topical media & game development
lib-of-vs-addons-ofxVectorMath-src-ofxPoint3f.cpp / cpp
include <ofxPoint3f.h>
ofxPoint3f::ofxPoint3f( float _x, float _y, float _z ) {
x = _x;
y = _y;
z = _z;
}
ofxPoint3f::ofxPoint3f( const ofPoint& pnt ) {
x = pnt.x;
y = pnt.y;
z = pnt.z;
}
// Getters and Setters.
//
//
void ofxPoint3f::set( float _x, float _y, float _z ) {
x = _x;
y = _y;
z = _z;
}
void ofxPoint3f::set( const ofPoint& pnt ) {
x = pnt.x;
y = pnt.y;
z = pnt.z;
}
float& ofxPoint3f::operator[]( const int& i ) {
switch(i) {
case 0: return x;
case 1: return y;
case 2: return z;
default: return x;
}
}
// Check similarity/equality.
//
//
bool ofxPoint3f::operator==( const ofPoint& pnt ) {
return (x == pnt.x) && (y == pnt.y) && (z == pnt.z);
}
bool ofxPoint3f::operator!=( const ofPoint& pnt ) {
return (x != pnt.x) || (y != pnt.y) || (z != pnt.z);
}
bool ofxPoint3f::match( const ofPoint& pnt, float tollerance) {
return (fabs(x - pnt.x) < tollerance)
&& (fabs(y - pnt.y) < tollerance)
&& (fabs(z - pnt.z) < tollerance);
}
// Operator overloading for ofPoint
//
//
void ofxPoint3f::operator=( const ofPoint& vec ){
x = vec.x;
y = vec.y;
z = vec.z;
}
ofxPoint3f ofxPoint3f::operator+( const ofPoint& pnt ) const {
return ofxPoint3f( x+pnt.x, y+pnt.y, z+pnt.z );
}
ofxPoint3f& ofxPoint3f::operator+=( const ofPoint& pnt ) {
x+=pnt.x;
y+=pnt.y;
z+=pnt.z;
return *this;
}
ofxPoint3f ofxPoint3f::operator-( const ofPoint& vec ) const {
return ofxPoint3f( x-vec.x, y-vec.y, z-vec.z );
}
ofxPoint3f& ofxPoint3f::operator-=( const ofPoint& vec ) {
x -= vec.x;
y -= vec.y;
z -= vec.z;
return *this;
}
ofxPoint3f ofxPoint3f::operator*( const ofPoint& vec ) const {
return ofxPoint3f( x*vec.x, y*vec.y, z*vec.z );
}
ofxPoint3f& ofxPoint3f::operator*=( const ofPoint& vec ) {
x*=vec.x;
y*=vec.y;
z*=vec.z;
return *this;
}
ofxPoint3f ofxPoint3f::operator/( const ofPoint& vec ) const {
return ofxPoint3f( vec.x!=0 ? x/vec.x : x , vec.y!=0 ? y/vec.y : y, vec.z!=0 ? z/vec.z : z );
}
ofxPoint3f& ofxPoint3f::operator/=( const ofPoint& vec ) {
vec.x!=0 ? x/=vec.x : x;
vec.y!=0 ? y/=vec.y : y;
vec.z!=0 ? z/=vec.z : z;
return *this;
}
ofxPoint3f ofxPoint3f::operator-() const {
return ofxPoint3f( -x, -y, -z );
}
//operator overloading for float
//
//
void ofxPoint3f::operator=( const float f){
x = f;
y = f;
z = f;
}
ofxPoint3f ofxPoint3f::operator+( const float f ) const {
return ofxPoint3f( x+f, y+f, z+f);
}
ofxPoint3f& ofxPoint3f::operator+=( const float f ) {
x += f;
y += f;
z += f;
return *this;
}
ofxPoint3f ofxPoint3f::operator-( const float f ) const {
return ofxPoint3f( x-f, y-f, z-f);
}
ofxPoint3f& ofxPoint3f::operator-=( const float f ) {
x -= f;
y -= f;
z -= f;
return *this;
}
ofxPoint3f ofxPoint3f::operator*( const float f ) const {
return ofxPoint3f( x*f, y*f, z*f );
}
ofxPoint3f& ofxPoint3f::operator*=( const float f ) {
x*=f;
y*=f;
z*=f;
return *this;
}
ofxPoint3f ofxPoint3f::operator/( const float f ) const {
if(f == 0) return ofxPoint3f( x, y, z);
return ofxPoint3f( x/f, y/f, z/f );
}
ofxPoint3f& ofxPoint3f::operator/=( const float f ) {
if(f == 0) return *this;
x/=f;
y/=f;
z/=f;
return *this;
}
// Rotate point by angle (deg) around line defined by pivot and axis.
