
3D Agent-based Virtual Communities

Zhisheng Huang, Anton Eliëns and Cees Visser
Vrije University of Amsterdam,

Department of Mathematics and Computer Science
De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

{huang,eliens,ctv}@cs.vu.nl

ABSTRACT
In this paper we propose an approach to 3D agent-based vir-
tual communities, in which autonomous agents are partici-
pants in VRML-based virtual worlds to enhance the interac-
tion with users or serve as intelligent navigation assistants.
In addition, an agent communication language (ACL) is de-
signed as a high level communication facility, in particular
for the realization of shared objects in virtual communities.
As a typical example of 3D agent-based virtual communi-
ties, a VRML-based multi-user soccer game has been devel-
oped and implemented in the distributed logic programming
language DLP. We discuss how DLP can be used for the im-
plementation of 3D agent-based virtual communities.

Categories and Subject Descriptors
H.5.1 [Multimedia Information Systems]: Animations;
H.5.3 [Group and Organization Interfaces]: Web-based
interaction; I.2.11 [Distributed Artificial Intelligence]:
Intelligent agents

General Terms
Intelligent Agent

Keywords
intelligent agent, distributed logic programming, networked
virtual environment, virtual community, VRML

1. INTRODUCTION
3D virtual communities and in particular VRML-based

multi-user virtual worlds, have been adopted in a lot of
application areas like 3D virtual conferencing [24], Web-
based multi-user games [21], on-line entertainment [2], and
e-commerce [20]. Examples of popular 3D virtual commu-
nity servers are Active World [1] and Blaxxun Interactive
[2]. However, most of them do not provide support for in-
telligent agents. Enhancing virtual worlds with intelligent

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Web3D’02,February 24-26, 2002, Tempe, Arizona, USA.
Copyright 2002 ACM 1-58113-468-1/02/0002 ...$5.00.

agents would significantly improve the interaction with users
as well as the capabilities of networked virtual environments
[3, 6, 26].

The Blaxxun community server does provide support for
agents. Agents in the Blaxxun community server may be
programmed to have particular attributes and to react to
events in a particular way. As a remark, originally the
Blaxxun agents were called bots. In our opinion the func-
tionality of Blaxxun agents does not surpass that of simple
bots and we consider the term agent to be a misnomer. De-
spite the large number of built-in events and the rich reper-
toire of built-in actions, the Blaxxun agent platform in itself
is rather limited in functionality, because the event-action
patterns are not powerful enough to program complex be-
havior that requires maintaining information over a period
of time.

In this paper we propose an approach to 3D agent-based
virtual communities with the following two shades of mean-
ing :

• Virtual enviroments with embedded agents: Autonomous
agents are participants in virtual communities. The
main advantages are that agents can be used to en-
hance the interaction with users. For instance, in a
multi-user soccer game it is usually hard to find enough
users to join the game at a particular moment. Au-
tonomous agents can serve as goal keepers or play-
ers whenever they are needed. Moreover, autonomous
agents always possess certain background knowledge
about the virtual worlds. They can serve as intelligent
assistants for navigation or as masters to maintain cer-
tain activities, like a referee in a soccer game.

• Virtual enviroments supported by ACL communication:
Agent communication languages (ACL) are designed
to provide a high-level communication facility. The
communication between the agents can be used for the
realization of shared objects in virtual worlds. For in-
stance, in a soccer game, whenever an agent or user
kicks the soccer ball, the kicking message should be
broadcast to all other agents and users. The state of
the soccer ball in the user’s local world can be updated
after receiving the message. Such a high-level commu-
nication facility can also be used to reduce message
delays, which are usually a bottleneck in networked
virtual communities. We will discuss performance re-
lated details in section 5.

Intelligent agents in VRML-based virtual worlds can be
considered to be what we called 3D web agents in [12, 13].

A VRML-based 3D soccer game with a single user has been
developed and implemented in [14], supported by the dis-
tributed logic programming language DLP [7]. In this paper
we discuss a framework how DLP can be used for the imple-
mentation of distributed multi-user soccer games by means
of a 3D agent-based virtual community.

