.18. Let V be as in Theorem 6.16, and assume that

V ∼=
⊕

[a,b)∈I

I [a,b) ∼=
⊕

[a,b)∈J

I [a,b),

Then I = J .

We state the following generalization of Theorem 6.16 without proof.

Theorem 6.19 ([6]). Let T be a totally ordered set and V a T -module such that dimVt < ∞
for all t ∈ T . Then

V ∼=
⊕

J∈B(V )

IJ

where B(V ) is a unique multiset of intervals in T .

Here an interval in T is a subset J with the property that if x < y < z and x, z ∈ J then
y ∈ J . Interval modules are defined accordingly.

6.3 Exercises

1. Let f : X → R be the height-function shown in the figure below.

(a) Define bases for H0(f
−1(−∞, ti]) such that the persistence module

H0(f
−1(−∞, t1])→ . . .→ H0(f

−1(−∞, t5])→ H0(f
−1(−∞, t6])

decomposes as a direct sum of submodules isomorphic to interval modules.

(b) Use (a) to decompose the R-module given by Mt = H0(f
−1(−∞, t]) into interval

modules (up to isomorphism).

2. Describe a zigzag of simplicial complexes K1 ←↩ K2 ↪→ K3 such that H1(K1)← H1(K2)→
H1(K3) is isomorphic to

Z2
[11]←−− Z2 ⊕ Z2

[01]−−→ Z2,

and choose a basis for the middle vector space such that the persistence modules decom-
pose non-trivially. Conclude that a submodule need not have support contained in any
one summand. In particular, the barcode of the zigzag module does not contain an interval
supported on all of the vertices, although there exists a feature in the middle whose image
is non-trivial in both vector spaces.

3. Can you think of a scenario where zigzag persistent homology could be useful?
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K1 K2 K3 K4

K5 K6 K7 K8

K9 K10 K11 K
3

1 2

4

Figure 29: Yet another filtered simplicial complex.

7 The Persistence Algorithm

The algorithm for computing simplicial homology can be straightforwardly applied to compute
persistent homology. In this lecture we will have a look at the algorithm and an improvement
which makes computations faster in practice.

7.1 The standard algorithm

The standard algorithm for computing persistent homology is nothing more than the standard
algorithm for simplicial homology with the ordering of the simplices given by the time they
appear in the filtration. We illustrate this by computing the barcode of the filtration in Fig. 29.
Expressing the boundary matrix in the order given by the simplices yields:

D =

1 2 3 4 13 12 24 34 14 134 124



1 0 0 0 0 1 1 0 0 1 0 0
2 0 0 0 0 0 1 1 0 0 0 0
3 0 0 0 0 1 0 0 1 0 0 0
4 0 0 0 0 0 0 1 1 1 0 0
13 0 0 0 0 0 0 0 0 0 1 0
12 0 0 0 0 0 0 0 0 0 0 1
24 0 0 0 0 0 0 0 0 0 0 1
34 0 0 0 0 0 0 0 0 0 1 0
14 0 0 0 0 0 0 0 0 0 1 1
134 0 0 0 0 0 0 0 0 0 0 0
124 0 0 0 0 0 0 0 0 0 0 0

and the corresponding identity matrix V = I12×12. The resulting matrices R and V after
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applying Algorithm 1 to D are:

R =

1 2 3 4 13 12 24 34 14 134 124



1 0 0 0 0 1 1 0 0 0 0 0
2 0 0 0 0 0 1 1 0 0 0 0
3 0 0 0 0 1 0 0 0 0 0 0
4 0 0 0 0 0 0 1 0 0 0 0
13 0 0 0 0 0 0 0 0 0 1 1
12 0 0 0 0 0 0 0 0 0 0 1
24 0 0 0 0 0 0 0 0 0 0 1
34 0 0 0 0 0 0 0 0 0 1 1
14 0 0 0 0 0 0 0 0 0 1 0
134 0 0 0 0 0 0 0 0 0 0 0
124 0 0 0 0 0 0 0 0 0 0 0

and

V =

1 2 3 4 13 12 24 34 14 134 124



1 1 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0 0 0 0
4 0 0 0 1 0 0 0 0 0 0 0
13 0 0 0 0 1 0 0 1 0 0 0
12 0 0 0 0 0 1 0 1 1 0 0
24 0 0 0 0 0 0 1 1 1 0 0
34 0 0 0 0 0 0 0 1 0 0 0
14 0 0 0 0 0 0 0 0 1 0 0
134 0 0 0 0 0 0 0 0 0 1 1
124 0 0 0 0 0 0 0 0 0 0 1

.

Observe that the simplicial homology of Ki - the filtered simplicial complex at time i - can be
obtained by restricting R and V to the first i columns.

Following the steps in Section 3.1.2:

ΣB0 = {(10100000000)T , (11000000000)T , (01010000000)T }
Σ̃Z0 = {(10000000000)T , (01000000000)T , (00100000000)T , (00010000000)T }
ΣB1 = {(00001001100)T , (00001111000)T }
Σ̃Z1 = {(00001111000)T , (00000110100)T }.

The next step is to pair the vectors of Σ̃Z0 to those of ΣB0 based on their lowest entries:

(10000000000)T ↔ ∅ (01000000000)T ↔ (11000000000)T

(00100000000)T ↔ (10100000000)T (00010000000)T ↔ (01010000000)T

and in dimension 1:

(00001111000)T ↔ (00001111000)T (00000110100)T ↔ (00001001100)T

From this we conclude that H0(K11) ∼= Z2 is generated by the vertex v1, and that Hi(K11) = 0
for i ≥ 1. However, from the point of view of persistent homology, we are interested in the
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particular pairings: a pairing v ↔ w yields a bar [tv, tw) in the barcode, where tv is the time
at which the cycle v appears in the filtration, and tw is the time where w becomes a boundary.
We see that tv = low(v) and tw = j where low(Rj) = tv. We summarize our findings in the
following table:

Dimension Birth Death Rep. cycle Vertex notation
0 1 ∞ (10000000000)T 1
0 2 6 (01000000000)T 2
0 3 5 (00100000000)T 3
0 4 7 (00010000000)T 4
1 8 11 (00001111000)T 13 + 12 + 24 + 34
1 9 10 (00000110100)T 12 + 24 + 14

.

This completes the computation of persistent homology. We summarize our findings:

1. Write down the boundary matrix D with the simplices ordered by their appearance in the
filtration of a simplicial complex K.

2. Use Algorithm 1 to obtain a decomposition R = DV .

3. The columns Ri with low(i) 6= 0 form a basis ΣB = ΣB0∪. . .∪ΣBd for B0(K)⊕. . .⊕Bd(K),

4. The columns Vi such that Ri = 0 form a basis Σ̃Z = Σ̃Z0∪. . .∪Σ̃Zd for Z0(K)⊕. . .⊕Zd(K),

5. For every n-cycle Vi ∈ Σ̃Z do the following:

(a) If there exists Rj ∈ ΣB with low(Rj) = low(Vi) = i, then output an interval [i, j) in
dimension n.

(b) If there exists no such Rj , then output an interval [i,∞) in dimension n.

Bases and correctness At the algebraic level we also get bases at every filtration step:

1. Let ΣHj = {Vi ∈ Σ̃Z : i ≤ j and ∃Rl where j < l and low(Rl) = i },

2. Let ΣHj1,j2
= ΣHj1

∩ ΣHj2
,

3. Let ΣEj = {Vi ∈ Σ̃Z : i ≤ j and there exists no Rl such that low(Rl) = i}.

For each of the above sets, let Σn denote the subset of n-cycles.
It is a good exercise to verify the following steps used to prove that the algorithm outputs

the correct barcode.

1. The set Σn
Hj
∪ Σn

Ej
forms a basis for Hn(Kj).

2. A basis for Im (Hn(Kj1)→ Hn(Kj2)) is given by Σn
Hj1,j2

∪ Σn
Ej1

, and thus

βj1,j2n = |Σn
Hj1,j2

∪ Σn
Ej1
|,

and if m denotes the maximal filtration value,

βj1,mn = |Σn
Ej1
|.
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3. Since Σn
Hj1,j2

⊆ Σn
Hj1,j2−1

for j1 < j2,

βj1,j2−1n − βj1,j2n = |ΣHn
j1,j2−1

\ ΣHn
j1,j2
| ∈ {0, 1}

which is non-zero precisely if Rj2 6= 0 corresponds to an (n+1)-simplex and low(Rj2) ≤ j1.
4. It follows that

µj1,j2n = (βj1,j2−1n − βj1,j2n )− (βj1−1,j2−1n − βj1−1,j2n )

is non-zero and equal to 1 if and only Rj2 = 0 corresponds to an (n + 1)-simplex, and
low(Rj2) = j1. Hence, the algorithm computes all finite bars correctly.

5. Similarly, for j1 < j2, Σn
Ej1
⊆ Σn

Ej2
, and for m the maximal filtration value,

µj1,∞n = βj1,mn − βj1−1,mn = |Σn
Ej1
\ Σn

Ej1−1
| ∈ {0, 1}

which is precisely the number of infinite bars in homology degree n born at j1 computed
by the algorithm.

Algebraic Justification The standard algorithm actually provides us with enough data to
decompose the homology persistence modules into summands isomorphic to interval modules.
We saw above that the n-cycles of ΣHj ∪ΣEj form a basis for Hn(Kj), and that every Vi ∈ ΣHj

is paired to an Rl, where Rl = Vi +
∑i−1

k=0 ckVk for constants ck ∈ {0, 1}. We can thus replace
the basis element Vi with Rl, and then the morphism Hn(Kl−1) → Hn(Kl) maps the basis
element Rl of Hn(Kl−1) to 0. Hence, all the morphisms diagonalize and the persistence module
decomposes into indecomposable summands. Let us illustrate this for the case n = 1 above.
Using the basis as given by the persistence algorithm we get the bases (using vertex notation)
{12 + 13 + 24 + 34, 12 + 24 + 14} and {12 + 13 + 24 + 34}, for H1(K9) and H1(K10), respectively.
However, the cycle 12 + 24 + 14 becomes equivalent to 12 + 13 + 24 + 14 in homology as we
enter K10, and therefore the linear maps take the form:

span{12 + 13 + 24 + 34, 12 + 24 + 14} [1 1]−−−→ span{12 + 13 + 24 + 34}.
If we, however, replace 12 + 24 + 14 with the boundary to which it gets paired, then we obtain
a new basis {12 + 13 + 24 + 34, 13 + 34 + 14} and the matrix diagonalizes to:

span{12 + 13 + 24 + 34, 13 + 34 + 14} [1 0]−−−→ span{12 + 13 + 24 + 34}.
And therefore 0→ H1(K8)→ H1(K9)→ H1(K10)→ 0 decomposes as

(0→ Z2
1−→ Z2

1−→ Z2 → 0)
⊕

(0→ 0→ Z2 → 0→ 0),

See Section 6.1 for how this decomposition relates to the barcode.
We conclude that a pairing Vi ↔ Rj corresponds to an interval summand with support [i, j),

and that an unpaired Vi corresponds to an interval summand with support [0,∞).

7.2 Clearing

Consider the reduced matrix R in the previous section. Since the column corresponding to the
simplex 134 is non-zero, we know from the previous discussion that column number i = low(134),
which in this case is corresponds to the simplex 14, must be zeroed out. Likewise, we know that
the column number low(124), which corresponds to simplex 34, must be zeroed out. Hence, if
we first reduced the 2-simplices, then we could skip the columns 14 and 34 when reducing the
1-simplices, as we know that they will be zeroed out. This is the whole idea behind clearing
and can be summarized as follows:
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• Let K be a filtered simplicial complex with dimK = d.

• Use the standard algorithm to reduce the columns of D corresponding to d-simplices in
order to obtain ΣBd−1

and Σ̂Zd .

• For every Rj ∈ ΣBd−1
, zero out column number low(Rj) in D. Reduce the (d−1)-simplices

of the resulting boundary matrix to obtain the set ΣBd−2
. A basis Σ̃Zd−1

for Zd−1(K) is
given by the set ΣBd−1

together with all columns Vi corresponding to zero columns Ri
that were not zeroed out prior to the reduction.

• Continue the same way until a bases for B0(K) and Z1(K) are computed.

The total number of rows that need not be reduced are

dimBd−1(K) + dimBd−2(K) + . . .+ dimB1(K). (4)

We do however need to reduce all columns corresponding to d-simplices, and in applications
this number typically is much larger than the sum in Eq. (4). But the crux of the matter
lies with the fact that reducing a column to zero is typically more expensive than reducing a
column to become a boundary. And in the above case we still need to zero out a large number
of columns corresponding to d-simplices. This turns out to be a major bottleneck and working
with cohomology avoids this issue in practice.

Example 7.1. Let P be a set of 100 points in Euclidean space and say we want to compute
the persistent homology of the Vietoris–Rips filtration in dimensions 0,1 and 2. Counting the
total number of 1, 2 and 3-simplices gives the total number of columns to be reduced in the
näıve approach (0-simplices are already reduced):(

100

2

)
+

(
100

3

)
+

(
100

4

)
= 4087875.

Now (exercise)

dimB2(VR∞(P )) + dimB1(VR∞(P )) =

(
99

3

)
+

(
99

2

)
= 161700.

Clearing only marginally improves the computation time and the reason for this is the substan-
tial number of 3-simplices that still need to be reduced in the initial step. Indeed, the number
of columns which need to be zeroed out equals dimZ3(VR∞(P )) =

(
99
4

)
= 3764376.

7.3 Exercises

1. Use the standard algorithm for persistent homology to compute the barcode of following
simplicial complex with simplices ordered by 1, 2, 3, 12, 13, 24, 23, 34, 234. Find represen-
tative cycles for each interval. Use the output of the algorithm to choose bases H1(Kr)
such that every linear map is represented by a diagonal matrix.

2. Verify the claims in Example 7.1.
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8 Cohomology

Cohomology is a prominent tool in algebraic topology that carries more structure than homology.
Importantly, cohomology comes equipped with a cup product that endows cohomology with
a graded ring structure. Furthermore, cohomology is a representable functor, meaning that
cohomology groups can be identified with homotopy classes of maps in a natural way. The latter
forms the foundation of circular coordinates, a way of parametrizing the data with respect to a
circular feature. In this lecture we shall see how cohomology often leads to faster computations.

8.1 Dual Persistence Modules

Recall that the dual of a vector space V over a field k is the vector space of linear maps
V ∗ := Hom(V,k). It is well-known (and easy to prove) that if {v1, . . . , vd} is a basis for V ,
then {ε1, . . . , εd} is a basis for V ∗, where εi(vi) = 1 and εi(vj) = 0 for i 6= j. Therefore
dimV = dimV ∗ if V is finite-dimensional.5 Furthermore, if f : V → W is a linear map, then
we get an induced linear map f∗ : W ∗ → V ∗ given by f∗(α)(x) = α(f(x)). If the matrix
representation of f with respect to a choice of bases is the matrix A, then f∗ is represented in
the dual bases by the matrix AT . It is clear that (g ◦ f)∗ = f∗ ◦ g∗. Hence, for an [m]-module V

V1
V (1≤2)−−−−→ V2

V (2≤3)−−−−→ · · · V (m−1≤m)−−−−−−−→ Vm

we get an [m]-module V ∗

V ∗m
V (m−1≤m)∗−−−−−−−−→ V ∗m−1

V (m−2≤m−1)∗−−−−−−−−−−→ · · · V (1≤2)∗−−−−−→ V ∗1 .

Observe that dualization respects direct sums of persistence modules: for two [m]-modules V
and W , there is an isomorphism V ∗ ⊕W ∗ ∼= (V ⊕W )∗.

Example 8.1. The dual of 0→ k
1k−→ k

1k−→ k is isomorphic to k
1k−→ k

1k−→ k→ 0.

More generally, consider the interval module I [a,b) for an interval [a, b) in [m],

0→ · · · → 0→ k
1k−→ k

1k−→ · · · 1k−→ k→ 0→ · · · → 0.

Its dual (I [a,b))∗ is isomorphic to the interval module I(m+1−b,m+1−a] where (m+1−b,m+1−a]
is the interval {i ∈ [m] : m+ 1− b < i ≤ m+ 1− a}.

The following proposition follows from the previous two observations and Theorem 6.16.

Corollary 8.2. Let V be an [m]-module such that dimVi <∞ for all i ∈ [m]. Then

V ∗ ∼=
⊕

[a,b)∈B(V )

I(m+1−b,m+1−a].

In particular, B(V ∗) = {(m+ 1− b,m+ 1− a] : [a, b) ∈ B(V )}.

8.2 Simplicial Cohomology

In the following we are working over the field k = Z2.

Definition 8.3. Let n ≥ 0 be an integer and K a simplicial complex. The vector space of
n-cochains in K is the dual vector space Cn(K) = Cn(K)∗ = Hom(Cn(K),Z2).

5This is in fact an if and only if statement but the converse is non-trivial to prove.
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There is a coboundary operator ∂n : Cn(K)→ Cn+1(K) defined on α : Cn(K)→ Z2 by

∂n(α)(c) = α(∂n+1(c)),

where ∂n is the boundary operator in homology. If ∂n(α) = 0, then we say that α is an n-
cocycle, and if α = ∂n−1(β), then we say that α is an n-coboundary. The n-cocycles and
n-coboundaries define vector spaces Zn(K) and Bn(K), respectively.

We immediately observe that

∂n+1 ◦ ∂n(α)(c) = α(∂n+1 ◦ ∂n+2(c)) = α(0) = 0. (5)

It follows that Bn(K) ⊆ Zn(K).

Definition 8.4. The n-th simplicial cohomology vector space of a simplicial complex K
is the quotient vector space Hn(K) = Zn(K)/Bn(K).

For every n-simplex σ in K we have a dual σ∗ : Cn(K)→ Z2 given by

σ∗(τ) =

{
1 if σ = τ,

0 otherwise.

By representing the coboundary operator in all dimensions in the bases given by the duals of
simplices, we can apply Algorithm 1 to compute Hn(K) in all dimensions. For the moment we
shall order the columns and rows in the opposite order of what we would do in homology. The
reason for doing this will become clear when we turn to persistent cohomology.

