topical media & game development

talk show tell print

#javascript-physics-js-box2d-dynamics-joints-b2MouseJoint.js / js



  /*
  * Copyright (c) 2006-2007 Erin Catto 
* This software is provided 'as-is', without any express or implied
* warranty.  In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked, and must not be
* misrepresented the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/

// p = attached point, m = mouse point
// C = p - m
// Cdot = v
//      = v + cross(w, r)
// J = [I r_skew]
// Identity used:
// w k % (rx i + ry j) = w * (-ry i + rx j)

var b2MouseJoint = Class.create();
Object.extend(b2MouseJoint.prototype, b2Joint.prototype);
Object.extend(b2MouseJoint.prototype, 
{
        GetAnchor1: function(){
                return this.m_target;
        },
        GetAnchor2: function(){
                var tVec = b2Math.b2MulMV(this.m_body2.m_R, this.m_localAnchor);
                tVec.Add(this.m_body2.m_position);
                return tVec;
        },

        GetReactionForce: function(invTimeStep)
        {
                //b2Vec2 F = invTimeStep * this.m_impulse;
                var F = new b2Vec2();
                F.SetV(this.m_impulse);
                F.Multiply(invTimeStep);
                return F;
        },

        GetReactionTorque: function(invTimeStep)
        {
                //NOT_USED(invTimeStep);
                return 0.0;
        },

        SetTarget: function(target){
                this.m_body2.WakeUp();
                this.m_target = target;
        },

        //--------------- Internals Below -------------------

        initialize: function(def){
                // The constructor for b2Joint
                // initialize instance variables for references
                this.m_node1 = new b2JointNode();
                this.m_node2 = new b2JointNode();
                //
                this.m_type = def.type;
                this.m_prev = null;
                this.m_next = null;
                this.m_body1 = def.body1;
                this.m_body2 = def.body2;
                this.m_collideConnected = def.collideConnected;
                this.m_islandFlag = false;
                this.m_userData = def.userData;
                //

                // initialize instance variables for references
                this.K = new b2Mat22();
                this.K1 = new b2Mat22();
                this.K2 = new b2Mat22();
                this.m_localAnchor = new b2Vec2();
                this.m_target = new b2Vec2();
                this.m_impulse = new b2Vec2();
                this.m_ptpMass = new b2Mat22();
                this.m_C = new b2Vec2();
                //

                //super(def);

                this.m_target.SetV(def.target);
                //this.m_localAnchor = b2Math.b2MulTMV(this.m_body2.m_R, b2Math.SubtractVV( this.m_target, this.m_body2.m_position ) );
                var tX = this.m_target.x - this.m_body2.m_position.x;
                var tY = this.m_target.y - this.m_body2.m_position.y;
                this.m_localAnchor.x = (tX * this.m_body2.m_R.col1.x + tY * this.m_body2.m_R.col1.y);
                this.m_localAnchor.y = (tX * this.m_body2.m_R.col2.x + tY * this.m_body2.m_R.col2.y);

                this.m_maxForce = def.maxForce;
                this.m_impulse.SetZero();

                var mass = this.m_body2.m_mass;

                // Frequency
                var omega = 2.0 * b2Settings.b2_pi * def.frequencyHz;

                // Damping coefficient
                var d = 2.0 * mass * def.dampingRatio * omega;

                // Spring stiffness
                var k = mass * omega * omega;

                // magic formulas
                this.m_gamma = 1.0 / (d + def.timeStep * k);
                this.m_beta = def.timeStep * k / (d + def.timeStep * k);
        },

        // Presolve vars
        K: new b2Mat22(),
        K1: new b2Mat22(),
        K2: new b2Mat22(),
        PrepareVelocitySolver: function(){
                var b = this.m_body2;

                var tMat;

                // Compute the effective mass matrix.
                //b2Vec2 r = b2Mul(b.m_R, this.m_localAnchor);
                tMat = b.m_R;
                var rX = tMat.col1.x * this.m_localAnchor.x + tMat.col2.x * this.m_localAnchor.y;
                var rY = tMat.col1.y * this.m_localAnchor.x + tMat.col2.y * this.m_localAnchor.y;