2. AGENTS IN VIRTUAL COMMUNITIES
The term ”virtual community” is usually used to refer to

the general appearance and gathering of people by means of
distributed computer systems, in particular on the Internet.
A typical text-based virtual community is Internet Relay
Chatting [17], whereas typical 3D web-based virtual commu-
nities are VRML-based, like the Blaxxun community server
and DeepMatrix [22]. In VRML-based virtual communities,
virtual worlds are designed by means of VRML, using the
VRML External Authoring Interface (EAI) to connect au-
tonomous agents running in a web browser to the plug-ins
that are required to control the virtual worlds. Virtual com-
munities usually have a client-server network architecture.
In particular, they occasionally use a centralized server ar-
chitecture, because the clients are running in a remote Web
browser and the Java platform security policy allows clients
only to connect to the originating host.

The ”Living Worlds” Working Group describes a general
concept and context of VRML-based virtual communities
[16]. A scene is used to refer to a set of VRML objects
which is geometrically bounded and is continuously naviga-
ble, i.e. without ”jumps”. A world consists of one or more
scenes linked together both from a technical and conceptual
point of view. A SharedObject is an object whose state and
behavior are to be synchronized across multiple clients. The
SharedObject on one of these clients is called an instance of
the SharedObject. In ”Living Worlds” a pilot is used to refer
to an instance of a SharedObject whose states and behaviors
are replicated by other instances, its drones. A drone is an
instance of a SharedObject replicating the state or behavior
of another instance, its pilot.

In agent-based virtual communities, a shared object is
designed to be controlled by an agent. Therefore, a pilot
agent is one which controls the states or behavior of a shared
object, whereas a drone agent is one which replicates the
state of a shared object. Based on the different types of
shared objects, the agents can be further classified by means
of the following three types:

• Object agents: an autonomous program controls a sim-
ple shared object, like a soccer ball. Pilot object agents
are usually located at the server side, whereas drone
object agents are usually located at the client side.

• User agents: an autonomous program which controls
a user avatar; it translates commands from users to
messages for the communication between the agents.
A pilot user agent is located at the user or client side.
Drone user agents can be located at the server or other
clients, however, they are usually not required as will
be explained in section 4.

• Autonomous agents: an autonomous program with its
own avatar which is able to perform complex tasks,
like an autonomous player in a soccer game. Pilot
autonomous agents are located at the server side and
drone autonomous agents are located at all clients.

In addition, we also need multi-threaded, i.e. active com-
ponents which are in charge of several aspects of the com-
munication infrastructure. However, we would not call them
agents, but active communication components, because agents
are only interested in the collaboration with other agents
rather than in particular aspects of the communication fa-
cilities themselves. A programming language supporting 3D
agent-based virtual communities, as described above, should
have the following features:

• VRML EAI support: It should support VRML EAI,
like Java does;

• Distributed communication capabilities: It should sup-
port network communication, like TCP/IP;

• Multiple threads of control: It should support multi-
ple threads of control for the simulation of pilots and
drones in both client and server sides;

• Declarative language: Preferably, it should be a declar-
ative language, like a logic programming language, which
supports rule-based knowledge representation as is of-
ten necessary for the implementation of intelligent agents.

Based on the requirements above, the distributed logic pro-
gramming language DLP has been extended to support 3D
agent-based virtual communities.

3. DISTRIBUTED LOGIC PROGRAMMING
FOR VIRTUAL ENVIRONMENTS

Distributed logic programming [7] combines logic program-
ming, object oriented programming and parallelism. The
use of DLP as a language for the implementation of agent-
based virtual communities is motivated by the following lan-
guage characteristics: object-oriented Prolog, VRML EAI
extensions, and distribution.