Example 8.5. Consider the simplicial complex in Fig. 30. For σ = {3, 4} ∈ K we get ∂1(σ∗) =
τ = {2, 3, 4}∗, and for v = {2} we get ∂0(v∗) = {2, 3}∗ + {2, 4}∗ + {1, 2}∗. Representing the
coboundary operator as mentioned above yields,

M =

234 34 23 24 13 12 4 3 2 1



234 0 1 1 1 0 0 0 0 0 0
34 0 0 0 0 0 0 1 1 0 0
23 0 0 0 0 0 0 0 1 1 0
24 0 0 0 0 0 0 1 0 1 0
13 0 0 0 0 0 0 0 1 0 1
12 0 0 0 0 0 0 0 0 1 1
4 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0

Applying Algorithm 1 to the above matrix yields the following R and V , respectively:

234 34 23 24 13 12 4 3 2 1



234 0 1 0 0 0 0 0 0 0 0
34 0 0 0 0 0 0 1 1 0 0
23 0 0 0 0 0 0 0 1 1 0
24 0 0 0 0 0 0 1 0 1 0
13 0 0 0 0 0 0 0 1 0 0
12 0 0 0 0 0 0 0 0 1 0
4 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0

,





1 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1

.
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1 2

4

Figure 30: The simplices appear in the following order:
{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {2, 4}, {2, 3}, {3, 4}, {2, 3, 4}. See Example 8.5.

Using vector notation as in Section 3.1.2, we find bases for Z2(K), B2(K), Z1(K), B1(K), Z0(K):

Σ̃Z2 = {(1000000000)T }
ΣB2 = {(1000000000)T }
Σ̃Z1 = {(0110000000)T , (0101000000)T , (0000100000)T , (0000010000)T }
ΣB1 = {(0101000000)T , (0110100000)T , (0011010000)T }
Σ̃Z0 = {(0000001111)T }.

By means of Lemma 2.20 we extend ΣBi to a basis ΣZi for Zi(K):

ΣZ2 = ΣB2 , ΣZ1 = {(0110000000)T } ∪ ΣB1 , ΣZ0 = {(0000001111)T }.

We conclude that H2(K) = 0, H1(K) ∼= Z2, and H0(K) ∼= Z2.

The fact that Hn(K) ∼= Hn(K) can easily be proven using linear algebra:

dimHn(K) = dimZn(K)− dimBn(K) = dimZn(K)− dimBn(K) = dimHn(K). (6)

We shall give an alternative proof. First we need the following characterization of cycles
and cocycles.

Lemma 8.6.

1. γ ∈ Zn(K) if and only if γ(c) = 0 for all c ∈ Bn(K),

2. γ ∈ Bn(K) if and only if γ(c) = 0 for all c ∈ Zn(K).

Proof.

1. Assume γ ∈ Zn(K) and c = ∂n+1(d). Then γ(c) = γ(∂n+1(d)) = ∂n(γ)(d) = 0. Con-
versely, if γ is not in Zn(K), then there must exist some d such that 0 6= ∂n(γ)(d) =
γ(∂n(d)).

2. Assume γ(c) = 0 for all c ∈ Zn(K). Define β : Bn−1(K) → Z2 by β(d) = γ(c) where
d = ∂n(c). This is well-defined, because if d = ∂n(c) = ∂n(c′), then ∂n(c − c′) = 0 and
thus c− c′ ∈ Zn(K). It follows that γ(c) = γ(c′). By extending a basis for Bn−1(K) to a
basis for Cn−1(K), we can extend β to a linear map β : Cn−1(K)→ Z2 satisfying

∂n−1(β)(c) = β(∂n(c)) = γ(c).

We conclude that γ = ∂n−1(β). The converse statement is straightforward.
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Lemma 8.7. The morphism h : Hn(K)→ Hn(K)∗ given by h([α])[c] = α(c) is well-defined and
an isomorphism.

Proof. Let α = α′ + ∂n−1(β). Then,

h([α])[c] = α(c) = α′(c) + ∂n−1(β(c)) = α′(c) + β(∂n(c)) = α′(c),

where the last equality follows from c being an n-cycle. This shows that h is independent of
the representative cocycle. Next, let c = c′ + ∂n+1(d),

α(c) = α(c′) + α(∂n+1(d)) = α(c′) + ∂n(α)(d) = α(c′),

since α is an n-cocycle. This shows that h is well-defined.

• h is injective: If h([α]) = 0, then α(c) = 0 for all c ∈ Zn(K). It follows from Lemma 8.6
that α ∈ Bn(K), hence [α] = 0.

• h is surjective: Let f : Hn(K) → Z2. Pre-composing f with the linear map Zn(K) →
Hn(K), defines a linear map f ′ : Zn(K)→ Z2. By extending a basis for Zn(K) to a basis
for Cn(K), we can lift f ′ to a linear map f ′ : Cn(K)→ Z2. Since f ′(b) = f([b]) = f(0) = 0
for b ∈ Bn(K), it follows that f ′ ∈ Zn(K) by Lemma 8.6. Hence h([f ′]) = f .

Remark 8.8. The above morphism fails to be an isomorphism when working with homology and
cohomology over the integers. Can you see what part of the argument fails?

Since dimV = dimV ∗ for V finite-dimensional, it follows that

Hn(K) ∼= Hn(K)∗ ∼= Hn(K).

8.3 Persistent Cohomology

For an inclusion f : Ki ⊆ Kj of simplicial complexes, there is an induced map f∗ : Hn(Kj) →
Hn(Ki) given by

f∗([α])(c) = α(f(c)).

We leave it as an exercise to verify that this map is well-defined.
To a filtration K1 ⊆ K2 ⊆ · · · ⊆ Km we thus get the following cohomology persistence

module:
Hn(K) : Hn(Km)→ Hn(Km−1)→ · · · → Hn(K2)→ Hn(K1).

Let Hn(K) denote the associated homology persistence module,

Hn(K) : Hn(K1)→ H2(K)→ · · · → Hn(Km−1)→ Hn(Km).

Proposition 8.9. The persistence modules Hn(K) and Hn(K)∗ are isomorphic.

Proof. For i ∈ [m], define hi : H
n(Ki) → Hn(Ki)

∗ by hi([α])(c) = α(c). That yields the
following commutative diagram for all i ≤ j

Hn(Kj) Hn(Ki)

Hn(Kj)
∗ Hn(Ki)

∗

hj∼= hi∼=

where the vertical morphisms are isomorphisms by Lemma 8.7.
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The following theorem is an immediate consequence of the previous lemma and Corollary 8.2.

Theorem 8.10. There is a bijection between the barcodes B(Hn(K)) and B(Hn(K)) given by

B(Hn(K)) 3 [a, b)↔ (m+ 1− b,m+ 1− a] ∈ B(Hn(K)).

Remark 8.11. In fact, if we view Hn(K) as an persistence module indexed over [m] with the
opposite ordering,

Hn(K1)← Hn(K2)← · · ·Hn(Km−1)← Hn(Km),

then the barcode of Hn(K) coincides with the barcode of Hn(K).

8.3.1 Computation

It is tempting to think that persistent cohomology can be computed by applying the standard
algorithm to the coboundary matrix as in Example 8.5. This turns out to almost be the case.

Example 8.12. Returning to Example 8.5 and pairing vectors based on their lowest non-zero
entry as in the standard algorithm for persistent homology we get the pairs

(1000000000)T ↔ (1000000000)T

(0101000000)T ↔ (0101000000)T (0000100000)T ↔ (0110100000)T

(0000010000)T ↔ (0011010000)T (0110000000)T ↔ ∅
(0000001111)T ↔ ∅

Let us start with the first pairing, which is between {2, 3, 4}∗ and the column corresponding to
{3, 4}∗. Since the duals of simplices appear in the opposite order of the simplices, this results in
an interval [1, 2) in dimension 2 (no, this is not a typo). Similarly we get intervals [4, 7),[5, 8),
[6, 9) and [3,∞) in dimension 1. Lastly we get an interval [10,∞) in dimension 0.

The barcode of the previous example can easily be transformed into the barcode of persistent
cohomology, and thus persistent homology. One can prove that applying the standard algorithm
to the boundary matrix as above computes the barcode of the following persistence module in
relative cohomology :

Hn(K,Km−1)→ Hn(K,Km−2)→ . . .→ Hn(K,K1)→ Hn(K).

The barcode of relative cohomology corresponds to the barcode of Hn(K) according to the
following table:

Relative Cohomology Cohomology Homology

[a, b) in dim. i (a, b] in dim. i− 1 [m+ 1− b,m+ 1− a) in dim. i− 1

[a,∞) in dim. i (−∞, a] in dim. i [m+ 1− a,∞) in dim. i

The reader may easily verify that transforming the barcode of Example 8.12 into the homology
barcode yields the expected result.
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8.3.2 Clearing

The salient point of the last subsection is that the persistent homology barcode can be computed
by means of cohomology. A näıve implementation will not improve computational speed much
compared to the standard algorithm. However, the speed improves dramatically if we employ
the clearing technique discussed in the previous lecture.

Just as in the homology case, we know that if the column corresponding to the n-cochain
σ∗ forms an n-coboundary with lowest non-zero entry at row i, then the column corresponding
to the (n+ 1)-cochain added at time i will be reduced to 0 under Algorithm 1. This means that
if we have reduced all the (n− 1)-cochains to form a basis for Bn(K), then we avoid reducing
|Bn(K)| columns when computing bases for Zn(K) and Bn+1(K). This is the whole idea behind
clearing and can be summarized as follows:

• Let K be a filtered simplicial complex with dimK = d.

• Let D be the coboundary operator in matrix form, with the columns ordered in the
opposite order of the filtration (as in Example 8.5).

• Use the standard algorithm to reduce the columns of D corresponding to 0-simplices in
order to obtain ΣB1 and Σ̂Z0 .

• For every Rj ∈ ΣB1 , zero out column number low(Rj) in D. Reduce the 1-cochains of

the resulting boundary matrix to obtain the set ΣB2 . A basis Σ̃Z1 for Z1(K) is given by
the set ΣB1 together with all columns Vi corresponding to zero columns Ri that were not
zeroed out prior to the reduction.

• Continue the same way until a bases for Zd−1(K) and Bd(K) are computed.

The total number of columns that need not be reduced are

dimB1(K) + dimB2(K) + . . .+ dimBd−1(K). (7)

The difference with homology is that we avoid zeroing out a large number of columns corre-
sponding to d-simplices. Let us return to Example 7.1 in the case of cohomology.

Example 8.13. When working with cohomology we know that Z3(K) = C3(K) if restricted to
a simplicial complex without 4-simplices. Hence, if we were to näıvely reduce the coboundary
matrix without using clearing we would have to do a total number of

dimC0(VR∞(P ))+dimC1(VR∞(P ))+dimC2(VR∞(P )) =

(
100

1

)
+

(
100

2

)
+

(
100

3

)
= 166750

column reductions. This number is much lower than for the näıve homology algorithm, but the
computations are not faster in practice because the columns to be reduced are much larger.
Furthermore, the total number of columns to be zeroed out equals

dimZ2(VR∞(P )) + dimZ1(VR∞(P )) + dimZ0(VR∞(P )) =

(
99

2

)
+

(
99

1

)
+ 1 = 4951.

With clearing on the other hand, we need not zero out the following number of columns:

dimB1(VR∞(P )) + dimB2(VR∞(P )) =

(
99

1

)
+

(
99

2

)
= 4950.

In conclusion: 161800 column reductions but only a single column will be zeroed out.
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The previous example illustrates one of the reasons why cohomology with clearing typically
performs much faster than homology with clearing: the number of columns to zero out becomes
small, and it is comparatively much cheaper to reduce a column to a boundary. Furthermore,
it turns out that in practice a large number of the boundary columns need no reduction. More
on this can be found in [1].

8.4 Exercises

1. Verify that a simplicial map f : K → L induces a well-defined map f∗ : Hn(L)→ Hn(K)
given by f∗([α])(c) = α(f(c)). Show that the diagram in Proposition 8.9 commutes.

2. Let K be the simplicial complex defined by an n-simplex and all its faces. Determine
dimZi(K), dimBi(K),dimZi(K) and dimBi(K) for all i.

3. Show that Hn(K) ∼= Hn(K) by proving Eq. (6).

4. Consider the filtration K1 ⊆ K2 ⊆ · · · ⊆ Km = K, where Ki+1 = Ki ∪ {σi+1}, together
with the associated relative cohomology persistence module

Hn(K,Km−1)→ Hn(K,Km−2)→ · · · → Hn(K,K2)→ Hn(K,K1).

By definition, Cn(K,Ki) := Cn(K,Ki)
∗.

(a) Show that Cn(K,Kl) = Span{σ∗t | dimσt = n and t > l.}
(b) Order the basis elements as σ∗m < σ∗m−1 · · · < σ∗1 and consider the matrix represen-

tation D of the coboundary operator

∂∗ : C0(K,Kl)⊕ · · · ⊕ CdimK(K,Kl)→ C0(K,Kl)⊕ · · · ⊕ CdimK(K,Kl)

with respect to this ordering (as in Example 8.5). Convince yourself that running
the standard algorithm on D computes a basis for H0(K,Kl)⊕ · · · ⊕HdimK(K,Kl).

(c) Let l = 1 in (b), and follow the line of reasoning given in Section 7.1 to conclude
that the pairings obtained from the applying the standard algorithm to D produces
the barcode for the relative cohomology persistence module.
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9 Stability of Persistent Homology

In this lecture we shall discuss metrics on barcodes/persistence diagrams and discuss to what
extent persistent homology is stable under perturbation of the input data.

9.1 The Bottleneck Distance

Let C and D be multisets of intervals 〈a, b〉 in R. Here the notation 〈a, b〉 denotes that the
interval can be any well-defined member of {[a, b], [a, b), (a, b], (a, b)}. We define a matching
between C and D to be a collection of pairs χ = {(I, J) ∈ C ×D} where each I and each J can
occur in at most one pair. Equivalently, a matching is a bijection between a subset of C and a
subset of D. If (I, J) ∈ χ, then we say that I is matched to J . If I does not appear in a pair,
then we say that I is unmatched.

Example 9.1. Let C = {I1, I2} and D = {J}. Then the pair (I1, J) defines a matching where
I2 is unmatched. Note that {(I1, J), (I2, J)} does not define a matching.

Define the cost c(I, J) of matching I = 〈a, b〉 to J = 〈c, d〉 to be

c(I, J) = max(|c− a|, |d− b|),

and define the cost c(I) of not matching I to be

c(I) = (b− a)/2.

Given this we define the cost of a matching χ to be

c(χ) := max

(
sup

(I,J)∈χ
c(I, J), sup

unmatched I∈C∪D
c(I)

)
. (8)

We say that χ is an ε-matching if c(χ) ≤ ε.
Remark 9.2. A geometric interpretation of this is as follows: consider the intervals of C and D
as points in R2. An ε-matching then pairs up points p and q, corresponding to intervals of C
and D respectively, such that ||p − q||∞ ≤ ε, and such that any unmatched point is at most ε
away from the diagonal in the l∞-norm.

Lemma 9.3. If there exists an ε-matching between C and D, and an ε′-matching between D
and E, then the compositions of matching yields an (ε+ ε′)-matching between C and E.

Proof. Let I = 〈a1, b1〉 ∈ C, J = 〈a2, b2〉 ∈ D and K = 〈a3, b3〉 ∈ E such that I is matched to J ,
and J is matched to K. Then |a3−a1| ≤ |a3−a2|+ |a2−a1| ≤ ε+ ε′, and similarly for |b3− b1|.

If I and J are as above, but J is unmatched in the second matching, then by assumption
we have b2 ≤ a2 + 2ε′. It follows that

a1 + 2ε+ 2ε′ ≥ a2 + ε+ 2ε′ ≥ b2 + ε ≥ b1,

and thus c(I) ≤ ε+ ε′.
A similar argument applies if J is matched to K under the second matching, but unmatched

under the first matching.

It follows from the definition of a matching and the previous lemma that the following defines
a distance.
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Figure 31: Left: A graph (black) and its perturbation (red). Right: The persistence diagrams
of the 0-th sublevel set persistent homology of the two graphs.

Definition 9.4. The bottleneck distance between C and D is

dB(C,D) = inf{c(χ) : χ is a matching between C and D}.

Example 9.5. Let C = {[0, 6), [4, 6)} and D = {[2, 8), [10, 12)}. The trivial matching which
leaves everything unmatched has a cost of the half the length of the longest interval: (8−2)/2 =
3. Hence, dB(C,D) ≤ 3. In order to improve this bound we need to match the interval [2, 8) to
either [0, 6) or [4, 6). These two pairings come at the same expense

c([0, 6), [2, 8)) = c([4, 6), [2, 8)) = 2.

If we match [0, 6) with [2, 8), then we can either match [4, 6) to [10, 12) or leave both of the
unmatched. We see that leaving them both unmatched comes at the lowest cost of

max{c([0, 6), [2, 8)), c([4, 6)), c([10, 12))} = 2.

If we however match [4, 6) to [2, 8), then the best we can do is

max{c([4, 6), [2, 8)), c([0, 6)), c([10, 12))} = 3.

We conclude that dB(C,D) = 2.

The previous example was somewhat tedious but luckily there are fast algorithms for com-
puting the bottleneck distance in practice. By recasting the problem as an instance of a bi-
partite matching problem, state-of-the-art algorithms compute dB(C,D) in O(n1.5 log n) where
n = |C|+ |D| [18].

9.1.1 Stability of Persistent Homology

One of the key properties of persistent homology is the fact that it is stable in the bottleneck
distance. As an example, consider the two graphs shown to the left in Fig. 31. Associated
to these graphs we get persistence diagrams in dimension 0 by considering sublevel sets and
applying homology in dimension 0. The persistence diagram of the perturbed graph has two
points close to the points of the original persistence diagrams, together with two points close to
the diagonal (noise). This suggests a matching where the latter two points (intervals) are left
unmatched, and the two other points (intervals) will be matched with a cost bounded by the
perturbation in the l∞-norm.
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More generally, let X be a topological space equipped with two functions f, g : X → R.
Associated to these functions we have R-modules Mf and Mg given by

Mf
t = Hi(f

−1(−∞, t]) Mg
t = Hi(g

−1(−∞, t]). (9)

Assuming that dimMf
t <∞ and dimMg

t <∞ for all t, which ensures that we have well-defined
barcodes by Theorem 6.19, the following is true

Theorem 9.6.
dB(B(Mf ), B(Mg)) ≤ ||f − g||∞.

We shall prove this theorem for sufficiently tame functions.
Similar stability results apply to point sets: Fig. 32 shows a noisy sample from the circle

and its perturbation, together with the persistence diagrams in dimension 1 of the associated
to the Vietoris–Rips filtrations. For a finite point set P , let Hi(VR(P )) denote the R-indexed
persistence module defined at t by Hi(VRt(P )) and for which the morphism Hi(VRs(P )) →
Hi(VRt(P )) is induced by the inclusion VRs(P ) ⊆ VRt(P ).

Theorem 9.7. Let P and Q be finite sets of points in Rd, and σ : P → Q a bijection such that
||p− σ(p)|| ≤ ε for all p ∈ P . Then,

dB(B(Hi(VR(P ))), B(Hi(VR(Q)))) ≤ ε.