                // this.K    = [(1/m1 + 1/m2) * eye(2) - skew(r1) * invI1 * skew(r1) - skew(r2) * invI2 * skew(r2)]
                //      = [1/m1+1/m2     0    ] + invI1 * [r1.y*r1.y -r1.x*r1.y] + invI2 * [r1.y*r1.y -r1.x*r1.y]
                //        [    0     1/m1+1/m2]           [-r1.x*r1.y r1.x*r1.x]           [-r1.x*r1.y r1.x*r1.x]
                var invMass = b.m_invMass;
                var invI = b.m_invI;

                //b2Mat22 this.K1;
                this.K1.col1.x = invMass;        this.K1.col2.x = 0.0;
                this.K1.col1.y = 0.0;                this.K1.col2.y = invMass;

                //b2Mat22 this.K2;
                this.K2.col1.x =  invI * rY * rY;        this.K2.col2.x = -invI * rX * rY;
                this.K2.col1.y = -invI * rX * rY;        this.K2.col2.y =  invI * rX * rX;

                //b2Mat22 this.K = this.K1 + this.K2;
                this.K.SetM(this.K1);
                this.K.AddM(this.K2);
                this.K.col1.x += this.m_gamma;
                this.K.col2.y += this.m_gamma;

                //this.m_ptpMass = this.K.Invert();
                this.K.Invert(this.m_ptpMass);

                //this.m_C = b.m_position + r - this.m_target;
                this.m_C.x = b.m_position.x + rX - this.m_target.x;
                this.m_C.y = b.m_position.y + rY - this.m_target.y;

                // Cheat with some damping
                b.m_angularVelocity *= 0.98;

                // Warm starting.
                //b2Vec2 P = this.m_impulse;
                var PX = this.m_impulse.x;
                var PY = this.m_impulse.y;
                //b.m_linearVelocity += invMass * P;
                b.m_linearVelocity.x += invMass * PX;
                b.m_linearVelocity.y += invMass * PY;
                //b.m_angularVelocity += invI * b2Cross(r, P);
                b.m_angularVelocity += invI * (rX * PY - rY * PX);
        },

        SolveVelocityConstraints: function(step){
                var body = this.m_body2;

                var tMat;

                // Compute the effective mass matrix.
                //b2Vec2 r = b2Mul(body.m_R, this.m_localAnchor);
                tMat = body.m_R;
                var rX = tMat.col1.x * this.m_localAnchor.x + tMat.col2.x * this.m_localAnchor.y;
                var rY = tMat.col1.y * this.m_localAnchor.x + tMat.col2.y * this.m_localAnchor.y;

                // Cdot = v + cross(w, r)
                //b2Vec2 Cdot = body->m_linearVelocity + b2Cross(body->m_angularVelocity, r);
                var CdotX = body.m_linearVelocity.x + (-body.m_angularVelocity * rY);
                var CdotY = body.m_linearVelocity.y + (body.m_angularVelocity * rX);
                //b2Vec2 impulse = -b2Mul(this.m_ptpMass, Cdot + (this.m_beta * step->inv_dt) * this.m_C + this.m_gamma * this.m_impulse);
                tMat = this.m_ptpMass;
                var tX = CdotX + (this.m_beta * step.inv_dt) * this.m_C.x + this.m_gamma * this.m_impulse.x;
               
  *
  * This software is provided 'as-is', without any express or implied
  * warranty.  In no event will the authors be held liable for any damages
  * arising from the use of this software.
  * Permission is granted to anyone to use this software for any purpose,
  * including commercial applications, and to alter it and redistribute it
  * freely, subject to the following restrictions:
  * 1. The origin of this software must not be misrepresented; you must not
  * claim that you wrote the original software. If you use this software
  * in a product, an acknowledgment in the product documentation would be
  * appreciated but is not required.
  * 2. Altered source versions must be plainly marked, and must not be
  * misrepresented the original software.
  * 3. This notice may not be removed or altered from any source distribution.
  */
  
  // p = attached point, m = mouse point
  // C = p - m
  // Cdot = v
  //      = v + cross(w, r)
  // J = [I r_skew]
  // Identity used:
  // w k % (rx i + ry j) = w * (-ry i + rx j)
  
  var b2MouseJoint = Class.create();
  Object.extend(b2MouseJoint.prototype, b2Joint.prototype);
  Object.extend(b2MouseJoint.prototype, 
  {
          GetAnchor1: function(){
                  return this.m_target;
          },
          GetAnchor2: function(){
                  var tVec = b2Math.b2MulMV(this.m_body2.m_R, this.m_localAnchor);
                  tVec.Add(this.m_body2.m_position);
                  return tVec;
          },
  