//
//
ofxPoint3f ofxPoint3f::rotated( float angle,
const ofxPoint3f& pivot,
const ofxVec3f& axis ) const{
return getRotated(angle, pivot, axis);
}
ofxPoint3f ofxPoint3f::getRotated( float angle,
const ofxPoint3f& pivot,
const ofxVec3f& axis ) const
{
ofxVec3f ax = axis.normalized();
float tx = x - pivot.x;
float ty = y - pivot.y;
float tz = z - pivot.z;
float a = (float)(angle*DEG_TO_RAD);
float sina = sin( a );
float cosa = cos( a );
float cosb = 1.0f - cosa;
float xrot = tx*(ax.x*ax.x*cosb + cosa)
+ ty*(ax.x*ax.y*cosb - ax.z*sina)
+ tz*(ax.x*ax.z*cosb + ax.y*sina);
float yrot = tx*(ax.y*ax.x*cosb + ax.z*sina)
+ ty*(ax.y*ax.y*cosb + cosa)
+ tz*(ax.y*ax.z*cosb - ax.x*sina);
float zrot = tx*(ax.z*ax.x*cosb - ax.y*sina)
+ ty*(ax.z*ax.y*cosb + ax.x*sina)
+ tz*(ax.z*ax.z*cosb + cosa);
return ofxPoint3f( xrot+pivot.x, yrot+pivot.y, zrot+pivot.z );
}
ofxPoint3f ofxPoint3f::getRotatedRad( float angle,
const ofxPoint3f& pivot,
const ofxVec3f& axis ) const
{
ofxVec3f ax = axis.normalized();
float tx = x - pivot.x;
float ty = y - pivot.y;
float tz = z - pivot.z;
float a = angle;
float sina = sin( a );
float cosa = cos( a );
float cosb = 1.0f - cosa;
float xrot = tx*(ax.x*ax.x*cosb + cosa)
+ ty*(ax.x*ax.y*cosb - ax.z*sina)
+ tz*(ax.x*ax.z*cosb + ax.y*sina);
float yrot = tx*(ax.y*ax.x*cosb + ax.z*sina)
+ ty*(ax.y*ax.y*cosb + cosa)
+ tz*(ax.y*ax.z*cosb - ax.x*sina);
float zrot = tx*(ax.z*ax.x*cosb - ax.y*sina)
+ ty*(ax.z*ax.y*cosb + ax.x*sina)
+ tz*(ax.z*ax.z*cosb + cosa);
return ofxPoint3f( xrot+pivot.x, yrot+pivot.y, zrot+pivot.z );
}
ofxPoint3f& ofxPoint3f::rotate( float angle,
const ofxPoint3f& pivot,
const ofxVec3f& axis )
{
ofxVec3f ax = axis.normalized();
x -= pivot.x;
y -= pivot.y;
z -= pivot.z;
float a = (float)(angle*DEG_TO_RAD);
float sina = sin( a );
float cosa = cos( a );
float cosb = 1.0f - cosa;
float xrot = x*(ax.x*ax.x*cosb + cosa)
+ y*(ax.x*ax.y*cosb - ax.z*sina)
+ z*(ax.x*ax.z*cosb + ax.y*sina);
float yrot = x*(ax.y*ax.x*cosb + ax.z*sina)
+ y*(ax.y*ax.y*cosb + cosa)
+ z*(ax.y*ax.z*cosb - ax.x*sina);
float zrot = x*(ax.z*ax.x*cosb - ax.y*sina)
+ y*(ax.z*ax.y*cosb + ax.x*sina)
+ z*(ax.z*ax.z*cosb + cosa);
x = xrot + pivot.x;
y = yrot + pivot.y;
z = zrot + pivot.z;
return *this;
}
ofxPoint3f& ofxPoint3f::rotateRad( float angle,
const ofxPoint3f& pivot,
const ofxVec3f& axis )
{
ofxVec3f ax = axis.normalized();
x -= pivot.x;
y -= pivot.y;
z -= pivot.z;
float a = angle;
float sina = sin( a );
float cosa = cos( a );
float cosb = 1.0f - cosa;
float xrot = x*(ax.x*ax.x*cosb + cosa)
+ y*(ax.x*ax.y*cosb - ax.z*sina)
+ z*(ax.x*ax.z*cosb + ax.y*sina);
float yrot = x*(ax.y*ax.x*cosb + ax.z*sina)
+ y*(ax.y*ax.y*cosb + cosa)
+ z*(ax.y*ax.z*cosb - ax.x*sina);
float zrot = x*(ax.z*ax.x*cosb - ax.y*sina)
+ y*(ax.z*ax.y*cosb + ax.x*sina)
+ z*(ax.z*ax.z*cosb + cosa);
x = xrot + pivot.x;
y = yrot + pivot.y;
z = zrot + pivot.z;
return *this;
}
// Map point to coordinate system defined by origin, vx, vy, and vz.
