topical media & game development
#javascript-processing-example-topic-fractals-mandelbrot.htm / htm
<!DOCTYPE html>
<html><head>
<script src="javascript-processing-example-processing.js"></script>
<script src="javascript-processing-example-init.js"></script>
<link rel="stylesheet" href="javascript-processing-example-style.css">
</head><body><h1><a href="http://ejohn.org/blog/processingjs/">Processing.js</a></h1>
<h2>Mandelbrot</h2>
<p>by Daniel Shiffman.
Simple rendering of the Mandelbrot set.</p>
<p><a href="http://processing.org/learning/topics/mandelbrot.html"><b>Original Processing.org Example:</b> Mandelbrot</a><br>
<script type="application/processing">
// Establish a range of values on the complex plane
// A different range will allow us to "zoom" in or out on the fractal
// float xmin = -1.5; float ymin = -.1; float wh = 0.15;
float xmin = -2.5;
float ymin = -2;
float wh = 4;
void setup() {
size(200, 200);
noLoop();
}
void draw() {
loadPixels();
// Maximum number of iterations for each point on the complex plane
int maxiterations = 200;
// x goes from xmin to xmax
float xmax = xmin + wh;
// y goes from ymin to ymax
float ymax = ymin + wh;
// Calculate amount we increment x,y for each pixel
float dx = (xmax - xmin) / (width);
float dy = (ymax - ymin) / (height);
// Start y
float y = ymin;
for(int j = 0; j < height; j++) {
// Start x
float x = xmin;
for(int i = 0; i < width; i++) {
// Now we test, as we iterate z = z^2 + cm does z tend towards infinity?
float a = x;
float b = y;
int n = 0;
while (n < maxiterations) {
float aa = a * a;
float bb = b * b;
float twoab = 2.0 * a * b;
a = aa - bb + x;
b = twoab + y;
// Infinty in our finite world is simple, let's just consider it 16
if(aa + bb > 16.0f) {
break; // Bail
}
n++;
}
// We color each pixel based on how long it takes to get to infinity
// If we never got there, let's pick the color black
if (n == maxiterations) pixels[i+j*width] = 0;
else pixels[i+j*width] = color(n*16 % 255); // Gosh, we could make fancy colors here if we wanted
x += dx;
}
y += dy;
}
updatePixels();
}
</script><canvas width="200" height="200"></canvas></p>
<div style="overflow: hidden; height: 0px; width: 0px;"></div>
<pre><b>// All Examples Written by <a href="http://reas.com/">Casey Reas</a> and <a href="http://benfry.com/">Ben Fry</a>
// unless otherwise stated.</b>
// Establish a range of values on the complex plane
// A different range will allow us to "zoom" in or out on the fractal
// float xmin = -1.5; float ymin = -.1; float wh = 0.15;
float xmin = -2.5;
float ymin = -2;
float wh = 4;
void setup() {
size(200, 200);
noLoop();
}
void draw() {
loadPixels();
// Maximum number of iterations for each point on the complex plane
int maxiterations = 200;
// x goes from xmin to xmax
float xmax = xmin + wh;
// y goes from ymin to ymax
float ymax = ymin + wh;
// Calculate amount we increment x,y for each pixel
float dx = (xmax - xmin) / (width);
float dy = (ymax - ymin) / (height);
// Start y
float y = ymin;
for(int j = 0; j < height; j++) {
// Start x
float x = xmin;
for(int i = 0; i < width; i++) {
// Now we test, as we iterate z = z^2 + cm does z tend towards infinity?
float a = x;
float b = y;
int n = 0;
while (n < maxiterations) {
float aa = a * a;
float bb = b * b;
float twoab = 2.0 * a * b;
a = aa - bb + x;
b = twoab + y;
// Infinty in our finite world is simple, let's just consider it 16
if(aa + bb > 16.0f) {
break; // Bail
}
n++;
}
// We color each pixel based on how long it takes to get to infinity
// If we never got there, let's pick the color black
if (n == maxiterations) pixels[i+j*width] = 0;
else pixels[i+j*width] = color(n*16 % 255); // Gosh, we could make fancy colors here if we wanted
x += dx;
}
y += dy;
}
updatePixels();
}</pre>
</body></html>
(C) Æliens
20/2/2008
You may not copy or print any of this material without explicit permission of the author or the publisher.
In case of other copyright issues, contact the author.