          GetReactionForce: function(invTimeStep)
          {
                  //b2Vec2 F = invTimeStep * this.m_impulse;
                  var F = new b2Vec2();
                  F.SetV(this.m_impulse);
                  F.Multiply(invTimeStep);
                  return F;
          },
  
          GetReactionTorque: function(invTimeStep)
          {
                  //NOT_USED(invTimeStep);
                  return 0.0;
          },
  
          SetTarget: function(target){
                  this.m_body2.WakeUp();
                  this.m_target = target;
          },
  
          //--------------- Internals Below -------------------
  
          initialize: function(def){
                  // The constructor for b2Joint
                  // initialize instance variables for references
                  this.m_node1 = new b2JointNode();
                  this.m_node2 = new b2JointNode();
                  //
                  this.m_type = def.type;
                  this.m_prev = null;
                  this.m_next = null;
                  this.m_body1 = def.body1;
                  this.m_body2 = def.body2;
                  this.m_collideConnected = def.collideConnected;
                  this.m_islandFlag = false;
                  this.m_userData = def.userData;
                  //
  
                  // initialize instance variables for references
                  this.K = new b2Mat22();
                  this.K1 = new b2Mat22();
                  this.K2 = new b2Mat22();
                  this.m_localAnchor = new b2Vec2();
                  this.m_target = new b2Vec2();
                  this.m_impulse = new b2Vec2();
                  this.m_ptpMass = new b2Mat22();
                  this.m_C = new b2Vec2();
                  //
  
                  //super(def);
  
                  this.m_target.SetV(def.target);
                  //this.m_localAnchor = b2Math.b2MulTMV(this.m_body2.m_R, b2Math.SubtractVV( this.m_target, this.m_body2.m_position ) );
                  var tX = this.m_target.x - this.m_body2.m_position.x;
                  var tY = this.m_target.y - this.m_body2.m_position.y;
                  this.m_localAnchor.x = (tX * this.m_body2.m_R.col1.x + tY * this.m_body2.m_R.col1.y);
                  this.m_localAnchor.y = (tX * this.m_body2.m_R.col2.x + tY * this.m_body2.m_R.col2.y);
  
                  this.m_maxForce = def.maxForce;
                  this.m_impulse.SetZero();
  
                  var mass = this.m_body2.m_mass;
  
                  // Frequency
                  var omega = 2.0 * b2Settings.b2_pi * def.frequencyHz;
  
                  // Damping coefficient
                  var d = 2.0 * mass * def.dampingRatio * omega;
  
                  // Spring stiffness
                  var k = mass * omega * omega;
  
                  // magic formulas
                  this.m_gamma = 1.0 / (d + def.timeStep * k);
                  this.m_beta = def.timeStep * k / (d + def.timeStep * k);
          },
  
          // Presolve vars
          K: new b2Mat22(),
          K1: new b2Mat22(),
          K2: new b2Mat22(),
          PrepareVelocitySolver: function(){
                  var b = this.m_body2;
  
                  var tMat;
  
                  // Compute the effective mass matrix.
                  //b2Vec2 r = b2Mul(b.m_R, this.m_localAnchor);
                  tMat = b.m_R;
                  var rX = tMat.col1.x * this.m_localAnchor.x + tMat.col2.x * this.m_localAnchor.y;
                  var rY = tMat.col1.y * this.m_localAnchor.x + tMat.col2.y * this.m_localAnchor.y;
  
                  // this.K    = [(1/m1 + 1/m2) * eye(2) - skew(r1) * invI1 * skew(r1) - skew(r2) * invI2 * skew(r2)]
                  //      = [1/m1+1/m2     0    ] + invI1 * [r1.y*r1.y -r1.x*r1.y] + invI2 * [r1.y*r1.y -r1.x*r1.y]
                  //        [    0     1/m1+1/m2]           [-r1.x*r1.y r1.x*r1.x]           [-r1.x*r1.y r1.x*r1.x]
                  var invMass = b.m_invMass;
                  var invI = b.m_invI;
  
                  //b2Mat22 this.K1;
                  this.K1.col1.x = invMass;        this.K1.col2.x = 0.0;
                  this.K1.col1.y = 0.0;                this.K1.col2.y = invMass;
  
                  //b2Mat22 this.K2;
                  this.K2.col1.x =  invI * rY * rY;        this.K2.col2.x = -invI * rX * rY;
                  this.K2.col1.y = -invI * rX * rY;        this.K2.col2.y =  invI * rX * rX;
  