//
//
ofxPoint3f ofxPoint3f::mapped( const ofxPoint3f& origin,
const ofxVec3f& vx,
const ofxVec3f& vy,
const ofxVec3f& vz ) const{
return getMapped(origin, vx, vy, vz);
}
ofxPoint3f ofxPoint3f::getMapped( const ofxPoint3f& origin,
const ofxVec3f& vx,
const ofxVec3f& vy,
const ofxVec3f& vz ) const
{
return ofxPoint3f( origin.x + x*vx.x + y*vy.x + z*vz.x,
origin.y + x*vx.y + y*vy.y + z*vz.y,
origin.z + x*vx.z + y*vy.z + z*vz.z );
}
ofxPoint3f& ofxPoint3f::map( const ofxPoint3f& origin,
const ofxVec3f& vx,
const ofxVec3f& vy,
const ofxVec3f& vz )
{
float xmap = origin.x + x*vx.x + y*vy.x + z*vz.x;
float ymap = origin.y + x*vx.y + y*vy.y + z*vz.y;
z = origin.z + x*vx.z + y*vy.z + z*vz.z;
x = xmap;
y = ymap;
return *this;
}
// Distance between two points.
//
//
float ofxPoint3f::distance( const ofxPoint3f& pnt) const {
float vx = x-pnt.x;
float vy = y-pnt.y;
float vz = z-pnt.z;
return (float)sqrt(vx*vx + vy*vy + vz*vz);
}
float ofxPoint3f::distanceSquared( const ofxPoint3f& pnt ) const{
return squareDistance(pnt);
}
float ofxPoint3f::squareDistance( const ofxPoint3f& pnt ) const {
float vx = x-pnt.x;
float vy = y-pnt.y;
float vz = z-pnt.z;
return vx*vx + vy*vy + vz*vz;
}
// Linear interpolation.
//
//
p==0.0 results in this point, p==0.5 results in the
midpoint, and p==1.0 results in pnt being returned.
ofxPoint3f ofxPoint3f::interpolated( const ofxPoint3f& pnt, float p ) const {
return getInterpolated(pnt,p);
}
ofxPoint3f ofxPoint3f::getInterpolated( const ofxPoint3f& pnt, float p ) const {
return ofxPoint3f( x*(1-p) + pnt.x*p,
y*(1-p) + pnt.y*p,
z*(1-p) + pnt.z*p );
}
ofxPoint3f& ofxPoint3f::interpolate( const ofxPoint3f& pnt, float p ) {
x = x*(1-p) + pnt.x*p;
y = y*(1-p) + pnt.y*p;
z = z*(1-p) + pnt.z*p;
return *this;
}
ofxPoint3f ofxPoint3f::middled( const ofxPoint3f& pnt ) const {
return getMiddle(pnt);
}
ofxPoint3f ofxPoint3f::getMiddle( const ofxPoint3f& pnt ) const {
return ofxPoint3f( (x+pnt.x)/2.0f, (y+pnt.y)/2.0f, (z+pnt.z)/2.0f );
}
ofxPoint3f& ofxPoint3f::middle( const ofxPoint3f& pnt ) {
x = (x+pnt.x)/2.0f;
y = (y+pnt.y)/2.0f;
z = (z+pnt.z)/2.0f;
return *this;
}
// Average (centroid) among points.
// Addition is sometimes useful for calculating averages too.
//
//
ofxPoint3f& ofxPoint3f::average( const ofxPoint3f* points, int num ) {
x = 0.f;
y = 0.f;
z = 0.f;
for( int i=0; i<num; i++) {
x += points[i].x;
y += points[i].y;
z += points[i].z;
}
x /= num;
y /= num;
z /= num;
return *this;
}
// Perpendicular normalized vector from three points.
//
//
ofxVec3f ofxPoint3f::perpendicular( const ofxPoint3f& pnt1,
const ofxPoint3f& pnt2 ) const{
return getPerpendicular(pnt1, pnt2);
}
ofxVec3f ofxPoint3f::getPerpendicular( const ofxPoint3f& pnt1,
const ofxPoint3f& pnt2 ) const
{
float v1x = x - pnt1.x;
float v1y = y - pnt1.y;
float v1z = z - pnt1.z;
float v2x = x - pnt2.x;
float v2y = y - pnt2.y;
float v2z = z - pnt2.z;
float crossX = v1y*v2z - v1z*v2y;
float crossY = v1z*v2x - v1x*v2z;
float crossZ = v1x*v2y - v1y*v2x;
float length = (float)sqrt(crossX*crossX +
crossY*crossY +
crossZ*crossZ);
if( length > 0 )
return ofxVec3f( crossX/length, crossY/length, crossZ/length );
else
return ofxVec3f();
}
// Non-Member operators
//
//
ofxPoint3f operator+( float f, const ofxPoint3f& pnt ) {
return ofxPoint3f( f+pnt.x, f+pnt.y, f+pnt.z );
}
ofxPoint3f operator-( float f, const ofxPoint3f& pnt ) {
return ofxPoint3f( f-pnt.x, f-pnt.y, f-pnt.z );
}
ofxPoint3f operator*( float f, const ofxPoint3f& pnt ) {
return ofxPoint3f( f*pnt.x, f*pnt.y, f*pnt.z );
}
ofxPoint3f operator/( float f, const ofxPoint3f& pnt ) {
return ofxPoint3f( f/pnt.x, f/pnt.y, f/pnt.z);
}
(C) Æliens
04/09/2009
You may not copy or print any of this material without explicit permission of the author or the publisher.
In case of other copyright issues, contact the author.