By means of the Gromov–Hausdorff distance this theorem can be strengthened to include
point sets that need not be embedded in a common space nor have the same cardinality. We
will not concern ourselves with the more general result.

A stability theorem for the Cech filtration in the case that P and Q need not have the same
cardinality follows from Theorem 9.6. Let Hi(Cech(P )) denote the R-module associated to the
Cech filtration. Recall the notation Pr := d−1P (−∞, r] introduced in Section 5.1.

Theorem 9.8. Let P and Q be finite sets of points in Rd. If there exists an ε ≥ 0 such that
P ⊆ Qε and Q ⊆ Pε, then

dB(B(Hi(Cech(P ))), B(Hi(Cech(Q)))) ≤ ε.

Proof. Define functions dP , dQ : Rd → R by

dP (x) = min
p∈P
||x− p|| dQ(x) = min

q∈Q
||x− q||.

Fix an x ∈ R2 and let p ∈ P be a point closest to x. Then, from the assumption that P ⊆ Qε,
there exists some q ∈ Q with ||p−q|| ≤ ε. This shows that dP (x) ≤ dQ(x)+ε, and symmetrically,
dQ(x) ≤ dP (x) + ε. We conclude that ||dP − dQ||∞ ≤ ε.

Now define R-modules MdP and MdQ as above. From Theorem 4.11 we know that MdP ∼=
Hi(Cech(P )) and MdQ ∼= Hi(Cech(Q)). Since isomorphic R-modules necessarily have the same
barcode, we conclude that

dB(B(Hi(Cech(P ))), B(Hi(Cech(Q)))) = dB(B(MdP ), B(MdQ)) ≤ ||dP − dQ||∞ ≤ ε.
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Figure 32: Left: A sample from a circle and its perturbation. Right: The associated persistence
diagrams in dimension 1 computed using Ripser.

9.1.2 Generalizations

The bottleneck distance is only sensitive to the maximum over a matching. There are other
”more discriminative” distances which are more frequently used in data analysis, although
persistence diagrams do not exhibit the same type of general stability in those cases as with the
bottleneck distance. One such distance is the degree q Wasserstein distance,

Wq(C,D) = inf
matchings χ between C and D

 ∑
(I,J)∈χ

c(I, J)q +
∑

unmatched I∈C∪D
c(I)q

1/q

,

where q is some positive real number. The bottleneck distance can be obtained as a limit in the
following way:

lim
q→∞

Wq(C,D) = dB(C,D).

Stability. We conclude by stating a recent result on stability. Let K be a simplicial complex,
and let f : K → R be a monotone function defined on the simplices of K, i.e., f(σ) ≤ f(τ)
if σ ⊆ τ . This defines a filtration of K by letting Kt = {σ ∈ K : f(σ) ≤ t}, and a persistence

module Mf
t := Hi(Kt) as above. Examples of such filtrations are the Cech, Vietoris–Rips, and

alpha complexes.

Theorem 9.9 ([28, 4]). For monotone functions f, g : K → R,

Wq(B(Mf ), B(Mg)) ≤

 ∑
σ∈K,dimσ∈{i,i+1}

|f(σ)− g(σ)|q
1/q

.
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9.2 Interleavings

We will now introduce the theory of interleavings and an associated interleaving distance be-
tween persistence modules. Importantly, and as we will see, the interleaving distance coincides
with the bottleneck distance, and it is easy to show stability in the interleaving distance. Hence,
our stability results will follow from this equivalence.

Discrete setting For the moment, let us assume that we are working with persistence mod-
ule indexed by the integers. A 0-interleaving is nothing more than an isomorphism, i.e. a
collection of morphisms {Mi → Ni} and a collection of morphisms {Ni → Mi} such that the
following diagrams commute:

· · · Mi Mi+1 Mi+2 · · ·

· · · Ni Ni+1 Ni+2 · · ·

A 1-interleaving is a collection of slanted morphisms such that the following diagram commutes:

· · · Mi Mi+1 Mi+2 · · ·

· · · Ni Ni+1 Ni+2 · · ·

Note that a 1-interleaving requires that the morphism Mi → Mi+2 factors through Ni+1 in a
natural way. Intuitively, this means that every “2-persistent” feature of Mi—a bar of length at
least two that overlaps the index i—is also present in Ni, and vice versa. A 2-interleaving is a
collection of morphisms {Mi → Ni+2} and {Ni → Mi+2} making a similar diagram commute.
It should now be possible to deduce what an n-interleaving is.

The formal definition Now we shall assume that the modules M and N are indexed over the
real numbers. Define the ε-shift of M to be the persistence module M ε defined by M ε

t = Mt+ε

and M ε(s ≤ t) = M(s+ ε ≤ t+ ε) for all s ≤ t ∈ R. If f : M → N is a morphism, then we get
an ε-shifted morphism f ε : M ε → N ε defined by f εt = ft+ε.

Example 9.10. The ε shift of the interval module I [a,b) is I [a−ε,b−ε).

Let ηεM : M →M ε be the morphism whose restriction to each Mt is the internal morphism
M(t ≤ t+ ε).

Definition 9.11. Given ε ∈ [0,∞), an ε-interleaving between M and N is a pair of morphisms
ψ : M → N ε and ϕ : N →M ε such that ϕε ◦ ψ = η2εM and ψε ◦ ϕ = η2εN . We say that M and N
are ε-interleaved.

Explicitly, the last condition states the following two diagrams commute for all t ∈ R:

Mt Mt+2ε Mt+ε

Nt+ε Nt Nt+2ε

ψt

M(t≤t+2ε)

ψt+ε
ϕt+ε

φt

N(t≤t+2ε)
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Lemma 9.12. If M and N are ε-interleaved, and N and L are ε′-interleaved, then M and L
are (ε+ ε′)-interleaved.

Proof. Let ψ : M → N ε, ϕ : N → M ε, ψ′ : N → Lε
′

and ϕ′ : L → N ε′ be the respective mor-
phisms satisfying the interleaving condition. They yield a morphism ψ′′ : M → Lε+ε

′
through

the composition

Mt
ψt−→ Nt+ε

ψ′t+ε−−−→ Lt+ε+ε′ ,

and a morphism ϕ′′ ◦M → Lε+ε
′

given by

Lt
ϕ′t−→ Nt+ε′

ϕt+ε′−−−→Mt+ε+ε′ .

It remains to check that (ϕ′′)ε+ε
′ ◦ ψ′′ = η

2(ε+ε′)
M and (ψ′′)ε+ε

′ ◦ ϕ′′ = η
2(ε+ε′)
L . The first equality

follows from the following commutative diagram:

Mt Mt+2ε Mt+2ε+2ε′

Nt+ε Nt+ε+2ε′

Lt+ε+ε′

ψt

M(t≤t+2ε) M(t+2ε≤t+2ε+2ε′)

ϕt+ε

ψ′t+ε

N(t+ε≤t+ε+2ε′)
ϕt+ε+2ε′

ϕt+ε+ε′

The second equality follows from a similar commutative diagram.

It follows from the definition of an interleaving and the previous lemma that the following
indeed defines a metric.

Definition 9.13. The interleaving distance between two R-modules M and N is

dI(M,N) = inf{ε : there exists an ε-interleaving between M and N}.

The following result is fundamental to topological data analysis and non-trivial. We defer
its proof to a later lecture.

Theorem 9.14. Let M and N be R-modules such that Mt and Nt are finite-dimensional for
all t ∈ R. Then,

dB(B(M), B(N)) = dI(M,N).

An immediate corollary is a proof of Theorem 9.6.

Proof of Theorem 9.6. Since ||f − g||∞ ≤ ε, we have the following commutative diagram of
inclusions for every t ∈ R:

f−1(−∞, t] f−1(−∞, t+ ε] f−1(−∞, t+ 2ε]

g−1(−∞, t] g−1(−∞, t+ ε] g−1(−∞, t+ 2ε].
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Applying Hi yields the following commutative diagram

Mf
t Mf

t+ε Mf
t+2ε

Mg
t Mg

t+ε Mg
t+2ε.

It is easy to see that this defines an ε-interleaving pair.

Proof of Theorem 9.7. This proof is analogous to the previous proof. Label the points of P =
{p1, . . . , pm} and Q = {q1, . . . , qm} such that ||pi− qi|| ≤ ε. If σ = {pi1 , . . . , pim} is a simplex of
VRr(P ), then we have by definition of the Vietoris–Rips complex that diam(σ) ≤ 2r. From the
bijection we get that the corresponding set τ = {qi1 , . . . , qim} satisfies diam(τ) ≤ 2r+2ε. Hence,
we have an inclusion VRr(P ) ⊆ VRr+ε(Q) defined by the simplicial mapping which sends the
vertex pi to qi. Symmetrically we have an inclusion VRr(Q) ⊆ VRr+ε(P ). Putting these two
relations together we find

VRr(P ) ⊆ VRr+ε(Q) ⊆ VRr+2ε(P )

VRr(Q) ⊆ VRr+ε(P ) ⊆ VRr+2ε(Q)

ApplyingHi to the above relations defines an ε-interleaving betweenHi(VR(P )) andHi(VR(Q)).
It follows from Theorem 9.14 that

dB(B(Hi(VR(P ))), B(Hi(VR(Q)))) = dI(Hi(VR(P )), Hi(VR(Q))) ≤ ε.

9.3 Exercises

1. Let C = {[0, 10), [2, 8), [1, 2), [13, 14)} and D = {[1, 8), [1, 9), [17, 18)}. Compute dB(C,D).

2. Verify that dB(B(M), B(N)) = dI(M,N) when M and N are interval modules over R.

3. Show that if M and N are ε-interleaved, then they are ε′-interleaved for all ε′ ≥ ε.

4. Let P be a finite set of points in Rn and let Q be an ε-perturbation of P . That is,
there exists a bijection σ : P → Q such that ||p − σ(p)|| ≤ ε for all p. Show that
dB(H0(VR(P )), H0(VR(Q))) ≤ ε without using Theorem 9.7.
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10 Bjerkevik’s Proof of the Isometry Theorem

In this section we will prove Theorem 9.14 by showing that dI ≤ dB and dB ≤ dI . The
former inequality first appeared in [21] and is rather straightforward. For the latter we will
be following the work of Bjerkevik [2]. Other proofs do exist in the literature but we will
focus on this particular approach because 1) it is combinatorial in nature, 2) it generalizes to
multiparameter modules in a way that other approaches do not. For the remainder of this
section we shall work under the additional assumption of a finite number of intervals. This is
just for notational simplicity as essentially the same proof works in the more general setting of
Theorem 9.14. Furthermore, given that assumption, we may further assume that:

1. The intervals have finite support.

2. Every interval is of the form [a, b).

The first of these can be made without loss of generality as one can replace infinite intervals with
finite intervals: (−∞, b) ↔ [−u, b), (−∞,∞) ↔ [−u, u) and [a,∞) ↔ [a, u) for u sufficiently
large. The latter assumption can also be made without loss of generality as the following lemma
shows.

Lemma 10.1. Let M ∼= ⊕〈a,b〉∈B(M)I
〈a,b〉 and let M̂ = ⊕〈a,b〉∈B(M)I

[a,b). Then,

dB

(
B(M), B(M̂)

)
= 0, dI

(
M,M̂

)
= 0.

Proof. Exercise.

Hence, from the triangle inequality it follows that dB(B(M), B(N)) = dB(B(M̂), B(N̂))

and dI(M,N) = dI(M̂, N̂).

10.1 Part 1: dI ≤ dB

Recall that for an interval J ⊆ R, IJ is defined by

IJt =

{
k if t ∈ J
0 otherwise.

,

and with IJ(t ≤ t′) the identity morphism whenever t, t′ ∈ J .

Lemma 10.2. Let J = [a, b) and K = [c, d) be (possibly empty) intervals in R. Then, the
following two statements are equivalent:

1. There exists a matching χ between {J} and {K} with a cost c(χ) ≤ ε,

2. There exists an ε-interleaving between IJ and IK .

Proof. Exercise.

Lemma 10.3. If M and N are ε-interleaved, and M ′ and N ′ are ε-interleaved, then M ⊕M ′
and N ⊕N ′ are ε-interleaved.
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Proof. Let f : M → N ε and g : N → M ε, and f ′ : M ′ → (N ′)ε and g′ : N ′ → (M ′)ε constitute
ε-interleavings. Taking the direct sums yields:

A :=

[
f 0
0 f ′

]
: M ⊕M ′ → N ε ⊕ (N ′)ε

and

B :=

[
g 0
0 g′

]
: N ⊕N ′ →M ε ⊕ (M ′)ε.

It remains to check that A and B define an ε-interleaving. That is straightforward:

Bε ◦A =

[
gε 0
0 (g′)ε

]
·
[
f 0
0 f ′

]
=

[
gε ◦ f 0

0 (g′)ε ◦ f ′
]

=

[
η2εM 0
0 η2εM ′

]
= η2εM⊕M ′ .

Symmetrically,

Aε ◦B =

[
f ε 0
0 (f ′)ε

]
·
[
g 0
0 g′

]
= η2εN⊕N ′ .

Combining the two previous lemmas we arrive at our result:

Theorem 10.4. Let B(M) and B(N) be finite multisets of finite intervals of the form [a, b).
Then dI(M,N) ≤ dB(B(M), B(N)).

Proof. Let χ be a matching between dB(B(M), B(N)) with cost c(χ) = ε. If J ∈ B(M) is
matched to K ∈ B(N), then dB({J}, {K}) ≤ c(J,K) = ε, and by Lemma 10.2 there is an
(ε)-interleaving between IJ and IK . Likewise, if J ∈ B(M) ∪ B(N) is unmatched, then IJ is
ε-interleaved with the 0-module. Hence, by invoking Lemma 10.3 we conclude that

M ∼=

 ⊕
J ∈ B(M) matched

IJ

⊕ ⊕
J ′ ∈ B(M) unmatched

IJ
′

⊕ 0

is ε-interleaved with

N ∼=

 ⊕
K ∈ B(N) matched

IK

⊕ 0
⊕ ⊕

K′ ∈ B(N) unmatched

IK
′



10.2 Part 2: dB ≤ dI (the algebraic stability theorem)

Proving this part is significantly more involved. We start with the following simple observation.

Lemma 10.5. If I1 = [a1, b1) and I2 = [a2, b2) are intervals and f : II1 → II2 is non-zero, then
a2 ≤ a1 and b2 ≤ b1.

Proof. Assume a2 > a1. The following diagram must necessarily commute for any t ∈ [a1, b1):

II1a1 = k k = II1t

II2a1 = 0 II2t .

1

fa1 ft

0

Since the morphism fa1 = 0, it follows that ft = 0. Hence f is the zero-morphism. A similar
argument shows that b2 ≤ b1.
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Lemma 10.6. The morphism f : I [a1,b1) → I [a2,b2) is completely determined by fa1 ∈ k.

Proof. The morphism is trivial outside of [a1, b2) by the previous lemma. For any t ∈ [a1, b2)
we have the following commutative diagram

I
[a1,b1)
a1 = k k = I

[a1,b1)
t

I
[a1,b2)
a1 = k k = I

[a1,b2)
t .

1

fa1 ft

1

Hence ft = fa1 .

For an interval I = [a, b), define α(I) = a+ b, and observe that this defines a preorder6 ≤α
on intervals: I ≤α J if α(I) ≤ α(J).

We shall make repeated use of the following observation:

(I [a,b〉)ε = I [a−ε,b−ε).

Lemma 10.7. Let I1, I2 and I3 be intervals satisfying the following: α(I1) ≤ α(I3), 0 6=
f : II1 → (II2)ε, and 0 6= g : II2 → (II3)ε. Then, II2 is ε-interleaved with II1 or II3.

Proof. Write I1 = [a1, b1), I2 = [a2, b2) and I3 = [a3, b3). From the above observation and
Lemma 10.5 we find that,

a2 ≤ a1 + ε

b2 ≤ b1 + ε.

Assume that II1 and II2 are not ε-interleaved. The modules I [a1,b1) and I [a2,b2) are ε-interleaved
if |a1 − a2| ≤ ε and |b1 − b2| ≤ ε, and thus we may assume that a2 < a1 − ε or b2 < b1 − ε.
Assuming the former:

α(I1) = a1 + b1 > a2 + ε+ b1 ≥ a2 + b2 = α(I2),

and assuming the latter:

α(I1) = a1 + b1 > a1 + b2 + ε ≥ a2 + b2 = α(I2).

In either case, α(I1) > α(I2). Assuming that II2 and II3 are not ε-interleaved and by substi-
tuting I2 for I1, and I3 for I2 in the above argument, we get α(I2) > α(I3). In conclusion:

α(I1) > α(I2) > α(I3),

a contradiction.

Lemma 10.8. Let I1 = [a1, b1), I2 = [a2, b2), and I3 = [a3, b3) be such that b1 − a1 > 2ε,
b3 − a3 > 2ε, and α(I1) ≤ α(I3). If 0 6= f : II1 → (II2)ε and 0 6= g : II2 → (II3)ε. Then
gε ◦ f 6= 0.

6A partial order without the antisymmetry condition.
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Proof. Applying Lemma 10.5 twice,

a3 ≤ a1 + 2ε b3 ≤ b1 + 2ε.

Assuming for the sake of contradiction that gε ◦ f = 0, we must have that

[a1, b1) ∩ [a3 − 2ε, b3 − 2ε) = ∅,
and thus b3 ≤ a1 + 2ε. Hence, b1 > a1 + 2ε ≥ b3 > a3 + 2ε, where the first and last inequalities
follow from the assumptions of the lemma. In particular, a1 > a3 and b1 > b3. We conclude
that

α(I1) = a1 + b1 > a3 + b3 = α(I3).

A contradiction.

For an interval J ∈ B(M), let µ(J) := {K ∈ B(N) : IJ and IK are ε-interleaved}, and for
a collection of intervals A ⊆ B(M), let µ(A) = ∪J∈Aµ(J).

Lemma 10.9. Assume that M and N are ε-interleaved, and let A ⊆ B(M) be a collection of
intervals {[aj , bj)} satisfying bj > aj + 2ε. Then

|A| ≤ |µ(A)|.

Before proving this lemma we need to introduce some notation. Write, M = ⊕I∈B(M)I
I and

N = ⊕J∈B(N)I
J , and let ιMI : II ↪→M and ιNJ : IJ ↪→ N denote the obvious inclusions into the

respective summands. Dually, we also have projections πMI : M � II and πNJ : N � IJ . For a
morphism f : M → N ε, we let f |I = f ◦ ιMI and fI,J = (πNJ )ε ◦ f ◦ ιMI , and similarly we define
g|J and gJ,I for g : N →M ε. Schematically we have the following commutative diagram,

M N ε

II (IJ)ε

f

(πNJ )ειMI
f |I

fI,J

.

