// The Boid class class Boid { PVector loc; PVector vel; PVector acc; float r; float maxforce; // Maximum steering force float maxspeed; // Maximum speed Boid(PVector l, float ms, float mf) { acc = new PVector(0,0); vel = new PVector(random(-1,1),random(-1,1)); loc = l.get(); r = 2.0; maxspeed = ms; maxforce = mf; } void run(ArrayList boids) { flock(boids); update(); borders(); render(); } // We accumulate a new acceleration each time based on three rules void flock(ArrayList boids) { PVector sep = separate(boids); // Separation PVector ali = align(boids); // Alignment PVector coh = cohesion(boids); // Cohesion // Arbitrarily weight these forces sep.mult(2.0); ali.mult(1.0); coh.mult(1.0); // Add the force vectors to acceleration acc.add(sep); acc.add(ali); acc.add(coh); } // Method to update location void update() { // Update velocity vel.add(acc); // Limit speed vel.limit(maxspeed); loc.add(vel); // Reset accelertion to 0 each cycle acc.mult(0); } void seek(PVector target) { acc.add(steer(target,false)); } void arrive(PVector target) { acc.add(steer(target,true)); } // A method that calculates a steering vector towards a target // Takes a second argument, if true, it slows down as it approaches the target PVector steer(PVector target, boolean slowdown) { PVector steer; // The steering vector PVector desired = target.sub(target,loc); // A vector pointing from the location to the target float d = desired.mag(); // Distance from the target is the magnitude of the vector // If the distance is greater than 0, calc steering (otherwise return zero vector) if (d > 0) { // Normalize desired desired.normalize(); // Two options for desired vector magnitude (1 -- based on distance, 2 -- maxspeed) if ((slowdown) && (d < 100.0)) desired.mult(maxspeed*(d/100.0)); // This damping is somewhat arbitrary else desired.mult(maxspeed); // Steering = Desired minus Velocity steer = target.sub(desired,vel); steer.limit(maxforce); // Limit to maximum steering force } else { steer = new PVector(0,0); } return steer; } void render() { // Draw a triangle rotated in the direction of velocity float theta = vel.heading2D() + PI/2; fill(200,100); stroke(255); pushMatrix(); translate(loc.x,loc.y); rotate(theta); beginShape(TRIANGLES); vertex(0, -r*2); vertex(-r, r*2); vertex(r, r*2); endShape(); popMatrix(); } // Wraparound void borders() { if (loc.x < -r) loc.x = width+r; if (loc.y < -r) loc.y = height+r; if (loc.x > width+r) loc.x = -r; if (loc.y > height+r) loc.y = -r; } // Separation // Method checks for nearby boids and steers away PVector separate (ArrayList boids) { float desiredseparation = 25.0; PVector sum = new PVector(0,0,0); int count = 0; // For every boid in the system, check if it's too close for (int i = 0 ; i < boids.size(); i++) { Boid other = (Boid) boids.get(i); float d = loc.dist(other.loc); // If the distance is greater than 0 and less than an arbitrary amount (0 when you are yourself) if ((d > 0) && (d < desiredseparation)) { // Calculate vector pointing away from neighbor PVector diff = loc.sub(loc,other.loc); diff.normalize(); diff.div(d); // Weight by distance sum.add(diff); count++; // Keep track of how many } } // Average -- divide by how many if (count > 0) { sum.div((float)count); } return sum; } // Alignment // For every nearby boid in the system, calculate the average velocity PVector align (ArrayList boids) { float neighbordist = 50.0; PVector sum = new PVector(0,0,0); int count = 0; for (int i = 0 ; i < boids.size(); i++) { Boid other = (Boid) boids.get(i); float d = loc.dist(other.loc); if ((d > 0) && (d < neighbordist)) { sum.add(other.vel); count++; } } if (count > 0) { sum.div((float)count); sum.limit(maxforce); } return sum; } // Cohesion // For the average location (i.e. center) of all nearby boids, calculate steering vector towards that location PVector cohesion (ArrayList boids) { float neighbordist = 50.0; PVector sum = new PVector(0,0); // Start with empty vector to accumulate all locations int count = 0; for (int i = 0 ; i < boids.size(); i++) { Boid other = (Boid) boids.get(i); float d = loc.dist(other.loc); if ((d > 0) && (d < neighbordist)) { sum.add(other.loc); // Add location count++; } } if (count > 0) { sum.div((float)count); return steer(sum,false); // Steer towards the location } return sum; } }