3.1 Object-oriented Logic Programming
DLP incorporates object-oriented programming concepts,

which make it a useful tool for programming. The language
accepts the syntax and semantics of logic programming lan-
guages like Prolog. It is a high-level declarative language
suitable for the construction of distributed software archi-
tectures in the domain of artificial intelligence. In particular,
it’s a flexible language for rule-based knowledge representa-
tion [8].

In DLP, an object is designed as a set of rules and facts,
which consists of a list of formulas built from predicates and
terms (variables or constants). For instance, a rule like

findHowtoReact(Agent,Ball, shooting) : −
getPosition(Agent,X, Y, Z),
getPosition(Ball,Xb, Y b, Zb),
gatePosition(Agent,Xg, Y g, Zg),
distance(X,Y, Z,Xb, Y b, Zb,Distb),
distance(X,Y, Z,Xg, Y g, Zg,Distg),
Distb =< kickableDistance,
Distg =< kickableGoalDistance.

states that if the ball is kickable for the agent and the gate
is within the kickable distance, then the agent should try to
shoot.

3.2 VRML EAI Extensions
DLP is an extensible language. Special-purpose require-

ments for particular application domains can easily be inte-
grated in the existing object-oriented language framework.
DLP has been extended with a run-time library for VRML
EAI [19]. The following predicates are some examples of
DLP VRML built-ins:

• URL-load predicate loadURL(URL)
loads a VRML world at URL into the Web browser.

• Get-position predicate getPosition(Object,X, Y, Z)
gets the current position 〈X,Y, Z〉 of the Object in the
VRML world.

• Set-position predicate setPosition(Object,X, Y, Z)
sets the position 〈X,Y, Z〉 of the Object in the VRML
world.

• Get-rotation predicate getRotation(Object,X, Y, Z,R)
gets the current rotation 〈X,Y, Z,R〉 of the Object in
the VRML world.

• Set-rotation predicate setRotation(Object,X, Y, Z,R)
sets the rotation 〈X,Y, Z,R〉 of the Object in the VRML
world.

• Get-property predicate getSFV ec3f(Object, F ield,
X, Y, Z) gets a value (which consists of three float num-
bers X,Y , and Z) of the Field of the Object.

• Set-property predicate setSFV ec3f(Object, F ield,
X, Y, Z) assigns the SFV ec3f value X,Y , and Z to
the Field of the Object.

Furthermore, DLP programs are compiled to Java class
files, which makes it a convenient tool for the implementa-
tion of VRML EAI applets.

3.3 Distributed Programming Language
DLP is also a distributed programming language. DLP

programs can be executed at different computers in a dis-
tributed architecture.

The following predicates are some examples of TCP/IP
networking primitives in DLP:

• Host-identification predicate host address(HostName,
InternetAddress) gets HostName with the name of
the host from which the current program objects are
loaded.

• Server predicate tcp server(ServerPort, ServerSocket)
creates a server socket.

• Server accepting a new client:tcp accept(ServerSocket,
ServerStreamIn, ServerStreamOut) creates a mes-
sage input stream and a message output stream asso-
ciated with the server socket.

• Client predicate tcp client(ServerHostName,
ServerPort, T imeOut, ClientStreamIn,
ClientStreamOut) creates a message input stream and
a message output stream, connecting a client to a DLP
server running at ”ServerHostName”.

• Bi-Directional Client / Server Communication predi-
cates:
tcp get term(StreamIn, Term) gets a message term
from the stream, and
tcp put term(StreamOut, Term) writes a message term
to the stream.

Moreover, DLP allows for multiple threads of control in
a single program, which makes it a convenient language for
the implementation of autonomous agents.

The obvious advantage of our approach is a loose cou-
pling between high level programming functionality and the
actual creation of 3D content. The drawback there, how-
ever, is that it requires expertise in both areas, i.e., Web3D
and the agent technology, and also increases the effort of de-
velopment and debugging. Another disadvantage is that it
induces a performance overhead due to the communication
via the EAI and the computation in DLP. It is our impres-
sion, however, that the computational load of VRML far
exceeds that of DLP in the case of a single user. The per-
formance requirements for (multi-user) distributed commu-
nication are discussed below. Actual desktop requirements
depend on the application. A 500MHz (256MB) PC with a
graphic accelerator is recommended.