Recall that ηεM : M → M ε is the morphism defined by (ηε)t = M(t ≤ t + ε). Observing
that η2ε

II
is equal to the composition (πMI )2ε ◦ η2εM ◦ ιMI , we arrive at the following commutative

diagram whenever f and g constitute an ε-interleaving between M and N

M N ε M2ε

II (II)2ε

f

η2εM

gε

(πMI )2ειMI
η2ε
II

.

Ultimately we get the following expression

η2εII = (πMI )2ε ◦ gε ◦ f |I (10)

= (πMI )2ε ◦

 ∑
J∈B(N)

g|J ◦ πNJ

ε

◦ f |I (11)

=
∑

J∈B(N)

(πMI )2ε ◦ (g|J)ε ◦ (πNJ )ε ◦ f |I (12)

=
∑

J∈B(N)

gεJ,I ◦ fI,J . (13)
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Furthermore, by construction, 0 = (πMI′ )
2ε ◦ η2εM ◦ ιMI whenever I 6= I ′. Hence,

0 = (πMI′ )
2ε ◦ gε ◦ f |I (14)

= (πMI′ )
2ε ◦

 ∑
J∈B(N)

g|J ◦ πNJ

ε

◦ f |I (15)

=
∑

J∈B(N)

(πMI′ )
2ε ◦ (g|J)ε ◦ (πNJ )ε ◦ f |I (16)

=
∑

J∈B(N)

gεJ,I′ ◦ fI,J . (17)

Proof of Lemma 10.9. Order the elements of A = {I1, . . . , Ir} such that α(Ii) ≤ α(Ii′) for i ≤ i′,
and let µ(A) = {J1, . . . , Js}. By combining Lemma 10.7 with Eq. (13),

η2εII =
∑

J∈B(N)

gεJ,I ◦ fI,J =
∑

J∈µ(I)

gεJ,I ◦ fI,J =
∑

J∈µ(A)

gεJ,I ◦ fI,J

The second and third equality hold as fI,J = 0 or gJ,I = 0 for every J 6∈ µ(I). Likewise, by
assuming i < i′, Lemma 10.7 and invoking Eq. (17),

0 =
∑

J∈B(N)

gεJ,Ii′ ◦ fIi,J =
∑

J∈µ(A)

gεJ,Ii′ ◦ fIi,J .

For I = [a, b) ∈ A, Lemma 10.6 states that every morphism h : II → IK is determined
by the constant ha ∈ k. For notational convenience, let w(h) denote this constant. Clearly,
w(f εI,J) = w(fI,J). If i ≤ i′, then Lemma 10.8 gives the first of the following two equalities

w(gεJ,Ii′ ◦ fIi,J) = w(gεJ,Ii′ ) · w(fIi,J) = w(gJ,Ii′ ) · w(fIi,J).

Hence,

1 = w(η2εII ) =
∑

J∈µ(A)

w(gJ,I) · w(fI,J)

and
0 =

∑
J∈µ(A)

w(gJ,Ii′ ) · w(fIi,J)

for i < i′. Putting this in matrix form:

w(gJ1,I1) · · · w(gJs,I1)
...

. . .
...

w(gJ1,Ir) · · · w(gJs,Ir)

 ·
w(fI1,J1) · · · w(fIr,J1)

...
. . .

...
w(fI1,Js) · · · w(fIr,Js)

 =


1 ? ? · · · ?
0 1 ? · · · ?

0 0
. . .

. . .
...

0 0 0 · · · 1

 .
The right hand side has rank r = |A|, whereas the the rank of the left hand side is bounded by
s = |µ(A)|. We conclude that |A| ≤ |µ(A)|.

The previous lemma together with Hall’s theorem proves that dI ≤ dB.
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10.2.1 Hall’s Theorem

Consider a hypothetical course where students have to present a particular paper in pairs, but
no two pairs can work on the same paper. Each pair naturally has a preference, and the problem
is whether or not one can assign papers such that all pairs are satisfied. Let P denote the set
of papers and let Aj ⊆ P denote the set of papers Pair j would like to study.

Example 10.10. Let P = {1, 2, 3, 4, 5} and A1 = {1, 2, 3}, A2 = {1, 4, 5} and A3 = {3, 5}. In
this case Pair 1 can work on Paper 1, Pair 2 can work on Paper 4, and Pair 3 can work on
Paper 5.

Example 10.11. Let P = {1, 2, 3, 4, 5} and A1 = {1, 2, 3}, A2 = {4, 5}, A3 = {4} and A4 = {5}.
In this case no assignment is possible.

Let G be a bipartite graph with vertex set X t Y , and for a subset of vertices X ′ ⊆ X,

NG(X ′) = {y ∈ Y : there is an edge in G between y and x ∈ X ′}.
Theorem 10.12 (Hall’s Theorem). The following two statements are equivalent:

1. There exists an injection χ : X ↪→ Y such that χ(x) = y only if there is an edge between
x and y.

2. |X ′| ≤ |NG(X ′)| for all X ′ ⊆ X.

Example 10.13. Returning to Example 10.11, we let X = {S1, S2, S3, S4}, Y = {1, 2, 3, 4, 5},
and we connect Si ∈ X with j ∈ Y if j ∈ Ai. There is no way of assigning papers as 3 =
|{S2, S3, S4}| > |NG({S2, S3, S4})| = |{4, 5}| = 2.

10.2.2 Wrapping Up

Let B(M)2ε = {[a, b) ∈ B(M) : b − a > 2ε} and B(N)2ε = {[a, b) ∈ B(N) : b − a > 2ε}.
Recalling the definition of the cost of a matching from Eq. (8) in Section 9.1, we see that for
intervals I and J ,

dB({I}, {J}) = min{max{c(I), c(J)}, c(I, J)}.
If I ∈ B(M)2ε or J ∈ B(M)2ε, and dB({I}, {J}) ≤ ε, it must thus be true that

c(I, J) ≤ ε. (18)

Theorem 10.14. Let B(M) and B(N) be finite multisets of finite intervals [a, b). Then,

dB(B(M), B(N)) ≤ dI(M,N).

Proof. Assume that M and N are ε-interleaved. Combing Lemma 10.9 with Theorem 10.12 we
get an injection χ1 : B(M)2ε ↪→ B(N)

χ1(I) = J ⇒ II and IJ are ε-interleaved.

Symmetrically, we get an injection χ2 : B(N)2ε ↪→ B(M) such that

χ2(J) = I ⇒ II and IJ are ε-interleaved.

In either case, c(I, J) ≤ ε by 10.2 and Eq. (18).
We now explain how these two injections combine to yield a matching χ between B(M) and

B(N) with cost at most ε. We start by forming a directed bipartite graph G with vertex set
B(M)tB(N) and with a directed edge from I → J if χ1(I) = J or χ2(I) = J . Note that there
is exactly one edge starting at every vertex in B(M)2ε ∪B(N)2ε.

We define a matching for each connected component Ci of G as follows:
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1. If Ci forms a directed cycle, add (I, χ1(I)) to χ for all I ∈ Ci∩B(M). This matches every
element of Ci, and c(I, χ1(I)) ≤ ε.

2. If Ci does not form a directed cycle, then Ci must contain an initial interval J and a
terminal interval K. If J ∈ B(M), then add (I, χ1(I)) to χ for all I ∈ Ci ∩ B(M).
Otherwise, add (χ2(I), I) to χ for all I ∈ Ci ∩ B(N). This matches all intervals in
Ci with the possible exception of K. As K is not the source of a directed edge, K ∈
B(M) \ B(M)2ε ∪ B(N) \ B(N)2ε. Therefore K can be left unmatched at a cost of
c(K) ≤ ε.

The resulting matching χ between B(M) and B(N) is an ε-matching. We conclude that

dB(B(M), B(N)) ≤ dI(M,N).

Example 10.15. Let B(M)2ε = {I1, . . . , I4}, B(M) \ B(M)2ε = {I5}, B(N)2ε = {J1, . . . , J4}
and B(N)\B(N)2ε = {J5}, together with the injections B(M)2ε → B(N) and B(N)2ε → B(M)
shown in the following diagram.

I1 J1

I2 J2

I3 J3

I4 J4

I5 J5

The above algorithm for producing a matching gives

χ = {(I1, J3), (I2, J1), (I3, J4), (I4, J2)}.
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10.3 Exercises

1. Prove Lemma 14.1.

2. Prove Lemma 14.2.

3. Give examples showing that the assumption α(I1) ≤ α(I3) is necessary in Lemma 10.7
and Lemma 10.8.
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Figure 33: Points belonging to the same cluster drawn are in the same color. The figure can
be generated with the code found here: https://scikit-learn.org/stable/auto_examples/
cluster/plot_cluster_comparison.html

11 Clustering

Clustering is the task of partitioning data such that data belonging to different partitions differ
among themselves more than data which belong to the same partition. In the language of
topology, clustering is the task of inferring the connected components of data. There are many
different clustering methods; see Fig. 33 for a few examples. In this section we will focus on a
clustering method based on persistent homology and a foundation result due to Kleinberg.

11.1 Examples of Clustering Methods

We briefly list some classical clustering methods.

The ε-neighborhood graph Given a finite metric space (P, d), we define the ε-neighborhood
graph to be the graph on the vertex set P , with an edge connecting pi and pj if d(pi, pj) ≤ ε.
In other words, the ε-neighborohood graph coincides with the 1-skeleton of VRε/2(P ). The set
of points P is then partitioned according to the following rule: pi and pj belong to the same
partition if and only if they belong to the same connected component of the neighborhood
graph. This method suffers from the chaining effect as the following example illustrates.

Example 11.1. Consider two dense point sets P1 and P2 (corresponding to the two clusters)
that are connected by a path of low density. The ε-neighborhood graph will fail to separate the
two clusters. (Figure coming)

k-th nearest neighbor graph (kNN) For a finite metric space (P, d) the k-th nearest
neighbor graph has vertex set P , and an edge connecting pi and pj if pj is amongst the k closest
points to pi. The clusters correspond go the connected components of the resulting graph.
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k-means clustering Assuming that P is a finite set of points in Rd and k > 0 is an integer,
k-means clustering seeks to partition the points of P into k clusters such that intra-cluster
variance is minimal, i.e. a partitioning of P into P1, . . . , Pk such that

k∑
i=1

∑
p∈Pi

||p− µi||2

is minimal. Here µi denotes the mean of the points in Pi. Computing such an optimal partition
is an NP-hard problem, and iterative techniques are employed to find local minima. This
technique is ill-suited if your clusters are non-convex; see the first column of Fig. 33.

DBSCAN A density-based refinement of the ε-neighborhood graph which is less sensitive to
the chaining affect is defined as follows: let m be a positive integer and let C denote the set
of points in P which have at least m points within distance ε. The elements of C are called
the core points. Now, construct the ε-neighborhood graph on the core points, and use the
ε-neighborhood graph approach to cluster the points of C. Any other point p ∈ P which is not
a core point, is then added to the partition containing the core point pi if d(pi, p) ≤ ε. If p is
not within ε distance to any core point, then p is labelled as noise. The 7th column of Fig. 33
shows that DBSCAN does quite well at separating the data when the data comes in (possibly
non-convex) geometrically disjoint clusters.

11.2 Kleinberg’s Theorem

Let P be a finite set with |P | ≥ 2. A clustering function is a function f that associates to
any metric d : P × P → R≥0 a partition f(d) of P , i.e.

f : {metrics on P} → {partitions of P}.

We say that a clustering function f is isometry-invariant if for any isometry σ : (P, d)→ (P, d′)
the points pi and pj belong to the same subset of f(d) if and only if σ(pi) and σ(pj) belong to
the same subset of f(d′). If f(α · d) = f(d) for all α > 0, then f is scale-invariant. Lastly,
let d′ be such that d′(pi, pj) ≤ d(pi, pj) whenever pi, pj are members of the same subset of f(d),
and d′(pi, pj) ≥ d(pi, pj) whenever pi and pj do not belong to the same subset. If f(d) = f(d′)
for all such d and d′, then we say that f is consistent.

Theorem 11.2 (Kleinberg [19]). If f is isometry-invariant, scale-invariant and consistent,
then

1. (lump) f(d) = {P} for all metrics d, or

2. (discrete) f(d) = {{p} : p ∈ P} for all metrics d.

Proof. Let |P | = n and let d be such that d(pi, pj) = 1 for all pi 6= pj . By isometry invariance
we must have that f(d) = {P} or f(d) = {{p} : p ∈ P}. Assume that the former is the case, let
d′ be any other distance on P , and rescale such that αd′ < d. Then

f(d′)
scale inv

= f(αd′)
consistency

= f(d) = {P}.

If f(d) = {{p} : p ∈ P}, then we may rescale such that αd′ > d. A similar argument then
applies.
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Figure 34: Example illustrating the multiscale nature of the clustering problem. At a coarse
scale, two clusters (dark shading) are apparent. At a finer scale, each of these two clusters
appear to decompose further into two subclusters (light shading).

.

Remark 11.3. This formulation of the theorem diverges slightly from the statement in Klein-
berg’s paper where isometry invariance is replaced with a richness assumption. The assumption
is that there for every partition of P exists a metric d such that f(d) equals that partition. In
other words, f is a surjective map. Kleinberg then goes on to show that there is no clustering
function simultaneously satisfying scale-invariance, consistency, and richness.

Example 11.4. The k-th nearest neighbor graph is an example of a clustering method which
is both isometry- and scale-invariant.

Example 11.5. The ε-neighborhood graph is an example of a clustering method which is both
isometry-invariant and consistent.

Example 11.6. Assume that (P,<) is an ordered set, and let d be any metric on P . Consider
the total order on pairs of points {(i, j) : i < j} defined by (i, j) < (i′, j′) if d(i, j) < d(i, j′) or
d(i, j) = d(i′, j′) and (i, j) < (i′, j′) in the lexicographical ordering induced by the order on P .
This gives,

(i1, j1) < (i2, j2) < · · · < (in(n−1)/2, jn(n−1)/2).

Fix an integer k > 0 and let Gd be the graph on P with edges {(i1, j1), . . . , (im, jm)} where
m is the smallest integer such that Gd has precisely m connected components. The clustering
function f that maps d to the partition defined by the connected components of Gd is both
scale-invariant and consistent, but it depends on the ordering of the points and is therefore not
isometry-invariant.

An issue with clustering is that there might be no unique correct scale at which the data
should be considered. Indeed, Fig. 34 illustrates that what appears to be well-defined clusters
at one scale, may reveal a finer structure upon inspection at a smaller scale. One may attempt
to rectify these issues by considering hierarchical clustering methods. Such methods do
not assign a single partition to the input metric space, but rather a one-parameter family of
clusters capturing the evolution of the clusters as the connectivity parameter increases - much
like persistent homology. The output of such a method is typically a graph like the one shown
in Fig. 35. These methods do however also have their deficiencies but we will not discuss this
here.

11.3 ToMATo

ToMATo - Topological Mode Analysis Tool - is the result of combing the classical hill climbing
algorithm with persistent homology. The algorithm first appeared in [12] and in this section we
follow their exposition.
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Figure 35: Dendrogram for the point set shown in Fig. 34.
.

To illustrate the idea of ToMATo in the continuous setting, consider the graph shown to the
left in Fig. 36 which depicts an example density-function of an assumed underlying distribution
from which we sample. As there are two clear maxima, we say that each of them represent a
cluster, and the points belonging to the respective clusters are those points belonging to their
respective ascending regions. That is, the ascending region of a critical point m is the set
of all points x in the domain which end up at m by following the flow induced by the gradient
vector field of the density function. In the example in the question, this means that every
point to the left of the valley where the two peaks meet are clustered to one cluster, and all
the points to the right of the valley are clustered to the other cluster. But what if we consider
the density function to the right in Fig. 36 - defining every local peak to be a cluster seems
counter-productive. To proceed one chooses a threshold τ > 0 and defines a local maxima to
define a cluster if the associated peak has a prominence of at least τ . That is, one needs to
descend a height of at least τ in order to reach a higher peak. Persistent homology is in turn
used to select the appropriate τ : let f : X → R denote the density function and consider the
persistent homology of the superlevel filtration given by

H0(f
−1[s,∞))→ H0(f

−1[t,∞))

for s ≥ t. In Fig. 37 we show the right-most function of Fig. 36 together with its persistence
diagram. Note that the diagram is drawn upside down as we are considering the superlevel
filtration and not the sublevel filtration we have frequently encountered. The blue line in the
figure is the separating line which is used to distinguish the noisy peaks from the peaks that
are to define clusters. Note that the line defines the parameter τ by means of the the equation
y = x− τ . Once we have settled on such a τ we select the prominent peaks mp and for a peak
m of prominence less than τ , we consider the minimum ε such that m belongs to the same
connected component as a τ -prominent peak mp in f−1[m− ε,∞). Any point which belongs to
the ascending region of m will now be associated to the point mp, and the clusters are defined
accordingly. E.g, in Fig. 37 the points to left of the deepest valley define a cluster, and the
points to the right define another cluster.

11.3.1 The Discrete Case

For the purpose of this lecture we shall assume that we are given a point sample P and an
estimate f̂(p) of the density at every point p ∈ P . Such an estimate can be obtained in
numerous ways, the most näıve being a simple normalized count of the number of points of P
within a δ-ball around p for some δ > 0.

Fix an ε > 0 and consider the ε-neighborhood graph G constructed from the points in P .
With this information we can form our initial clusters: every local maximum, i.e., all points
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Figure 36: Two density functions on the same domain.

Figure 37: A density function and the persistence diagram of its superlevel filtration in dimen-
sion 0.
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Figure 2: Our approach in a nutshell: (a) estimation of the underlying density function f at the data points; (b) result

of the basic graph-based hill-climbing step; (c) approximate PD showing 2 points far off the diagonal corresponding to

the 2 prominent peaks of f ; (d) final result obtained after merging the clusters of non-prominent peaks.

cluster merging step guided by persistence. As illustrated
in Figure 2(b), hill-climbing is very sensitive to perturba-
tions of the density function f that arise from a density
estimator f̃ . Computing the PD of f̃ enables us to separate
the prominent peaks of f̃ from the inconsequential ones. In
Figure 2(c) for instance, we can see 2 points (pointed to
by arrows) that are clearly further from the diagonal than
other points: these correspond to the 2 prominent peaks of
f̃ (one of the points is at y = −∞, as the highest peak never
dies). To obtain the final clusters, we merge every cluster of
prominence less than a given thresholding parameter τ into
its parent cluster in the persistence hierarchy. As shown
in Figures 2(c) and 2(d), the PD gives us a precise under-
standing of the relationship between the choice of τ and the
number of obtained clusters.