                  //b2Mat22 this.K = this.K1 + this.K2;
                  this.K.SetM(this.K1);
                  this.K.AddM(this.K2);
                  this.K.col1.x += this.m_gamma;
                  this.K.col2.y += this.m_gamma;
  
                  //this.m_ptpMass = this.K.Invert();
                  this.K.Invert(this.m_ptpMass);
  
                  //this.m_C = b.m_position + r - this.m_target;
                  this.m_C.x = b.m_position.x + rX - this.m_target.x;
                  this.m_C.y = b.m_position.y + rY - this.m_target.y;
  
                  // Cheat with some damping
                  b.m_angularVelocity *= 0.98;
  
                  // Warm starting.
                  //b2Vec2 P = this.m_impulse;
                  var PX = this.m_impulse.x;
                  var PY = this.m_impulse.y;
                  //b.m_linearVelocity += invMass * P;
                  b.m_linearVelocity.x += invMass * PX;
                  b.m_linearVelocity.y += invMass * PY;
                  //b.m_angularVelocity += invI * b2Cross(r, P);
                  b.m_angularVelocity += invI * (rX * PY - rY * PX);
          },
  
          SolveVelocityConstraints: function(step){
                  var body = this.m_body2;
  
                  var tMat;
  
                  // Compute the effective mass matrix.
                  //b2Vec2 r = b2Mul(body.m_R, this.m_localAnchor);
                  tMat = body.m_R;
                  var rX = tMat.col1.x * this.m_localAnchor.x + tMat.col2.x * this.m_localAnchor.y;
                  var rY = tMat.col1.y * this.m_localAnchor.x + tMat.col2.y * this.m_localAnchor.y;
  
                  // Cdot = v + cross(w, r)
                  //b2Vec2 Cdot = body->m_linearVelocity + b2Cross(body->m_angularVelocity, r);
                  var CdotX = body.m_linearVelocity.x + (-body.m_angularVelocity * rY);
                  var CdotY = body.m_linearVelocity.y + (body.m_angularVelocity * rX);
                  //b2Vec2 impulse = -b2Mul(this.m_ptpMass, Cdot + (this.m_beta * step->inv_dt) * this.m_C + this.m_gamma * this.m_impulse);
                  tMat = this.m_ptpMass;
                  var tX = CdotX + (this.m_beta * step.inv_dt) * this.m_C.x + this.m_gamma * this.m_impulse.x;
                  var tY = CdotY + (this.m_beta * step.inv_dt) * this.m_C.y + this.m_gamma * this.m_impulse.y;
                  var impulseX = -(tMat.col1.x * tX + tMat.col2.x * tY);
                  var impulseY = -(tMat.col1.y * tX + tMat.col2.y * tY);
  
                  var oldImpulseX = this.m_impulse.x;
                  var oldImpulseY = this.m_impulse.y;
                  //this.m_impulse += impulse;
                  this.m_impulse.x += impulseX;
                  this.m_impulse.y += impulseY;
                  var length = this.m_impulse.Length();
                  if (length > step.dt * this.m_maxForce)
                  {
                          //this.m_impulse *= step.dt * this.m_maxForce / length;
                          this.m_impulse.Multiply(step.dt * this.m_maxForce / length);
                  }
                  //impulse = this.m_impulse - oldImpulse;
                  impulseX = this.m_impulse.x - oldImpulseX;
                  impulseY = this.m_impulse.y - oldImpulseY;
  
                  //body.m_linearVelocity += body->m_invMass * impulse;
                  body.m_linearVelocity.x += body.m_invMass * impulseX;
                  body.m_linearVelocity.y += body.m_invMass * impulseY;
                  //body.m_angularVelocity += body->m_invI * b2Cross(r, impulse);
                  body.m_angularVelocity += body.m_invI * (rX * impulseY - rY * impulseX);
          },
          SolvePositionConstraints: function(){
                  return true;
          },
  
          m_localAnchor: new b2Vec2(),
          m_target: new b2Vec2(),
          m_impulse: new b2Vec2(),
  
          m_ptpMass: new b2Mat22(),
          m_C: new b2Vec2(),
          m_maxForce: null,
          m_beta: null,
          m_gamma: null});
  
  


(C) Æliens 20/2/2008

You may not copy or print any of this material without explicit permission of the author or the publisher. In case of other copyright issues, contact the author.