4. DISTRIBUTED COMMUNICATION
In general, a virtual community based on a client-server

network architecture works as follows: all the client pro-
cesses connect with a centralized server via a Web browser,
usually by means of a TCP connection. The server receives,
processes, and transfers the messages concerning shared ob-
jects to the clients for the necessary synchronization. To
improve the performance, multiple threads of control are
introduced in both server and clients in the virtual commu-
nities, as is shown in Figure 2. Each thread has its own
message queue to store incoming messages (sent from other
threads) which have not yet been processed. Thus, sending
a message to a thread means sending the message to the
recipient’s message queue. Each client has its own commu-
nication thread, called client thread, which is in charge of
the network communication. In addition, for each client a
special thread called server thread is created at the server
side for the network communication with its corresponding
client thread. The introduction of multiple threads leads to
the following communication patterns:

• Communication between internal threads: Messages
are sent from a thread to another thread inside server
or clients. This kind of communication is done directly,
either in an asynchronous or synchronous way, without
the intervention of active communication components.

• Communication between threads across a network: Mes-
sages are sent from a thread located at the server to
a thread located at a client or vice versa. Sending a
message from a thread located at the server to a thread
located at a client has the following procedure:

1. the message is sent to the corresponding server
thread’s message queue;

2. the server thread retrieves the message from its
message queue;

3. the server thread invokes tcp put term to put the
message to the stream connected with the client
thread;

4. the client thread uses tcp get term to get the mes-
sage from the stream;

5. the client thread stores the message in the desti-
nation thread’s message queue;

6. the destination thread retrieves the message from
its own message queue.

• Communication between two clients: Messages are sent
from a client thread to a thread located at another
client. Since there is no direct connection between two
clients, this kind of communication has to be achieved
via the server.

The clients and server are designed to consist of two main
components (Figure 2) : a general component, called gg-
server and gg-client, which deal with the network communi-
cation and an application specific component, called wsserver
and wsclient for the soccer game, which deals with any-
thing that is relevant for the application. Furthermore, the
gg echo component is used for the actual message broad-
casting.

In agent-based virtual communities, each agent is rep-
resented as a thread. Considering the high degree of au-
tonomous behavior of user agents, we don’t need the drone
user agent at the server side and other client sides, which
will become more clear in section 5.

For agent-based virtual communities, agent communica-
tion languages (ACL’s) are used to serve as a high-level com-
munication facility. KQML [10] and FIPA ACL [11], which
are based on speech act theory [23], are popular agent com-
munication languages. A message in an ACL usually con-
sists of a communicative act, a sender name, a list of re-
cipients, and additional content. Communicative acts like
’tell’, ’ask’, and ’reply’, are used to identify the communi-
cation actions which may change the mental attitudes of
the agents. Moreover, a set of agent interaction protocols
based on ACL has to be defined to achieve interoperability
among the agents. Agents don’t need to take care of the
details how messages are passed across the network, that is
the responsibility of the active communication components.

5. EXAMPLE: VRML-BASED MULTIPLE
USER SOCCER GAME

We used the soccer game as one of the benchmark ex-
amples to test 3D agent-based virtual communities for the
following reasons:

• Multiple users: Multiple human users can join the soc-
cer game, so that a virtual community is formed.

• Multiple agents: Soccer games are multi-agent systems
which require multiple autonomous agents to partici-
pate in the games, in particular the goalkeepers are
better to be designed as autonomous agents, rather
than human users, for their active areas are rather lim-
ited, i.e. only around the goal gates. The goalkeeper
agents can be designed to never violate the rules of
games.

• Reactivity: A player (user or agent) has to react quickly
in the game. Thus, it is not allowed to have serious
performance problems.