In practice we run ToMATo twice: in the first run we set
τ = +∞ to merge all clusters and thus compute the PD;
then, using the PD we choose a value for τ (which amounts
to selecting the number of clusters) and re-run the algorithm
to obtain the final result. The feedback provided by the
PD proves invaluable in interpreting the clustering results
in many cases. Indeed, the PD gives a clear indication of
whether or not there is a natural number of clusters, and
because it is a planar point cloud we can understand its
structure visually, regardless of the dimensionality of the
input data set.

ToMATo is highly generic and agnostic to the choice of
distance, underlying graph, and density estimator. Our the-
oretical guarantees make use of graphs that do not require
the geographic coordinates of the data points at hand (only
pairwise distances are used) nor estimates of the density at
extra points. This makes the algorithm applicable in very
general settings. ToMATo is also highly efficient: in the
worst case it has an almost-linear running time in the dis-
tance matrix size, and only a linear memory usage in the
number of data points (as in most applications distances to
near-neighbors suffice). Most often we use Euclidean dis-
tances, however other metrics such as diffusion distances
can be used. Indeed, the choice of metric and density es-
timator define the space we study, while our algorithm gives
the structure of this space. Finally, ToMATo comes with a
solid mathematical formulation. We show that, given a fi-
nite sampling of an unknown space with pointwise estimates
of an unknown density function f , our algorithm computes a

faithful approximation of the PD of f . Under conditions of a
sufficient signal-to-noise ratio in this PD, we can determine
the correct number of clusters and show that significant clus-
ters always have stable regions. The precise statements and
proofs are included in the full version of the paper [7]; in
this conference version we give an intuitive explanation to
highlight how interpretation can be aided by our approach.
In some applications, the number of clusters is not obvious
and we see this in the corresponding PDs. However, in these
cases the relationship between the choice of parameters and
the number of obtained clusters is transparent.

Obtaining guarantees in such general settings using only
simple tools like neighborhood graphs is made possible by re-
cent advances on the stability of persistence diagrams [4, 6].
Previous stability results [12] required the use of piecewise-
linear approximations of the density functions, as in Fig-
ure 1(b) for instance. The construction of such approxima-
tions becomes quickly intractable when the dimensionality of
the data grows. This fact might explain why topological per-
sistence was never really exploited in mode analysis before,
except in some restricted or low-dimensional settings [22].

2. THE ALGORITHM
We first provide an intuitive insight into our approach by

considering the continuous setting underlying our input. We
then give the details of the algorithm in the discrete setting.

The continuous setting. Consider an m-dimensional Rie-
mannian manifold X and a Morse function f : X→ R, i.e. a
C2-continuous function with non-degenerate critical points.
Assume that f has a finite number of critical points. The
ascending region of a critical point m, noted A(m), is the
subset of the points of X that eventually reach m by moving
along the flow induced by the gradient vector field of f . For
all x ∈ A(m), we call m the root of x. Ascending regions of
the peaks of f are known to form pairwise-disjoint open cells
homeomorphic to Rm. Furthermore, assuming X to have no
boundary and f to be bounded from above and proper1, the
ascending regions of the peaks of f cover X up to a subset
of Hausdorff measure zero. It is then natural to use them to
partition (almost all) the space X into regions of influence.

1
This means that for any bounded closed interval [a, b] ⊂ R, the

pre-image f−1([a, b]) is a compact subset of X.

Figure 38: The pipeline of the discrete algorithm (copied from [12]).

pi satisfying f̂(pi) > f̂(pj) for all neighbors of pi in G, represent a cluster. If pj is not a local
maximum then we associate pj to the same cluster as its neighbor with the greatest filtration
value. If there are n local maxima, then we get a collection of clusters {C1, . . . , Cn}.

By defining the filtration value f̂(e) of an edge e connecting pi and pj to be max(f̂(pi), f̂(pj))
we obtain a superlevel filtration of the graph G. The algorithm proceeds precisely as in the
continuous case: compute the persistence diagram in degree 0 of the superlevel filtration of
f̂ : G → R and use the persistence diagram to determine a threshold parameter τ . Upon
choosing a τ , iterate over the points in the order given by f̂(p1) > f̂(p2) > . . . > f̂(pn) and
merge clusters as follows:

• If f̂(pi) is a local maximum in G, then do nothing.

• If f̂(pi) is not a local maximum, then pi belongs to a cluster Ck. Iterating (in an arbitrary
order) over the neighbors pj of pi in G with f̂(pj) ≥ f̂(pi), we merge the cluster Cl
containing pj with Ck if

min(max{f̂(p) : p ∈ Cl},max{f̂(p) : p ∈ Ck}) < f̂(pi) + τ

That is, we replace Ck and Cl in C by Cl ∪ Ck.

The resulting C contains the clusters. The four steps of the discrete algorithm and the end
result is shown in Fig. 38. This illustration is copied from [12] and the reader is encouraged to
have a look at that paper for other nice examples, and theoretical guarantees for point samples
on Riemannian manifolds. Note that the above explanation was written in a conceptual way
and that an implementation would iterate over the points using a union-find structure. We
include the algorithm from [12] in Fig. 39.
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The mode-seeking phase takes a linear time in the size of G once the vertices have been sorted.
As for the merging phase, it makes O(n) union and O(m) find queries to the union-find data
structure U , where n and m are respectively the number of vertices and the number of edges of
G. If an appropriate representation is used for U (e.g. a disjoint-set forest [16]), and if the vertex
gradients and the entry roots are stored in separate containers with constant-time access (e.g.
arrays), then the worst-case time complexity of Algorithm 1 becomes O(n log n+mα(n)), where α
stands for the inverse Ackermann function.

As for the space complexity, note that the graph G does not have to be stored entirely in main
memory, since only the neighborhood of the current vertex i is involved at the i-th iteration of the
clustering procedure. The main memory usage is thus reduced to O(n), where n is the number
of vertices of G. The total space complexity remains O(n + m) though, as the graph needs to be
stored somewhere (e.g. on the disk).

ALGORITHM 1: Clustering

Input: simple graph G with n vertices, n-dimensional vector f̃ , real parameter τ ≥ 0.

Sort the vertex indices {1, 2, · · · , n} so that f̃(1) ≥ f̃(2) ≥ · · · ≥ f̃(n);
Initialize a union-find data structure U and two vectors g, r of size n;
for i = 1 to n do

Let N be the set of neighbors of i in G that have indices lower than i;
if N = ∅ then

// vertex i is a peak of f̃ within G
Create a new entry e in U and attach vertex i to it;
r(e)← i; // r(e) stores the root vertex associated with the entry e

else

// vertex i is not a peak of f̃ within G

g(i)← argmaxj∈N f̃(j); // g(i) stores the approximate gradient at vertex i

ei ← U .find(g(i));
Attach vertex i to the entry ei;
for j ∈ N do

e← U .find(j);

if e 6= ei min{f̃(r(e)), f̃(r(ei))} < f̃(i) + τ then
U .union(e, ei);

r(e ∪ ei)← argmax{r(e), r(ei)}f̃ ;

ei ← e ∪ ei;
end

end

end

end

Output: the collection of entries e of U such that f̃(r(e)) ≥ τ .

3 Parameter selection

ToMATo takes in three inputs: the neighborhood graph G, the density estimator f̃ , and the merging
parameter τ . Although the freedom left to the user in the choice of these inputs gives our approach

8

Figure 39: The algorithm copied from the journal version of [12].
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11.4 Exercises

1. Complete the proof of Kleinberg’s theorem.

2. Show that the k-th nearest neighbor graph clustering method is not consistent.

3. Show that the clustering method in Example 11.6 is consistent and scale-invariant.

4. Let P = {−5,−4, . . . , 4, 5} and let f(−5) = 0, f(−4) = 1, f(−3) = 2, f(−2) = 3,
f(−1) = 0, f(0) = 1, f(1) = 0, f(2) = 2, f(3) = 4, f(4) = 3, and f(5) = 5. Fix ε = 1,
and run the ToMATo algorithm for δ ∈ {1, 2, 3, 4}.

5. Install Gudhi and play around with ToMATo.
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12 Reeb Graphs and Mapper

The goal of this section is to discuss the basic properties of Reeb graphs, and to see how the
Mapper graph can be seen as a coarsened Reeb graph.

12.1 Reeb Graphs

We define an R-space to be a pair (X, f) where X is a topological space and f : X → R is
a continuous function. Associated to (X, f) we let R(X, f) denote the topological space X/∼
where ∼ is the equivalence relation generated by x ∼ y if f(x) = f(y) = t and x and y belong
to the same path component of the fiber f−1(t). We define the Reeb graph of (X, f) to be
the R-space (R(X, f), f̂) where f̂ : R(X, f) → R given by f̂([x]) = f(x). The fact that f̂ is
well-defined and continuous follows from the following well-known lemma.

Lemma 12.1. Let X/∼ be the quotient of a topological space X by an equivalence relation
∼. Any continuous function f : X → Y which is constant on equivalence classes induces a
continuous function X/∼ → Y with respect to the quotient topology.

Remark 12.2. By replacing R with Rd we can associate a Reeb space to a function f : X → Rd
precisely as we did for the Reeb graph. The resulting spaces are typically quite complicated.

Example 12.3. Fig. 40 shows a genus 2 surface X together with a function f : X → R, and
the associated Reeb graph. Note that the vertical circular features are preserved.

Figure 40: An R-space and the associated Reeb graph.

The R-spaces (X, f) and (Y, g) are isomorphic if there exists a homeomorphism φ : X → Y
such that g ◦ φ = f . For topological spaces in general, the space R(X, f) need not be a graph,
but it will be so for sufficiently tame R-spaces. The following definition is taken from [15].

Definition 12.4. An R-space (X, f) is constructible if (X, f) is isomorphic to a pair (Y, g)
constructed in the following way. Assuming the following data:

1. A finite set of increasingly ordered critical values {c0, c1, . . . , cn}.
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Figure 41: Gluing together the components of a constructible R-space.
.

2. For 0 ≤ i ≤ n, a locally path-connected and compact space Vi.

3. For 0 ≤ i ≤ n−1, a locally path-connected and compact space Ei, together with continuous
maps li : Ei → Vi and ri : Ei → Vi+1.

The topological space Y is the disjoint union of the spaces Vi × {ci} and Ei × [ci, ci+1] relative
to the relations (li(x), ci) ∼ (x, ci) and (ri(x), ci+1) ∼ (x, ci+1) for all i and x ∈ Ei. The map
g : Y → R is projection onto the second factor.

Example 12.5. Examples of constructible R-spaces include 1) M is a compact manifold and f
is a Morse function, and 2) X is a compact polyhedron and f is a piecewise-linear map. In the
latter case, assuming the function is injective on the vertices, the Reeb graph can be computed
in time O(m logm) where m denotes the total number of vertices, edges and triangles in X.

This process of construction a space is illustrated in Fig. 41. One sees from the definition
of a constructible space that the homotopy type of the fibers f−1(a) is constant between crit-
ical values. Indeed, we have the following commutative diagram where the vertical maps are
homotopy equivalences,

Ei−1 Vi Ei

f−1(ci−1, ci) f−1(ci−1, ci+1) f−1(ci, ci+1)

'

ri−1

' '

li

. (19)

It is also not hard to see that R(X, f) is a graph with a vertex for each critical value ci and
edges connecting neighboring critical values.

A natural question to consider is how much of the information is preserved under such a
simplification. Clearly, a graph is an intrinsically one-dimensional object, so three-dimensional
structures such as cavities must be lost. We have the following preliminary lemma.
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Lemma 12.6. Let (X, f) be a constructible R-space and let π : X → R(X, f) denote the quotient
map. Then, (π)∗ : H0(X)→ H0(R(X, f)) is an isomorphism, and (π)∗ : H1(X)→ H1(R(X, f))
is an epimorphism.

We leave it as an exercise to verify these two claims. The salient point is that all connec-
tivity information is preserved (by construction) and every loop in the graph represents a true
topological feature in the original space. In particular, if X is connected and simply-connected,
then R(X, f) must be a tree regardless of the function f . When considering levelset zigzag
persistence, we shall give a precise description of the homological properties preserved by the
Reeb graph.

12.2 Morse Functions

Reeb graphs were originally introduced in the context of Morse theory to study the evolution
level sets of real-valued functions. And this for good reason: when f : M → R is a Morse
function on a two-dimensional compact and oriented surface, then M can be recovered up to
homeomorphism from its Reeb graph. Note that Morse functions are dense in the space of
smooth real-valued functions on M . Following [17], we will now prove this result, making
use of a few elementary properties of Morse functions; see e.g. [24, Chapter 1] for a concise
introduction. We need the following facts:

F1: The vertices of R(M,f) correspond to critical points of f , i.e., points such that df(p) = 0.

F2: Each vertex in R(M,f) has degree 1 (minimum or maximum) or degree 3 (saddle point).
This is a consequence of the Morse lemma that states that in a suitable coordinate system
around the critical point p (i.e. a vertex in the Reeb graph), one has that f(x) = f(p)−
x21−x22 (maximum), f(x) = f(p)∓x21±x22 (saddle), or f(x) = f(p) +x21 +x22 (minimum).

F3: Let C0, C1 and C2 denote the total number of vertices corresponding to minima, saddle
points and maxima, respectively. Then C2−C1 +C0 = β2(M)−β1(M)+β0(M) = χ(M).
This follows from the Morse inequalities.

F4: The Euler-characteristic of a surface of genus g is 2− 2g.

The reader is encouraged to verify these properties in Fig. 40.

Theorem 12.7. The number of loops in R(M,f) equals the genus g of M .

Proof. Let ni denote the number of vertices of degree i, and let m and n denote the total number
of edges and vertices, respectively. From F1, we know that n = n1 + n3, where n1 = C0 + C2

and n3 = C1. Furthermore, a simple edge-counting gives the relation m = 1
2(n1 + 3n3).

From the Euler-Poincare theorem (Theorem 2.15), β0(R(M,f)) − β1(R(M,f)) = n − m.
Using the fact that the graph is connected, i.e., β0(R(M,f)) = 1, we get

β1(R(M,f)) = 1 +m− n = 1− 1

2
(n1 − n3) = 1− 1

2
(C0 + C2 − C1) = 1− 1

2
χ(M) = g.

A similar argument can be applied to non-orientable surfaces: the Reeb graph of a non-
orientable surface of genus g has at most g/2 loops.
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Figure 42: The mapper graph associated to a function f : X → R.

12.3 The Continuous Mapper

An open cover of a topological space X is a collection U = {Ui}i∈I of open sets such that
∪i∈IUi = X. Associated to a finite cover there is a simplicial complex N(U) called the nerve
of U containing simplices {σ ⊆ I : ∩i∈σ Ui 6= ∅}. Assuming a continuous function f : X → Rd,
and a finite open cover U of Rd, we get a pullback cover of X defined by

f∗U = {f−1(Ui) : Ui ∈ U}.
We can further refine the pullback cover f∗U by splitting every open set f−1(Ui) into its path

components. We denote the resulting refined cover by f̂∗U . The (continuous) mapper

associated to the pair (X, f) is the simplicial complex M(X, f) := N(f̂∗U).

Example 12.8. Fig. 42 shows a continuous map on a surface and the resulting Mapper graph.

While the resulting simplicial complex of the previous example turned out to be a graph,
that need not be the case in general. We do however have the following result:

Lemma 12.9. The dimension of M(X, f) is bounded by the dimension of N(U).

Proof. If V and V ′ are different path-connected components of some f−1(Ui) then clearly V ∩
V ′ = ∅. Let Vi be a path-component of f−1(Ui) and assume that

⋂m+1
i=1 Vi is non-empty. By

the previous assumption we must have that each Ui is distinct, and furthermore

∅ 6= f(
m+1⋂
i=1

Vi) ⊆
m+1⋂
i=1

Ui.

We conclude that if M(X, f) contains an m-simplex, then so does N(U).

We define the resolution of a cover to be res(U) = sup{diam(Ui) : Ui ∈ U}. One can think of
M(X, f) as approaching R(X, f) as the resolution tends to 0 (this can be made precise): rather
than probing the connectivity information over every fiber, we only consider the connectivity
information over preimages of (small) open sets. It is not surprising that as long as the fibers
are ”locally constant”, the the Mapper graph should resemble the Reeb graph for covers of
sufficiently fine resolution. The next example illustrates this.

Example 12.10. Consider the Reeb graph and two mapper graphs shown in Fig. 43. The first
cover is rather coarse and fails to detect any of the two loops, whereas the cover to the right
captures the larger loop but an even smaller resolution would be needed to detect both loops.
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Figure 43: Left: the Reeb graph of a pair (X, f). Middle: the Mapper graph for a coarse cover.
Right: The Mapper graph for a cover of finer resolution.

12.4 Mapper in Practice

Mapper was first introduced in [27] and works as follows. Given a finite set of data P together
with a metric (or dissimilarity measure) between data points, the user is typically left to decide
the filter function f : P → Rd and the cover of Rd. The outputted Mapper graph (or, simplicial
complex if d > 1) will be highly sensitive to these parameters. Furthermore, the computation of
path components (clusters) of pre-images will too depend on one or more parameters. Assuming
for the moment that f and U are provided, and that we have a way of clustering data, then the
Mapper algorithm is as follows:

Algorithm 2: The Mapper algorithm.

Data: A data set P with a pairwise distance measure d, a function f : P → Rd
and a cover U of Rd.

Result: The mapper graph associated to (P, d).
Let K = ∅.
for U ∈ U do

Decompose f−1(U) into clusters CU,1, . . . , CU,kU .
Add a vertex vU,i to K for every cluster CU,i.

end
if CUi1 ,j1

⋂
. . .
⋂
CUim ,jm then

Add the simplex {vUi1 ,j1 , . . . , vUim ,jm} to K.

end
return K.

Example 12.11. The Mapper algorithm applied to two different data sets are shown in Fig. 45
and Fig. 46.

Some remarks on the parameters in question:
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Figure 44: Mapper from a finite data set.

The filter function Examples of typical functions encountered in the literature.

• For data in Rd one can project down onto a low dimensional subspace, e.g. by means of
principal component analysis or by a non-linear dimension reduction algorithm such as
ISOMAP.

• Eccentricity measures, in an intuitive sense, how far from the ”center” of the data a given
point is. That is,

Er(p) =

(∑
q∈P d(p, q)r

N

)1/r

where 1 ≤ r ≤ ∞.

• Density estimates such as Gaussian kernel,

δε(p) =
∑
q∈P

exp(−d(p, q)2/ε),

where ε > 0.

The cover For covers of R it is customary to let U consist of regularly spaced intervals of
equal resolution, and such that neighbouring cover elements overlap with a percentage below
50%. For covers of Rd one typically considers hypercubes in the analogue way. The resulting
Mapper will in general not be graphs but for ease of visualization it is customary to merely
output the 1-skeleton. Note that the output of the algorithm is very sensitive to the chosen
cover.

Clustering The most common choices are kNN clustering, DBSCAN, and the ε-neighborhood
graph. Note that one can approach the clustering problem in two ways: one can either clus-
ter all the data immediately and then computing connected components of preimages can be
done by means of standard graph algorithms. Another, more local, approach is to cluster each
preimage separately. A local computation may be a better option when dealing with very large
data.
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(a) (b) (c)

Figure 45: (a) and (b) show the data set P (the Stanford bunny) and the function f : P → R
given by height. (c) is the associated Mapper graph as outputted by Gudhi using the settings:
min points per node=0, clustering=None, N=100, beta=0.1, C=10, filter bnds=None, resolu-
tions=None, gains=None, verbose=verbose.

(a) (b) (c)

Figure 46: (a) and (b) show the the projection onto the three first and two last coordinates
of a noisy sample P of the 2-torus S1 × S1 ⊂ R4, where the function is f : P → R is given by
f(x1, x2, x3, x4) = |x1|. (c) is the associated Mapper graph as outputted by Gudhi using the
settings: min points per node=0, clustering=None, N=100, beta=0.1, C=10, filter bnds=None,
resolutions=10, gains=None, verbose=verbose.
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12.5 Exercises

1. Prove Lemma 12.6.

2. (a) For a non-orientable closed two-manifold M of genus g, one has that χ(M) = 2− g.
If f : M → R is a Morse function, then one can show that R(M,f) has no vertex
of degree greater than 3. Prove that the number of loops in R(M,f) is given by
1
2(g − n2) where n2 is the number of vertices of degree 2 in R(M,f).

(b) Let f : RP 2 → R be a Morse function. Show that R(M,f) contains no loops.

(c) Consider the following familiar surfaces, each equipped with the Morse function given
by the distance to the central point. Draw the corresponding Reeb graphs. Discuss
the results in light what we know from (a) and (b).

3. What is the continuous Mapper associated to the following cover?
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13 Zigzag Persistent Homology

Thus far we have focused on applying homology to a filtration of a topological space. In this
section we shall see that considering posets for which the underlying diagram is not linearly
oriented can lead to richer invariants.

Example 13.1. Zigzag persistence is a natural tool to explore the topology of time-varying
point clouds, e.g., for studying the movement of bird flocks, and dynamic graphs, i.e., graphs
where edges can appear and disappear. As an example of the former, consider a data point
to be a continuous function pi : [0, 1] → Rd. For each time t ∈ [0, 1] one obtains a point cloud
P (t) = {p1(t), . . . , pn(t)} and the corresponding Vietoris–Rips complex at a scale ε, VRε(P (t)).
We shall assume that there is a finite set of values 0 = c0 < c1 < . . . < cm = 1 such that
VRε(P (t)) is constant for t ∈ [ci, ci+1]. To study the evolution of the homology of P (t), we
apply homology to the following zigzag of simplicial complexes:

Vε(P (c0)) Vε(P (c1)) Vε(P (cm−1)) Vε(P (cm))

Vε(P (c0)) ∪ Vε(P (c1)) · · · Vε(P (cm−1)) ∪ Vε(P (cm))

13.1 Zigzag Persistence Modules

A zigzag poset on n vertices is a partial order of the form

1• ↔ 2• ↔ · · · ↔ n−1• ↔ n•

where ↔ denotes that the arrow can be either ← or →. A zigzag persistence module is a
P -module where P is any zigzag poset. Note that if P has n vertices and all the arrows point
in the same direction, then a zigzag persistence module is nothing more than an [n]-module as
considered in Section 6.

For a zigzag poset P on n vertices, let [a, b] denote the restriction of P to the vertices
i ∈ [a, b]. The associated interval module I [a,b] is the P -module defined by

I
[a,b]
i =

{
k if i ∈ [a, b]

0 otherwise
,

together with the identify morphism id: I
[a,b]
i → I

[a,b]
j whenever i, j ∈ [a, b] and i and j are

comparable.

Example 13.2. If n = 4, and the arrows alternate, then I [2,3] is the persistence module

0→ k
1←− k→ 0.

We state the following result without proof. A proof can be obtained by a variation of the
proof of Theorem 6.16.

Theorem 13.3. Let V be a zigzag module on n vertices such that dimVp <∞ for all p ∈ [n].
Then

V ∼=
⊕

[a,b]∈B(V )

I [a,b],

where B(V ) is a unique multiset of intervals in [n] called the barcode of V .
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Figure 47: A zigzag of simplicial complexes: K ←↩ K ∩K ′ ↪→ K ′.

While the situation to a large extent mimics that of standard persistent homology, the
barcodes in zigzag persistence can be more refined as the following example illustrates.

Example 13.4. Let K and K ′ be the simplicial complexes shown in Fig. 47, and let K ∩K ′
denote the simplex-wise intersection. This defines a zigzag of simplicial complexes

K ←↩ K ∩K ′ ↪→ K ′,

and a corresponding zigzag persistence module:

Z2
∼= Hi(K)← Hi(K ∩K ′) ∼= Z2 ⊕ Z2 → Hi(K

′) ∼= Z2.

Note that the 1-cycle {{1, 2},+{1, 3} + {2, 3} + {3, 4}} is non-trivial in homology in all three
complexes, and one may therefore be inclined to think that there is a bar in the barcode spanning
all three vertices. That is however not the case, as the following choice of a basis for the middle
vector space shows

{{1, 2}+ {1, 3}+ {2, 3}, {2, 3}+ {2, 4}+ {3, 4}}

for H1(K ∩K ′). Indeed, this gives the decomposition

Z2
[1,0]←−− Z2 ⊕ Z2

[0,1]−−→ Z2 =
(
Z2

1←− Z2 → 0
)
⊕
(

0← Z2
1−→ Z2

)
.

The barcode thus consists of the intervals {[1, 2], [2, 3]}.

13.2 The diamond principle

Given a sequence of simplicial complexes {Ki}mi=1, there are two natural ways of linking Ki’s.
The union zigzag K∪

K1 K2 Km−1 Km

K1 ∪K2 · · · Km−1 ∪Km

and the intersection zigzag K∩

K1 K2 Km−1 Km

K1 ∩K2 · · · Km−1 ∩Km
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For instance, replacing the middle simplicial complex in Example 13.4 by the union of the two
outer complexes yields a barcode {[1, 1], [3, 3]} in degree 1 homology. The question is thus if
there is a method to obtain the one barcode from the other. That turns out be the case if one
dispenses with intervals supported only at a intersection or a union.

Theorem 13.5 (The strong diamond principle [9]). Consider the following diagram of simplicial
complexes and simplicial maps where the four middle maps are inclusions.

A ∪B

K1 · · · Kl−2 A B Kl+2 · · · Km

A ∩B

Let K+ and K− denote the zigzags passing through the union and intersection, respectively.
Then there is the following correspondence of intervals in the barcodes:

[l, l] ∈ B(Hp+1(K
+))↔ [l, l] ∈ B(Hp(K

−)),

In the remaining cases, the matching preserves homological dimension:

[b, l] ∈ B(Hp(K
∗))↔ [b, l − 1] ∈ B(Hp(K

†)), if b < l,

[l, d] ∈ B(Hp(K
∗))↔ [l + 1, d] ∈ B(Hp(K

†)), if d > l,

[b, d] ∈ B(Hp(K
∗))↔ [b, d] ∈ B(Hp(K

†)), for all other cases.

where ∗, † ∈ {+,−} and ∗ 6= †.

By iteratively applying the previous theorem we see that B(Hp(K∪)) is determined by
B(Hp(K∩)) ∪B(Hp−1(K∩)), and B(Hp(K∩)) is determined by B(Hp(K∪)) ∪B(Hp+1(K∪)). It
is left as an exercise to spell out precisely how to transform an interval in one barcode to an
interval in the other (possibly shifted by a degree in homology).

13.3 Levelset Zigzag Persistent Homology

The persistent homology of an R-space f : X → R studies the evolution of the homology of the
sublevel sets. An alternative approach is to study how the homology persists across the levelsets
f−1(t) as the parameter t sweeps over the real line. In the following we shall assume that the
pair (X, f) is a constructible R-space. By labelling the critical values c1 < c2 < · · · < cn, we
obtained the following zigzag of topological spaces

f−1(−∞, c2) f−1(c1, c3) f−1(cn−2, cn) f−1(cn−1,∞)

f−1(c1, c2) · · · f−1(cn−1, cn)

The interest in this diagram comes from the fact that

• The fibers are constant (up to homeomorphism) between critical values. That is, f−1(ci, ci+1)
is homeomorphic to f−1(s)× (ci, ci+1) with f being the projection onto the second com-
ponent and s is any point in ci < s < ci+1.
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• f−1(ci−1, ci+1) deformation retracts onto f−1(ci).

Hence, the topological evolution of the fibers is completely captured up to homotopy by the
above zigzag; applying Hp to the above zigzag yields the levelset zigzag persistence module
in dimension p (associated to f), and the corresponding barcode ZZp(f). The intervals in
ZZp(f) are naturally given in terms of the critical values. To see this, assume that we have a bar
born at Hp(f

−1(ci, ci+2)) ∼= Hp(f
−1(ci) that lives up to (and including) Hp(f

−1(cj , cj+1)). This
represents a feature that is alive at all fibers f−1(s) for s ∈ [ci+1, cj+1), and the corresponding
interval in ZZp(f) is thus [ci, cj+1) ∈ ZZp(f). Likewise we have intervals (ci, cj), [ci, cj ], and
(ci, cj ].

Example 13.6. Consider the constructible R-space shown in Fig. 48. Proceeding in H0 with
the ”obvious basis” we get the following zigzag of vector spaces

Z2 ⊕ Z2 Z2 Z2 Z2 Z2

Z2 ⊕ Z2 Z2 Z2 ⊕ Z2 Z2

I2

[1,1]

1

1
[1,1]

[1,1]

1

1

For each copy of Z2 ⊕ Z2 above, we replace the basis {v1, v2} with the basis {v1, v1 + v2}. The
zigzag then diagonalizes as

Z2 ⊕ Z2 Z2 Z2 Z2 Z2

Z2 ⊕ Z2 Z2 Z2 ⊕ Z2 Z2

I2

[1,0]

1

1
[1,0]

[1,0]

1

1

which is the direct sum of the following three zigzags modules:

Z2 Z2 Z2 Z2 Z2

Z2 Z2 Z2 Z2

1

1

1

1

1

1

1

1

Z2 0 0 0 0

Z2 0 0 0
1

0

0 0 0 0 0

0 0 Z2 0

We conclude that
ZZ0(f) = {[c1, c5], [c1, c2), (c3, c4)}.

And for H1 (exercise)
ZZ1(f) = {[c1, c5), [c1, c2], [c3, c4]}.

Let PHp(f) denote the barcode of the sublevel persistence module Mf in homology dimen-
sion p (see Section 9.1.1). A simple computation yields

PH0(f) = {[c1,∞), [c1, c2)} and PH1(f) = {[c1,∞), [c1, c5), [c3,∞), [c4,∞)}.
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U ∪ V

X1
. . . Xk−2 U V Xk+2 . . . Xn

U ∩ V

oo // oo // oo //

::ttttt
oo //

ddJJJJJ
oo // oo //

::ttttt
ddJJJJJ

Figure 1: Diagram for the Mayer–Vietoris Diamond Principle.

V) is isomorphic to the kernel of Hp(U ∩ V) → Hp(U) ⊕
Hp(V). Indeed, an isomorphism is given by the connecting
homomorphism ∂ of the Mayer–Vietoris theorem.

Levelset zigzag. For our principal application, consider a
topological space X and a continuous function f : X → R.
The function f defines levelsets Xt = f−1(t) for t ∈ R, and
slices XI = f−1(I) for intervals I ⊂ R. We suppose that
(X, f) is of Morse type. By this, we mean that there is a
finite set of real-valued indices a1 < a2 < · · · < an called
critical values, such that over each open interval

I = (−∞, a1), (a1, a2), . . . , (an−1, an), (an,∞)

the slice XI is homeomorphic to a product of the form Y×I,
with f being the projection onto the factor I. Moreover,
each homeomorphism Y × I → XI should extend to a con-
tinuous function Y×Ī → XĪ , where Ī is the closure of I ⊂ R.
Finally, we assume that each slice Xt has finitely-generated
homology.

Example 1. X is a compact manifold and f is a Morse
function.

Example 2. X is an open manifold which is compact-
cylindrical at infinity, and f is a proper Morse function with
finitely many critical points.

Example 3. Given an arbitrary zigzag diagram of spaces
of the form

Y0
f0→ Z1

g1← Y1
f1→ Z2

g2← · · · fn−1→ Zn−1
gn← Yn

let X be the telescope

Y0× (−∞, a1] ∪f0 Z1 ∪g1 . . . ∪fn−1 Zn ∪gn Yn× [an,∞)

constructed by gluing cylinders on the Yi to the spaces Zi,
with f defined as the projection onto the interval factor of
each cylinder.

Given (X, f) of Morse type, select a set of indices si which
satisfy

−∞ < s0 < a1 < s1 < a2 < · · · < sn−1 < an < sn <∞
and construct the diagram

X : X0
0 → X1

0 ← X1
1 → X2

1 ← · · · → Xnn−1 ← Xnn,

where Xji = X[si,sj ] The levelset zigzag persistence of (X, f)
is defined to be the zigzag persistence of the above sequence.

This is independent of the choice of intermediate values si,
thanks to the product structure between critical values. To
emphasize the dependence on critical values, we adopt the
following labelling convention. Each Xii−1 is labelled by the

f

α

β

γ

δ

ε

ζ

H1:

[X1
0,X2

1]

[X1
0,X4

4]

[X3
2,X4

3]

H0: [X1
0,X5

4]

[X3
3,X3

3][X1
0,X1

1]

Figure 2: Morse function on a 2-manifold with
boundary, with levelset zigzag persistence intervals
in H0 and H1.

critical value ai. Each Xii is labelled by the regular interval
that contains it:

X0
0 X1

1 · · · Xn−1
n−1 Xnn

(−∞, a1) (a1, a2) · · · (an−1, an) (an,∞)

Zigzag persistence intervals of X are then labelled by tak-
ing the union of the labels of the terms Xii and Xii−1 over
which they are supported. Thus each persistence interval
is labelled by an open, closed or half-open interval of the
real line. Practically, we translate between X notation and
critical value notation as follows:ˆ

Xii−1,Xjj−1

˜
↔ [ai, aj ] for 1 ≤ i ≤ j ≤ n,ˆ

Xii−1,Xj−1
j−1

˜
↔ [ai, aj) for 1 ≤ i < j ≤ n+ 1,ˆ

Xii,Xjj−1

˜
↔ (ai, aj ] for 0 ≤ i < j ≤ n,ˆ

Xii,Xj−1
j−1

˜
↔ (ai, aj) for 0 ≤ i < j ≤ n+ 1.

We interpret a0 = −∞ and an+1 = +∞ in this scheme. In
this way we get infinite and semi-infinite intervals. These
do not occur if X0

0 = Xnn = ∅, which is the case if X is
constructed from a function on a compact space X.

Each interval, of any of the four types, may be labelled by
the corresponding point (ai, aj) ∈ R2. The aggregation of
these points — taken with multiplicity and labelled by type
and homological dimension — together with all points on the
diagonal in every dimension taken with infinite multiplicity
is called the levelset zigzag persistence diagram DgmZZ(f).

c1 c2 c3 c4 c5

Figure 48: A topological space projected onto the horizontal axis. Copied from [10].

Comparing with the above computations, there seems to be a close connection between the
bars in levelset and sublevel persistent homology. We now state a theorem that makes this
connection precise.

Theorem 13.7 ([10]). Assume that (X, f) is a constructible R-space, and that dimHp(f
−1(t)) <

∞ for all t. Then the sublevel barcode PHp(f) is given as the following union:

{[ci, cj) : [ci, cj) ∈ ZZp(f)} ∪ {[ci,∞) : [ci, cj ] ∈ ZZp(f)} ∪ {[cj ,∞) : (ci, cj) ∈ ZZp−1(f).}

Hence, levelset persistent homology is a finer invariant than sublevel persistence. Moreover,
and as illustrated by the previous example, the types of endpoints carry concrete information
about the topological feature: closed-closed and open-open intervals correspond to global fea-
tures of X, i.e. features that are present irrespective of the function (but potentially with
different birth and death times). The half-open intervals on the other hand can be perturbed
away.

We end this section by stating an important theorem.

Theorem 13.8. Assume that (X, f) and (X, g) are constructible R-spaces, such that

dimHp(f
−1(t)), dimHp(g

−1(t)) <∞

for all t ∈ R. Then,
dB(ZZp(f),ZZp(g)) ≤ ||f − g||∞.

In fact, here we can replace the standard bottleneck distance with a more refined version
that only allows matchings of intervals with the same type of endpoints, i.e. closed-closed must
be matched to closed-closed and so forth. Much more can be said on this topic, but we will not
pursue it further.

13.3.1 Reeb Graphs

Let (X, f) be a constructible R-space. Then, as an immediate consequence of the definition of
(R(X, f), f̂), we have that H0(f

−1(t)) ∼= H0(f̂
−1(t)), and that Hi(f̂

−1(t)) = 0 for i > 0. In
particular, the homological information preserved by the Reeb graph is precisely that of the
0-th levelset persistence barcode:

ZZ0(f) = ZZ0(f̂).

Furthermore, these intervals have a very clear geometric interpretation as the following example
illustrates.
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Figure 49: A Reeb graph.

Example 13.9. Consider the Reeb graph shown in Fig. 49. It has 4 critical points a1 < a2 <
a3 < a4, yielding the following zigzag of spaces

f−1(−∞, a2] f−1(a1, a3) f−1(a2, a4) f−1(a3,∞)

f−1(a1, a2) f−1(a2, a3) f−1(a3, a4)

Applying H0 gives the following zigzag of vector spaces:

Z2 ⊕ Z2 Z2 Z2 ⊕ Z2 Z2 ⊕ Z2

Z2 ⊕ Z2 Z2 ⊕ Z2 ⊕ Z2 Z2 ⊕ Z2

I2

[1,1]

[1,1,1]

1 1 0

0 0 1


I2

I2

The associated barcode is

ZZ0(f̂) = {[a1, a4], [a1, a2), (a2, a4], (a2, a3)},

with the interpretation

• [a1, a4]: the global connected component.

• [a1, a2): the downward facing branch.

• (a2, a4]: the upward facing branch.

• (a2, a3): the loop.