Figure 1: Screenshot of Soccer Game with Multiple
Users

• Cooperation/competition: Soccer games are typical
competition games which require the strong coopera-
tion among team-mates. Therefore, intelligent behav-
ior is a necessity for agents.

• Dynamic behavior: Sufficiently complex 3D scenes, in-
cluding the dynamic behavior of the ball.

A screenshot of the soccer game with multiple users is shown
in Figure 1. We consider two playing teams, red and blue,
in the soccer game. Two goal keepers, a soccer ball, and
several agent players are designed to be pilot agents in the
server. Whenever a new user joins the game, a client thread
is created for which a user avatar is created to be the pilot
agent in the client.

5.1 Agent players and their cognitive models
Each agent player may play one of the following four roles:

goal keeper, defender, mid-fielder, and forward. Each role
has its own active area in the soccer field. Each agent
player has the following cognitive loop: sensing–thinking–
acting. By sensing, agents use get-predicates to retrieve
the necessary information about the current situation. The
main information sources are: agent position, soccer ball
position, and the goal gate position. In the stage of think-
ing, avatars have to reason about other players’ positions
or roles and decide how to react based on their preferences
and the information about the current situation. Thinking
results in a set of intentions, more exactly, a set of intended
actions. By acting, agents use the set-predicates to take
the intended actions. In the current version of the soccer
game we do not require that agents know all the rules of
the soccer game [9], like penalty kick, free kick, corner kick,
etc. In the simplified soccer game, soccer players have sev-
eral kick actions, like shooting, passing, run-to-ball, move-
around-default-position, etc.

The agents in the soccer game use a simplified cognitive
model of soccer games [14] in which the agents consider the
information about several critical distances, then make a
decision to kick. Despite this simplified “cognitive” soccer
game model, each player shows a remarkably intelligent be-
havior [14].

5.2 Distributed Soccer Game Protocol
ACL is used to design a distributed soccer game proto-

col which states how the message should be processed and
forwarded among the agents to achieve shared objects. The
messages in the distributed soccer game protocol are a 3-
tuple:

[Act, Type, ParameterList]

where Act is a communicative act; like ’tell’, ’ask’, ’register’
; Type is a content type, like ’position’, ’rotation’, ’kick-ball’
; ParameterList is a list of parameters for the content type.

The basic message formats for the distributed soccer game
protocol are:

register game : [register, game name,
from(Host)].

register accept : [tell, accept,
user(Host,Name)].

register wait : [tell, wait, []].
tell new player : [tell, new player,

user(Host,Name)].
tell position : [tell, position,

[user(Host,Name),
position(X,Y, Z)]].

tell rotation : [tell, rotation,
[user(Host,Name),
rotation(X,Y, Z,R)]].

text chat : [tell, text,
[user(Host, SenderName),
RecipientNameList, Text]].

text chat broadcast : [tell, text, [user(Host,
SenderName), [all], T ext]].

kick ball : [tell, kick ball, [user(Host,
Name), force(X,Y, Z)]].

tell game score : [tell, game score,
user(Host,Name)].

ask game score : [ask, game score,
user(Host,Name)].

reply game score : [reply, game score,
score(score1, score2)].

unregister game : [unregister, game name,
user(Host,Name)].

reply unregister game : [reply, unregister,
done(Host,Name)].

player gone : [tell, player gone,
user(Host,Name)].

The meaning of the high-level message formats above is
straightforward. For instance, the message

[tell, position, [host(swpc257, red10), position(0, 0, 10)]]

states that the current position of player red10 at host swpc257
is 〈0, 0, 10〉.