This interpretation of different types of intervals as particular graph theoretic features holds
for Reeb graphs in general. While different (=non-isomorphic) Reeb graphs may exhibit the
same barcode, the associated bottleneck distance still provides an efficiently computable similar-
ity measure. This contrasts the more discriminative distances - such as an interleaving distance
for Reeb graphs - which are generally NP-hard to compute.
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13.4 Computing the Zigzag Barcode

In this section we will consider a high-level algorithm for computing the barcode of a zigzag
persistence module coming from applying homology to a zigzag of simplicial complexes. Before
turning to the algorithm, let us make some general observations for zigzag persistence modules.

Consider a zigzag persistence module V of the form

V1
f1←→ V2

f2←→ · · · fn2←→ Vn−1
fn−1←→ Vn.

If fi : Vi → Vi+1, then we say that fi is forward, and if fi : Vi+1 → Vi, then we say that f is
backward.

Definition 13.10. A representative sequence in V is an n-tuple

v = (v1, v2, . . . , vn) ∈ V1 × V2 × · · · × Vn

such that:

1. The index b(v) = mini vi 6= 0, satisfies either of the following: b(v) = 1, fb(v)−1 is forward,
or fb(v)−1 is backward and fb(v)−1(vb(v)) = 0. In addition, vi = 0 for all i < b(v).

2. The index d(v) = maxi vi 6= 0, satisfies either of the following: d(v) = n, fd(v) is backward,
or fd(v) is forward and fd(v)(vd(v)) = 0. In addition, vi = 0 for all i > d(v).

3. For all b(v) ≤ i ≤ d(v), vi 6= 0.

4. If b(v) ≤ i < d and fi is forward, then fi(vi) = vi+1.

5. If b(v) < i ≤ d and fi is backward, then fi(vi) = vi−1.

For a representative sequence v, we get a submodule 〈v〉 ⊆ V , where 〈v〉i = Span({vi}) ⊆ Vi.
Furthermore, observe that 〈v〉 ∼= I [b(v),d(v)].

Definition 13.11. A finite collection {vj}j∈J of representative sequences in V is a basis for

V if {vji : vji 6= 0}j∈J is a basis for Vi for all i.

The following is left as an exercise.

Proposition 13.12. If {vj}j∈J is a basis for V , then

V =
⊕
j∈J
〈vj〉 ∼=

⊕
j∈J

I [b(vj),d(vj)].

In particular, B(V ) = {[b(vj), d(vj)] : j ∈ J}.

13.5 An Algorithm for Zigzag Persistent Homology

In this section we assume that K is a zigzag of simplicial complexes

K := K1
h1←→ K2

h2←→ · · · hn−2←→ Kn−1
hn−1←→ Kn,

where each hi is an inclusion, and any two consecutive simplicial complexes differ by exactly
one simplex. In other words, if hi is forward, then Ki+1 = Ki ∪ {σ}, and if hi is backward then
Ki = Ki+1 ∪ {σ}. This assumption implies that the induced map (hi)∗ : Hp(Ki) ↔ Hp(Ki+1)
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is either injective, surjective or an isomorphism, and that the dimension between consecutive
vector spaces differ by at most 1.

Let Hp(K) denote the zigzag module

Hp(K1)
(h1)∗←→ Hp(K2)

(h2)∗←→ · · · (hn2 )∗←→ Hp(Kn−1)
(hn−1)∗←→ Hp(Kn).

We define a representative cycle in Hp(K) to be an n-tuple

c = (c1, . . . , cn) ∈ Cp(K1)× · · · × Cp(Kn)

such that 0 6= [ci] ∈ Hp(Ki) if and only if ci 6= 0, and such that [c] = ([c1], . . . , [cn]) is a
representative sequence in Hp(K).

Our goal is to inductively construct a family of representative cycles {cj}j∈J such that
{[cj ]}j∈J is a basis for Hp(K). The base case k = 1 is trivial. Let Σi = {cj}j∈J denote such a
family for Hp(K) restricted to {1, 2, . . . , i}.

We shall assume that the elements of J are ordered such that b([cj ]) < b([cj
′
]) if j < j′. We

say that b([cj ]) is a forward birth if b([cj ]) = 1 or fb(cj)−1 is forward. Symmetrically, b([cj ]) is

a backward birth if b([cj ]) > 1 and fb([cj ])−1 is backward.

We extend Σi to Σi+1 by means of a case-by-case analysis.

1. If (hi)∗ is forward and an isomorphism, define Σi+1 = {(cj1, . . . , cji , c
j
i ) : cj ∈ Σi}.

2. If (hi)∗ is backward and an isomorphism, define Σi+1 = {(cj1, . . . , cji , c
j
i ) : cj ∈ Σi}.

3. If (hi)∗ is forward and injective, let

Σi+1 = {(cj1, . . . , cji , c
j
i ) : cj ∈ Σi} ∪ (0, 0, . . . , 0, c′)},

where c′ is any p-cycle containing the added p-simplex σ.

4. If fi is backward and surjective, let

Σi+1 = {(cj1, . . . , cji , c
j
i ) : cj ∈ Σi} ∪ (0, 0, . . . , 0, ∂p+1(σ)},

where σ is the (p+ 1)-simplex such that Ki = Ki+1 ∪ {σ}.

5. If (hi)∗ is forward and surjective, then there exists a set A ⊆ J such that
∑

j∈A[cji ] = 0,

and where each [cji ] 6= 0. If b([cj ]) is a backward birth for all j ∈ A, let λ be the lowest
index in A. If not, let λ be the largest index in A such that b([cλ]) is a forward birth.
Define

Σi+1 = {(cj1, . . . , cji , c
j
i ) : j 6= λ, cj ∈ Σi} ∪ {c′}

where c′x = 0 for x < b(vλ) and for x = i+ 1, and c′x =
∑

j∈A c
j
x otherwise.

6. If (hi)∗ is backward and injective, let A ⊆ J be the set of indices such that cji contains σ,
where σ is the p-simplex such that Ki = Ki+1 ∪{σ}. If b([cj ]) is a forward birth index for
all j ∈ A, then let λ be the smallest index in A. Otherwise, let λ be the largest index in
A such that b([cλ]) is a backward birth. Define

Σi+1 = {(cj1, . . . , cji , c
j
i ) : j 6∈ A, cj ∈ Σi} ∪ {(cλ1 , . . . , cλi , 0)} ∪ {(cj)′ : λ 6= j ∈ A},

where (cj)′x = cjx + cλx for b([cλ]) ≤ x ≤ i, (cj)′i+1 = (cj)′i, and (cj)′x = cjx otherwise.

103



Figure 50: See Example 13.14.

Remark 13.13. The presentation here follows [16] and is an adaptation of the algorithm given
in [23].

Example 13.14. Let us use the algorithm to compute the barcode in dimension 1 of the zigzag
filtration shown in Fig. 50. Working inductively we get:

Σ1 = {(13 + 14 + 34)}
Σ2 = {(13 + 14 + 34, 13 + 14 + 34), (0, 12 + 13 + 23)}
Σ3 = {(13 + 14 + 34, 14 + 34 + 12 + 23, 14 + 34 + 12 + 23), (0, 12 + 13 + 23, 0)}
Σ4 = {(13 + 14 + 34, 14 + 34 + 12 + 23, 14 + 34 + 12 + 23, 14 + 34 + 12 + 23),

(0, 12 + 13 + 23, 0, 0), (0, 0, 0, 12 + 13 + 23)}
Σ5 = {(13 + 14 + 34, 14 + 34 + 12 + 23, 14 + 34 + 12 + 23, 14 + 34 + 12 + 23),

(0, 12 + 13 + 23, 0, 0, 0), (0, 0, 0, 12 + 13 + 23, 0)}
Σ6 = {(13 + 14 + 34, 14 + 34 + 12 + 23, 14 + 34 + 12 + 23, 14 + 34 + 12 + 23, 0),

(0, 12 + 13 + 23, 0, 0, 0, 0)(0, 0, 0, 12 + 13 + 23, 0, 0)}

From Σ6 we see that the barcode is {[1, 5], [2, 2], [4, 4]}.
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13.6 Exercises

1. Give an example of two Reeb graphs with the same barcode in dimension 0 levelset
persistent homology that are not isomorphic as constructible R-spaces.

2. Compute ZZ1(f) for the function f : X → R in Fig. 48.

3. Use the algorithm in Section 13.5 to compute the barcode of Example 13.4.

4. Prove Proposition 13.12.

5. Let f : X → R be as in the figure below. Compute ZZ0(f) and interpret the results
geometrically.

6. For an interval [b, d] ∈ B(Hp(K∪)) determine the corresponding interval in B(Hp(K∩)) ∪
B(Hp−1(K∩)).
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Figure 51: A noisy circle.

14 Multiparameter Persistent Homology

Persistent homology is stable with respect to perturbation, but at the same time highly sensitive
to noise and outliers. Take for instance the noisy sample of a circle depicted in Fig. 51: its
associated barcode in homology dimension 1 contains no long bars. One could attempt to
rectify that by restricting to data points with a local density estimate greater than a predefined
threshold δ. However, the resulting barcode would be highly sensitive to the choice of δ: chosen
too large and there won’t be enough points to cover a circle, chosen too small and the data
will be too noisy. Another approach would be to consider all possible density thresholds at
once and construct a P -module where P is a grid. That is the idea behind multiparameter
persistent homology. Parts of the exposition in this section follows a recent introduction to
multiparameter persistence [7].

14.1 Multiparameter Persistence

By a multiparameter persistence module we mean a P -module M where P = T1×· · ·×Tn
and Ti ⊆ R. Here P has the partial order (p1, . . . , pn) ≤ (q1, . . . , qn) iff pi ≤ qi for all 1 ≤ i ≤ n.
Our primary focus will be with the three cases: P = R2, P = Zn, and P finite.

Example 14.1. An example of finite poset is P = [3]× [2]:

• • •

• • •
.

Multiparameter persistence modules typically arise from applying homology to a multifiltra-
tion of a topological space. As an example, let (Q, d) be a finite metric space, and let f : Q→ R
be any function. This defines an R2-module M by

M(x,y) = Hp(VRx(f−1(−∞, y]))

and where the map M(x,y) →M(x,y) is induced in homology by the inclusion

VRx(f−1(−∞, y])) ↪→ VRx′(f
−1(−∞, y′])).
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(a) (b)

Figure 52: Applying H1(−) to the bifiltration in (a) yields the indecomposable bipersistence
module in (b).

The 2-parameter filtration VR−(f−1(−∞,−]) of VR∞(Q) is called the sublevel Vietoris–
Rips bifiltration. In practice, we consider a discretized version of M obtained by choosing
a finite set of distance thresholds A = {ε1, . . . , εn} and function thresholds B = {δ1, . . . , δm}.
The restriction of M to A×B yields an [n]× [m]-module.

Example 14.2. Let Q = {q1, q2, q3} with pairwise distances d(q2, q3) < d(q1, q3) = d(q1, q2)
and f(q1) = f(q2) < f(q3), as depicted in Fig. 53. Let A = {0, d(q2, q3), d(q1, q2)} and B =
{f(q1), f(q3)}. The resulting [3]× [2]-module in dimension 0 homology is:

span{q1, q2, q3} span{q1, q2} span{q1}

span{q1, q2} span{q1, q2} span{q1}

1 0 0

0 1 1


[1,1]


1 0

0 1

0 0

 1 0

0 1


[1,1]

1 0

0 1

 1

By an appropriate change of basis this diagram transforms to:

span{q1, q1 + q2, q2 + q3} span{q1, q1 + q2} span{q1}

span{q1, q1 + q2} span{q1, q1 + q2} span{q1}

1 0 0

0 1 0


[1,0]


1 0

0 1

0 0

 1 0

0 1


[1,0]

1 0

0 1

 1

which is isomorphic the direct sum of the following three modules:

Z2 Z2 Z2

Z2 Z2 Z2

1 1

1

1

1

1 1 ,

Z2 Z2 0

Z2 Z2 0

1

1

1 1 ,

Z2 0 0

0 0 0

With the previous example fresh in mind one may be tempted to conjecture that one can
decompose multiparameter peristence modules into simple components as in Theorem 13.3.
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Figure 53: Bifiltration

That turns out to be very far from the truth: one can realize any persistence module over a
finite grid by applying H1(−) to a cellular or simplicial sublevel filtration. As an example,
Fig. 52a illustrates how one can realize the indecomposable persistence module in Fig. 52b. In
particular, the indecomposable persistence modules are no longer completely identified with
a simple region in space, and it is unclear how such modules can be used in data analysis.
Furthermore, while it follows from Lemma 6.12 that any [n] × [m]-module decomposes into a
direct sum of indecomposable modules, one does not even have a reasonable way of parametrizing
all the indecomposable representations which could potentially arise7.

14.2 The Fibered Barcode and RIVET

Rather than seeking to understand the full complexity of multiparameter persistence modules,
one can study them through the lens of restrictions to totally ordered subposets. Specifically,
assuming that M is an R2-indexed persistence module, we can restrict M to an arbitrary
straight line L in the plane with non-negative slope. The restricted module M |L has a well-
defined barcode by means of Theorem 6.19, assuming that the vector space dimensions are
finite. As L ranges over all valid lines we can gain valuable insight the underlying 2-parameter
persistence module M .

Definition 14.3. Let M be an R2-module such that dimM(x,y) <∞ for all (x, y). The fibered
barcode of M is the map that sends a line L of non-negative slope to B(M |L).

Remark 14.4. This definition extends trivially to Rn.

RIVET (the Rank Invariant Visualization and Exploration Tool) [29] allows for the visu-
alization and analysis of two-parameter persistence modules, and arguably its main feature is
the fast computation of the fibered barcode. The algorithm is rather involved and requires a
discussion of commutative algebra beyond the scope of this course.

Example 14.5. Let Q be the points in Fig. 51 and let f : Q → R be the function which for
each point q counts the number of data points within unit distance. Associated to this data
RIVET considers the R2-indexed persistence module M given by

M(s,t) = VRt(f
−1[s,∞)).

Be aware that the density filtration takes place in the horizontal direction, and that the scale
parameter in RIVET - as in Ripser - is twice the one in the definition of the Vietoris–Rips
complex used in these notes. Consider the subset of Q admitting a local density estimate at
least 18, as seen in Fig. 54c. Its associated barcode in the Rips filtration is displayed along

7A so-called wild quiver.
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(a) All points (b) Density at least 10. (c) Density at least 18.

Figure 54: See Example 14.5.

(a) The barcode along a slanted
line.

(b) Density at least 10. (c) Density at least 18.

Figure 55: See Example 14.5.

the thick blue line in Fig. 55c. We see that there is a short bar generated at a fairly large
scale corresponding to the scale at which the right-end of the point cloud connects. For a much
cleaner barcode we consider all the points with local density estimate at least 10, as shown in
Fig. 54b together with its barcode in Fig. 55b. It is often more fruitful to consider the barcode
along a slanted line; see Fig. 55a. RIVET updates the barcode in real-time as the user modifies
the slope and intercept.

14.3 Distances

With the failure of a barcode-like decomposition for multiparameter persistence module the
question of how to compare modules arises. We now give an introduction to two well-studied
distances in the context of multiparameter persistent homology.

The interleaving distance Generalizing the definition of an interleaving in 9.11, define the
ε-shift of an Rn-modules M to be the persistence module M ε defined by M ε

p = Mp+(ε,...,ε) and
M ε(p ≤ p′) = M(p+(ε, . . . , ε) ≤ p′+(ε, · · · , ε)) for all p ≤ p′ ∈ R2. For a morphism f : M → N ,
we get an ε-shifted morphism f ε : M ε → N ε defined by f εp = fp+(ε,...,ε). Let ηεM : M → M ε be
the morphism whose restriction to each Mp is the internal morphism M(p ≤ p+ (ε, . . . , ε)).

Definition 14.6. Given ε ∈ [0,∞), an ε-interleaving between M and N is a pair of morphisms
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ψ : M → N ε and ϕ : N →M ε such that ϕε ◦ ψ = η2εM and ψε ◦ ϕ = η2εN . We say that M and N
are ε-interleaved.

Michael Lesnick[21] showed that the interleaving distance is the most discriminative and
stable distance measure on multiparameter persistence modules8. Unfortunately, it turns out
that its computation is NP-hard.

Theorem 14.7 ([3]). For n = 2, it is NP-hard to approximate the interleaving distance within
a factor of 3.

The proof proceeds by a reduction from the following problem which is subsequently shown
to be NP-complete: let A and B be n × n-matrices and assume that a pre-assigned subset of
the indices of A and B are set 0. Is it possible to assign values to the remaining entries such
that the resulting product AB is the identify matrix In?

Example 14.8. Let

A =

∗ ∗ ∗∗ 0 ∗
∗ ∗ 0

 B =

∗ ∗ ∗∗ ∗ 0
∗ 0 ∗

 .
In this case the decision problem has a positive answer:1 1 1

1 0 1
1 1 0

 ·
−1 1 1

1 −1 0
1 0 −1

 = I3.

The matching distance Theorem 14.7 motivates the search for a more computable surrogate
for the interleaving distance. The matching distance [11] has emerged as a popular choice. It is
defined by restricting the modules to (suitably parameterized) affine lines with positive slope,
and taking bottleneck distances:

Definition 14.9. The matching distance between Rn-indexed modules M and N , satisfying
dimMp <∞ and dimNp <∞ for all p, is given by:

dmatch(M,N) = sup
L

dB(B(M |L), B(N |L)),

where L : R→ Rn ranges over lines of the form L(t) = vt+ b where v ∈ [1,∞)n and b ∈ Rn.

The following is an immediate consequence of Lesnick’s universality result.

Proposition 14.10. For Rn-modules M and N satisfying dimMp < ∞ and dimNp < ∞ for
all p,

dmatch(M,N) ≤ dI(M,N).

While the matching distance is less sensitive than the interleaving distance, it can be com-
puted exactly in polynomial time for bipersistence modules. Here the input size is given as the
number of simplices in the bifiltration.

8Assuming the field is Zp or Q.
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14.4 The Rank Invariant

The rank invariant RkM of a persistence module M is the function (s, t) 7→ Rk(Ms → Mt),
where s ≤ t. In standard persistent homology, the rank invariant determines the barcode
via inclusion-exclusion formula given in Eq. (3). Conversely, the rank-invariant can clearly be
deduced from the barcode. Thus, the barcode and the rank invariant determine each other. For
zigzag (and thus multiparameter persistence) two modules can be non-isomorphic but still have
the same rank invariant.

Example 14.11. The following two zigzag modules are non-isomorphic but they have the same
rank invariant:(

Z2
1←− Z2

1−→ Z2

)
⊕
(

0
0←− Z2

0−→ 0
) (

Z2
1←− Z2

0−→ 0
)
⊕
(

0
0←− Z2

1−→ Z2

)
.