The distributed soccer game protocol for pilot agents re-
quires that they should regularly tell their position and ro-
tation to the communication components if the position or
rotation is changed, so that their information can be up-
dated by their drones. Moreover, for the player agents, if
they kick the ball, the kicking message has to be passed to
the server. The server decides which one is a legal kick and
takes certain actions. Thus, the server plays a central role
for the synchronization between pilot and drone agents. The
distributed soccer game protocol for the server thread is a set

received condition reply broadcast
message message

register name register tell
game available accept new player
register name register
game not available wait
tell tell
position position
tell tell
rotation rotation
tell legal tell
kick kick kick
tell illegal
kick kick
text recipient text
chat list chat
text chat text
broadcast chat
ask reply
game score game score
unregister reply player
game unregister gone

Table 1: Distributed Soccer Game Protocol

of 4-tuples with the following format: 〈M,C,RM,B〉, which
means that if Message M is received and Condition C holds,
then reply the message RM and broadcast the message B.
The protocol is shown in table 1.

In theory, the protocol above is sufficiently expressive to
realize shared objects in the soccer game. However, in prac-
tice it results in several performance problems. Consider a
problem caused by autonomous player agents: players may
continuously run to the ball or other positions. If the players
regularly send messages about their positions and rotations,
the message queues grow rapidly, which results in serious
message delays. In a worst case scenario, a user will never
be able to kick a ball because its local world isn’t sufficiently
synchronized.

5.3 Performance Improvement
In order to improve the performance and decrease the mes-

sage delays, new message formats are required in the pro-
tocol so that the drone agents can simulate the behavior of
their counterpart pilot agents at a high level, i.e. the behav-
ior can be computed locally. However, note that the high
level simulations are suitable only for autonomous agents
and object agents, for their pilots are controlled by DLP pro-
grams; their behaviors are to some extent predicatable. Be-
cause of the high autonomy of the human users, user agents
are usually hard to be simulated at a high level. Thus, the
high level message formats are used only for autonomous
player agents and objects agents.

One example of a high-level simulation: if an agent wants
to run to the position 〈X1, Y 1, Z1〉 from the initial position
〈X0, Y 0, Z0〉, then he sends a move-player message. Other
high-level message formats are:

• run and trace: the payer runs and trace the ball until
it can kick the ball.

• move ball: the ball is moving to a new position.

Introducing the high level message formats significantly
reduces the message delays. Assume that in the game there
are u users, a autonomous player agents, including object
agents. Compared to autonomous agents, human agents are
relatively slow to change their position or rotation. Assume
also that each autonomous agent creates ma messages per
second and each human agent creates mu messages per sec-
ond. There are M = a×ma+u×mu message per second in
total. That means that each communication thread has to
process M messages. If a communication thread is able to
process Mc messages and Mc < M , then the message queue
length becomes t × (M −Mc) after time t. Now, suppose
that introducing a high-level message format f for which
the average time period of the action is at(f) and the prob-
ability is p(f). A single high-level message m with format
f corresponds to at(f) × ma messages for a period at(f).
It reduces ma − 1/at(f) messages per second for a single
occurrence of message m. In general, the reduced number
of messages Mr(f) per second by introducing f is

Mr(f) = (at(f)×M × p(f) + 1)/at(f)

The improved performance ratio R(f) is defined as

R(f) = Mr(f)/M ≈ p(f)

The improved performance is mainly determined by the
probability of the high-level message. Several concrete dis-
tributed multi-user benchmarks show the following test re-
sults: the total improvement is about 43 percent; the high-
level ”run and trace”, ”kick ball” and ”move ball/player”
message formats contribute about 30, 11, and 2 percent re-
spectively. The discussed optimization turns out to be an
effective approach in order to reduce the message passing
overhead in a distributed context.

6. CONCLUSIONS
The two main extensions to VRML97 are expected to

be: multi-user interaction and autonomous creatures [4].
In this paper we proposed an approach to 3D agent-based
virtual communities, which is an attempt to provide a gen-
eral framework to deal with these two issues at a VRML
EAI level. Virtual environments embedded with intelligent
agents offer a general solution to shared objects and au-
tonomous creatures in VRML worlds. The interaction sup-
ported by agent communication languages provides a high-
level multi-user interaction in virtual environments. We
have developed and implemented a VRML-based multi-user
soccer game, which illustrates that the Distributed Logic
Programming language (DLP) is a high level tool for the
development of 3D agent-based virtual communities. The
clean separation of 3D content and the logic of dynamic be-
havior creates a powerful and flexible platform for a variety
of applications, at a reasonable performance penalty.

7. REFERENCES
[1] ActiveWorlds, http://www.activeworlds.com.

[2] Blaxxun Interactive Inc. http://www.blaxxun.com.

[3] W. Broll, E. Meier, and T. Schardt, Symbolic Avatars
Acting in Shared Virtual Environments,
http://orgwis.gmd.de/projects/VR, 2000.

[4] G. Carson, R. Puk, and R. Carey, Developing the
VRML 97 International Standard, IEEE Computer
Graphics and Applications 19(2), 1999, 52-58.

[5] DLP web site: http://www.cs.vu.nl/∼eliens/
projects/logic/index.html.

[6] R. Earnshaw, N. Magnenat-Thalmann, D.
Terzopoulos, and D. Thalmann, Computer Animation
for Virtual Humans, IEEE Computer Graphics and
Applications 18(5), 1998.

[7] A. Eliëns, DLP, A Language for Distributed Logic
Programming, Wiley, 1992.

[8] A. Eliëns, Principles of Object-Oriented Software
Development, Addison-Wesley, 2000.

[9] FIFA, Laws of soccer games, http://www.fifa.com.

[10] T. Finin and R. Fritzson, KQML as an agent
communication language, Proceedings of the 3rd
International Conference on Information and
Knowledge Management, 1994.

[11] FIPA web site:http://www.fipa.org.

[12] Z. Huang, A. Eliëns, A. van Ballegooij, P. de Bra, A
Taxonomy of Web Agents, Proceedings of the 11th
International Workshop on Database and Expert
Systems Applications, IEEE Computer Society,
765–769, 2000.

[13] Z. Huang, A. Eliëns, and P. de Bra, An Architecture
for Web Agents, Proceedings of the Conference
EUROMEDIA’2001, SCS, 2001.

[14] Z. Huang, A. Eliëns, and C. Visser, Programmability
of Inteligent Agent Avatars, Proceedings of the
Autonomous Agents’01 Workshop on Embodied
Agents, 2001.

[15] Z. Huang, A. Eliëns, and C. Visser, 3D Web Agents in
Distributed Logic Programming, Symposium on
Multimodal Communication with Embodied Agents,
December 7, 2001, CWI, Amsterdam.
http://wasp.cs.vu.nl/wasp/papers/3dwebagent.ppt.

[16] Living Worlds Working Group,
http://www.web3d.org/WorkingGroups/

living-worlds/.

[17] Z. Liu, Virtual Community Presence in Internet Relay
Chatting, Computer-Mediated Communication 5(1),
1999.

[18] ISO, VRML97: The Virtual Reality Modeling
Language, Part 1: Functional specification and UTF-8
encoding, ISO/IEC 14772-1, 1997.

[19] ISO, VRML97: The Virtual Reality Modeling
Language, Part 2: External authoring interface,
ISO/IEC 14772-2, 1997.

[20] E. Messmer, E-commerce yet to embrace virtual
reality, http://www.idg.net/english/
crd commerce 441283.html

[21] MiMaze, http://www-sop.inria.fr/rodeo/MiMaze/.

[22] G. Reitmayr, S. Carroll, and A. Reitemeyer,
DeepMatrix – An Open Technology Based Virtual
Environment System, Visual Computer 15, 1999.

[23] J. R. Searle, Speech Acts. An Essay in the Philosophy
of Language. Cambridge, 1969.

[24] Virtual European Statistical Lab, Conferencing using
Vnet, http://vesl.jrc.it/en/comm/eurostat/
research/supcom.97/01/conf/mainvnet.htm.

[25] WASP project home page:
http://wasp.cs.vu.nl/wasp.

[26] M. Watson, AI Agents in Virtual Reality Worlds –
programming intelligent VR in C++, Wiley, 1996.

Figure 2: Communication among Multiple Threads in DLP