Though the rank invariant is incomplete outside of the 1-parameter setting, one may hope
that the correspondence between barcodes and rank invariants can be extended to the multi-
parameter setting.

Definition 14.12. A multiset B of subsets of Rn is a good barcode of M if for all x ≤ y ∈ Rn
we have

Rk(Mx →My) = |{S ∈ B : x, y ∈ S}|,
i.e., the rank of the map Mx →My is the number of elements of B containing both x and y.

Given how barcodes of 1-parameter persistence modules are usually interpreted and used in
TDA, Definition 14.12 is quite natural. However, the next example shows that a good barcode
of M need not exist.

Example 14.13. A simple argument by contradiction shows that the bipersistence module M
in Fig. 52 does not have a good barcode. If B is a good barcode of M , then since all the maps
in the diagram have rank one, B must include an interval containing the whole poset. This
contradicts the fact that Rk(M(1,0) →M(1,2)) = 0.

As we will now explain, this is indeed possible if one considers signed barcodes.

14.5 Signed Barcodes

Definition 14.14. An interval in a poset P is a non-empty subset I of P satisfying the two
following conditions:

1. If s, t ∈ I and s ≤ u ≤ t, then u ∈ I,

2. If s, t ∈ I, then there are s = u0, . . . , um = t ∈ I such that ui and ui+1 are comparable for
all 0 ≤ i < m.

Generalizing our discussion in Section 6, we associate a P -module to an interval. Here k is
any field.

Definition 14.15. For an interval J in a poset P , the interval module IJ is defined by

(IJ)x =

{
k if x ∈ J,
0 otherwise,

(IJ)x,y =

{
idk if x ≤ y ∈ J,
0 otherwise.
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One can check that IJ is indecomposable. If M ∼= ⊕JIJ , then we say that M is interval-
decomposable. The rank invariant of M in Example 14.13 can be expressed as the difference
between the rank invariants of two interval-decomposable modules:

−Rk( (⊕ ⊕ Rk ( (=

k id //k // 0

k

id

OO

[ 10 ] //k2

[ 1 0 ]

OO

[ 1 1 ] //k

OO

0
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[ 01 ]
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id //k

id

OO
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Such a decomposition need not be unique:
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It turns out, however, that the decomposition is unique if we restrict our attention to
rectangles.

Definition 14.16. A rectangle in P is a non-empty subset of the form [s, t] = {u : s ≤ u ≤ t}.

Theorem 14.17. Let P = T1 × · · · × Tn, where each Ti ⊆ R is finite. For any P -module
M ,satisfying dimMp < ∞ for all p, there exists a pair (R,S) of finite multisets of rectangles
in P such that

RkM = Rk

(⊕
R∈R

IR

)
− Rk

(⊕
S∈S

IS

)
(22)

and if (R′,S ′) is any other such pair satisfying Eq. (22), then R ⊆ R′ and S ⊆ S ′.

We shall refer to the pair (R,S) as the signed barcode of RkM . Note that if d = 1, then
by Theorem 6.19 and the uniqueness of the signed barcode, we must have that S = ∅. We shall
prove Theorem 14.17 by first proving the following closely related statement.

Theorem 14.18. Let M and P be as in Theorem 14.17. Then M can be expressed uniquely as
a Z-linear combination of the rank functions {Rk(IR) : R is a rectangle in P}. That is, there
exist unique integers αR such that

RkM =
∑

Rectangles R

αR Rk(IR).

Proof. For a rectangle R = [s, t], let v(R) = Rk(Ms → Mt), and define U(R) = {R′ ⊇ R :
v(R′) > 0}. Observe that if v(R) > 0 and R 6= R′ ∈ U(R), then |U(R)| > |U(R′)|.
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We shall inductively define the integers αR. If v(R) = 0, then let αR = 0. Continuing
inductively on the size of |U(R)|, define

αR = v(R)−
∑

R′∈U(R)

αR′ .

Note that this is well-defined. Now, let s ≤ t, and observe that for a rectangle R = [s′, t′],
Rk(IR)(s, t) = 1 if s, t ∈ [s′, t′], and 0 otherwise. In particular,∑
R

αR Rk(IR)(s, t) =
∑

R⊇[s,t]

αR Rk(IR)(s, t) =
∑

R∈U([s,t])

αR Rk(IR)(s, t) =
∑

R∈U([s,t])

αR = v(R).

To see that this unique, assume that∑
R

αR Rk(IR) =
∑
R

βR Rk(IR)

where αR 6= βR for at least one R. This yields a Z-linear combination∑
R

γR Rk(IR) = 0

where at least one γR 6= 0. Choose a maximal [s, t] such that γ[s,t] 6= 0. Then,

0 =
∑
R

γR Rk(IR)(s, t) = γ[s,t],

contradicting that γ[s,t] 6= 0.

Theorem 14.17 now follows by letting R = {R : αR > 0} and S = {R : αR < 0} in the
decomposition

RkM =
∑

Rectangles R

αR Rk(IR).

Computation The signed barcode ofM indexed over a finite grid
∏d
i=1[1, ni] can be computed

by means of a simple inclusion-exclusion formula. Let α[s,t] denote the multiplicity of the
rectangle

[s, t] = {u ∈ Rd | s ≤ u ≤ t},
in the signed barcode (R,S). That is, if α[s,t] > 0 then [s, t] appears with multiplicity α[s,t] in
R, and if α[s,t] < 0 then [s, t] appears with multiplicity −α[s,t] in S. Then we have:

α[s,t] =
∑
s′≤s

‖s′−s‖∞≤1

∑
t′≥t

‖t′−t‖∞≤1

(−1)‖s
′−s‖1+‖t′−t‖1 RkM(s′, t′). (23)

Remark 14.19. The case d = 1 gives the well-known inclusion-exclusion formula relating the
persistence diagram of a one-parameter persistence module to its rank invariant.

A simple inspection of the formula in Eq. (23) reveals that computation is bounded in time

O
(

22d
∏d
i=1 n

2
i

)
, assuming constant-time access to the ranks RkM(s′, t′) and constant-time

arithmetic operations.

Visualization Visualizing the signed barcode of a bipersistence module by directly plotting
the rectangles can be messy for examples of realistic size, since many rectangles may overlap.
To obtain a cleaner visualization, one can represent each rectangle via a line segment (“bar”)
connecting its infimum to its supremum, as illustrated in Fig. 56 (b). Such visualizations of the
signed barcodes of larger persistence modules can be found in [8].
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(a) (b)

Figure 56: (a) shows the rectangles in a rank decomposition, and (b) shows the same decom-
position using line segments.

14.6 Exercises

Show that Eq. (23) for d = 1 reduces to the standard formula for computing the barcode in
one-parameter persistence.
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Figure 57: The volume of the unit n-ball for 1 ≤ n ≤ 20.

15 Non-linear dimensionality reduction

Working with data in high-dimensional space presents several challenges, commonly referred to
as the ”curse of dimensionality.” One significant issue is that data becomes extremely sparse
as the number of dimensions increases. This is reflected in the fact that the volume of the
unit n-ball Dn goes to 0 as n increases; see Fig. 57. Because of this sparseness, the amount
of data needed for a ’sufficiently’ dense sampling grows exponentially with the number of di-
mensions rendering (topological) inference useless. However, data tends to have additional
structure and sit near a, not necessarily linear, low-dimensional subspace. The goal of low-
dimensional embedding techniques is to represent the data with respect to coordinates of this
lower-dimensional space. Such dimension reductions are essential in uncovering structure in
data, as strong (topological) signals can otherwise be totally dominated by a small amounts of
noise in each component. The signal can be recovered by first passing to a lower-dimensional
space as the following example illustrates. The goal of this section is to explain the mathematics
behind ISOMAP (Section 15.1) and UMAP (Section 15.2).

Example 15.1. Consider the 500 points on a torus knot in R3 in Figure Fig. 58a and the
corresponding persistence diagram in Fig. 58b. As expected, there is a single significant feature
in degree 1 homology. Now, let us embed the same point cloud as the three first coordinates
in R50000, and perturb each coordinate of each point by a random number in [−0.2, 0.2]. The
corresponding persistence diagram is shown in Fig. 59b. We observe that the signal is dominated
by the noise. However, by applying principal component analysis (PCA) (Section 15.1.1), we
can embed the data in R3 and recover the circular structure; see Fig. 59a. Figure Fig. 60 shows
the embedding of the same point cloud into R2 using PCA, ISOMAP, and UMAP.

15.1 ISOMAP

We shall assume that we are given n data points in Rd stored as a n× d matrix A. In order to
explain how ISOMAP works, we need to briefly discuss PCA and MDS.
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(a) (b)

Figure 58: See Example 15.1. (a) A torus knot in R3. (b) The persistence diagram of the
associated Rips filtration.

(a) (b)

Figure 59: See Example 15.1. (a) The projection of the point cloud onto the three first principal
components. (b) The persistence diagram of the original point cloud in R50000.

(a) (b) (c)

Figure 60: See Example 15.1. (a) PCA. (b) ISOMAP. (c) UMAP.
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15.1.1 Principal component analysis

Principal component analysis is a linear dimensionality reduction technique. For a fixed k, PCA
projects the data onto the k-dimensional subspace of Rd which best approximates the data.

Recall that any real-valued matrix admits a singular value decomposition (SVD) and so

A = UΣV T

where U is an n×n orthogonal matrix, Σ is a n×d diagonal matrix, and V is a d×d orthogonal
matrix. Moreover, the entries of Σ are non-negative and satisfy Σ1,1 ≥ Σ2,2 ≥ . . .. We let
σi = Σi,i. For an n × d matrix B, we shall let B[k] denote the restriction of B to its first k
columns, and we define the 2-norm B to be

||B||2 =

√ ∑
(1,1)≤(i,j)≤(n,d)

B2
i,j .

Theorem 15.2. Let A and B be n× d matrices. If the rank of B is at most k, then

||A−Ak||2 ≤ ||A−B||2.

Furthermore,

||A−Ak||22 =
∑
i>k

σ2i .

Now, assume that the columns of B[k] is an orthonormal basis for a k-dimensional subspace
W of Rn. Then AB[k] has rank at most k, and the orthogonal projection of the data points
in A onto W is given by AB[k]. Observe that if πW (p) denotes the orthogonal projection of p
onto W , then

Err(P,W )2 :=
∑
p∈P
||p− πW (p)||22 = ||A−AB[k]||22.

To find a best possible k-linear approximation to the data in A, we would thus like to find a
k-subspace Ok such that Err(P,Ok)

2 is minimal. Observing that A[k] = AV [k], it follows from
Theorem 15.2 that Err(P,Ok) is minimized when Ok is the k-subpsace by the first k columns
in V .

If the data were to be located on a k-hyperplane not passing through the origin, then a
k + 1-dimensional subspace would be needed to adequately capture the variance in the data.
For that reason, as a preprocessing step, the data is first centralized by subtracting the mean in
each coordinate. Then the projected data is obtained by computing AV [k] for some user-defined
k. Note that Err(P,Ok)

2 =
∑

i>k σ
2
i and therefore one chooses k such the singular values σi for

i > k are negligible. Often (but not always) there is some i such that σi � σi+1.

15.1.2 Multidimensional scaling

We shall now see that a low-dimensional embedding closely related to that of PCA can be
obtained from the pairwise distances between the data points. Following the notation from
Section 15.1.1, and using that A = UΣV T , we get AAT = UΣUT and U are therefore the
eigenvectors of AAT . Furthermore, observe that (AAT )i,j = pi · pj . In conclusion: if we can
compute all the pairwise inner products, then we can do PCA. An elementary calculation gives

(pi · pj)2 =
1

2
(−||pi − pj ||22 + ||pi||22 + ||pj ||22).

117



(a) fig:torusknot (b)

Figure 61: (a) The data lies on an S-shape in R3 (b) The ISOMAP projection to R2 for suitable
parameters.

By assumption, ||pi−pj ||22 is given for all pairs i and j. But what do we do about the remaining
norms? If we assume that some arbitrary point, say p0, sits at the origin, then ||pi||22 = ||pi−p0||22.
This gives us sufficient data to compute AAT , and therefore the eigenvectors U and the singular
values Σ. We can now project the data onto V [k] as in Section 15.1.1. This approach to
embedding a set of data points in Euclidean space is called multidimensional scaling (MDS).

15.1.3 The ISOMAP algorithm

ISOMAP assumes that the data lies on the isometric embedding φ(C) ⊂ Rd of some convex
set C ⊂ Rk. The standard example of this is the ”swiss roll”, or an S-shape, see Fig. 61.
The important point is that the intrinsic distance dC(p, q) between the points p and q on φ(C)
equals the Euclidean distance between φ−1(p) and φ−1(q). We can therefore apply MDS to our
estimate for dC and obtain an embedding in Rk. This leaves us with the following algorithm:

1. Estimate the intrinsic distance between any two points pi and pj to obtain a matrix of
distances Di,j ∼ dC(pi, pj).

2. Apply MDS to D to get an embedding of the data points in Rl for some user-defined l.

The estimation of the intrinsic distance can be done by forming the m-th nearest neighbor graph
for some fixed m ≥ 1. The weight associated to the edge is then the distance between pi and pj
in the euclidean metric on Rd. The intrinsic distance from pi to pk is then approximated by the
shortest path in the graph, which can be calculated with standard graph-theoretic algorithms,
e.g., Dijkstra’s algorithm.

15.2 UMAP

Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP) is a more
recent approach to non-linear dimensionality reduction which has become immensely popular.
At a high level, the algorithm associates to a set of data a weighted simplicial complex with
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weights in [0, 1]; here the weight is to be interpreted as the probability of that simplex being
present. Then, a low-dimensional embedding of the data is sought for which the associated
simplicial complex has similar probabilities. For the sake of efficiency, only the 1-skeletons of
the simplicial complexes are considered.

15.2.1 Step 1: the local fuzzy graph

Fix some integer k ≥ 1, and for each point p ∈ P ⊂ Rd, let Nk(p) denote the k-th nearest
neighbor graph of p. We shall let d : Rd × Rd denote the distance on Rd, e.g., the Euclidean
distance. Our first goal is to associate to every p a fuzzy graph with vertex set P , i.e., a
symmetric function wp : P ×P → [0, 1]. To do this, we let ρp := minq 6=p d(p, q), i.e., the distance
to p’s nearest neighbor, and define

dp(p, q) =

{
d(p, q)− ρp if {p, q} ∈ Nk(p)

∞ otherwise.
.

Set
wp(q, r) = exp(−dp(q, r)/σp)

where σp is such that ∑
(p,q)∈Np(k)

wp(p, q) = log2(k).

The intuition behind this (I think) is that
∑

(p,q)∈Np(k)wp(p, q) represents the expected number
of points connected to p, and it is assumed that the sampling is such that all points are expected
to have the same degree. That is, no point is more connected than any other point and while
average distances can vary locally from one point to another, this is just an artifact of a uniform
sampling on a Riemannian manifold which has been deformed under a (not necessarily isometric)
embedding into Rd. That the expected number should be log2(k) is a choice; it seems reasonable
that it should increase slowly with k.

15.2.2 Step 2: gluing fuzzy graphs

For each p ∈ P we now have a weight function wp and we would like to glue them all together
into a single weight function w : P×P → [0, 1]. Keeping the intuition that the weights represent
probabilities, we define w(p, q) to be the probability that the edge {p, q} appears in at least one
of the fuzzy graphs. In other words,

w(q, r) = 1−
∏
p∈P

(1−wp(q, r)) = 1−(1−wq(q, r))(1−wr(q, r)) = wq(q, r)+wr(q, r)−wq(q, r)wr(q, r).

And what about higher-dimensional simplices? Taking a cue from Rips complexes, we let

w(p0, . . . , pn) = min
1≤i,j≤n

w(pi, pj),

i.e., the probability of the least probable edge. A simplicial complex K with a function f : K →
[0, 1] such that f(σ) ≥ f(τ) if σ ⊇ τ is called a fuzzy simplicial complex and f is a fuzzy map.
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15.2.3 Step 3: finding a low-dimensional embedding

Given a simplicial complex K and two fuzzy maps f, g : K → [0, 1], one can compare them as
probability spaces using Kullbach-Leibner (KL) divergence or other similarity measures. The
authors of UMAP make a small modification to KL divergence, and introduce the following
measure of cross entropy between f and g:

C(f, g) =
∑
σ∈K

(
f(σ) log

(
f(σ)

g(σ)

)
+ (1− f(σ)) log

(
1− f(σ)

1− g(σ)

))
.

Here interpretation is that 0 · log(0/a) = 0 for all a, and a · log(a/0) = +∞ if a 6= 0. In
practice when comparing discrete probability distributions, 0 is typically replaced with some
small positive number to avoid division by 0.

Returning to our construction in Section 15.2.2, w plays the role of f , and we seek a low-
dimensional embedding of the data such that the associated probability distribution v minimizes
C(w, v). Elementary algebra gives

C(w, v) =
∑
σ∈K

(
w(σ) log

(
w(σ)

v(σ)

)
+ (1− w(σ)) log

(
1− w(σ)

1− v(σ)

))
=
∑
σ∈K

(w(σ) log(w(σ)) + (1− w(σ)) log(1− w(σ)))

−
∑
σ∈K

(w(σ) log(v(σ)) + (1− w(σ)) log(1− v(σ)))

Since the first term only depends on w, it suffices to to minimize the second term. UMAP
initializes the points in Rk using a spectral embedding and then moves the points around such
that

−
∑
σ∈K

(w(σ) log(v(σ)) + (1− w(σ)) log(1− v(σ)))

hits a local minimum. The question that remains to be answered is how v ought to be defined.
When we defined w, we assumed that the local geometry of the embedded manifold is different
from that of the ambient Euclidean space. For the embedding however, the assumption is that
the geometry is precisely that of the ambient space. Furthermore, UMAP requires you to set a
min dist hyper-parameter, which should reflect that points at a distance smaller than min dist
are connected with probability 1. For two points (p, q) ∈ Rl, set

v(p, q) =

{
1 if d(p, q) ≤ min dist
exp(−(d(p, q)−min dist)) otherwise.

This is then extended to higher-dimensional simplices by taking the minimum over edges as
before. However, for the sake of efficiency, UMAP only works with the 1-skeleton of K. To find
a local minimum for C(w, v) UMAP applies stochastic gradient descent, and a necessary step is
to replace v with a smooth approximation ψ. This smooth approximation will also ensure that
one does not run into issues with log(0). Specifically,

ψ(p, q) =
(

1 + a(d(p, q)2)b
)−1

where a and b are chosen by non-linear least squares fitting against v.
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15.3 Exercises

1. Show that any n×n distance matrix can be realized by n points in Rn with the Euclidean
distance.
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