
A. Web3D – VRML/X3D

Nowadays PCs allow for powerful 3D graphics. 3D graphics are, until now, mainly
used by dedicated applications such as CAD/CAM and, not to forget, games. It
is to be expected that 3D graphics will also manifest themselves in other types of
applications, including web applications. In the Multimedia Authoring I course,
students are required to develop such applications:

Multimedia Authoring I – Web3D/VRML

• product demo – with descriptive information and animation(s)

• infotainment VR – in the areas of Culture, Commerce or Entertainment

The latter assignment, the infotainment VR, may result in either a virtual mu-
seum, a game, or an extended product demo with a suitable environment and
interaction facilities.

The purpose of the Web3D/VRML course is not so much the modeling of 3D
objects per s&eaigu; but rather the organisation of 3D material (using the PROTO
construct) and the development of suitable interaction mechanisms and guided
tours (using sensors and scripts). This course, as well as the other multimedia
authoring course is focussed on a programmatic approach to 3D. Hence, no
advanced tools are used. Not because they are too expensive (which is also true),
but because students should learn the basics first!

Why did we choose for Web3D, and more in particular VRML? Some argue
that VRML is slow. Moreover, navigation in VRML is not altogether pleasant.
Why not a (more native) format such as OpenGL? The answer is simply that
VRML offers the right level of abstraction for modeling and programming 3D
worlds. OpenGL does not. In the timespan of one month, VRML allows you to
develop rather interesting and complex worlds, whereas with OpenGL (using C
or C++) you would probably still be stuck with very simple scenes.

As concerns the focus on Web3D, I simply state that delivery of (rich media)
3D content is the way to go. The web is our global information repository, also
for multimedia and 3D content. And we should be optimistic about performance
issues. Already Web3D is of much better quality than the native 3D in the
beginning of the 1990s.

What will be the future of Web3D and VRML? I don’t know. As concerns
VRML, the 3D modeling concepts and programming model underlying VRML
are sufficiently established (as they are also part of X3D) that VRML will very

1

2 Web3D – VRML/X3D

likely survive in the future. The future of Web3D will depend on the success of
the Web3D consortium of which a mission statement is given below.

www.web3d.org

The term Web3D describes any programming or descriptive language that
can be used to deliver interactive 3D objects and worlds across the internet.
This includes open languages such as Virtual Reality Modeling Language
(VRML), Java3D and X3D (under development) - also any proprietary
languages that have been developed for the same purpose come under the
umbrella of Web3D. The Web3D Repository is an impartial, comprehensive,
community resource for the dissemination of information relating to Web3D
and is maintained by the Web3D Consortium.

More in particular, the Web3D repository includes the X3D SDK to promote the
adoption of X3D in industry and academia.

X3D SDK

This comprehensive suite of X3D and VRML software is available online
at sdk.web3d.org and provides a huge range of viewers, content, tools, ap-
plications, and source code. The primary purpose of the SDK is to enable
further development of X3D-aware applications and content.

However, before downloading like crazy, you’d better get acquainted with the
major concepts of VRML first. After all, VRML has been around for some time
and VRML technology, although not perfect, seems to be rather stable.

Virtual Reality Modeling Language

VRML is a scengraph-based graphical format. A scenegraph is a tree-like struc-
ture that contains nodes in a hierarchical fashion. The scenegraph is a description
of the static aspects of a 3D world or scene. The dynamic aspects of a scene are
effected by routing events between nodes. When routing events, the hierarchical
structure of the scenegraph is of no importance. Assuming compatible node types,
event routing can occur between arbitrary nodes.

Below, an overview is given of the types of nodes supported by VRML as
well as a number of browser-specific extensions introduced by blaxxun. The nodes
that you might need for a first assignment are indicated by an asteriks. Additional
information on the individual nodes is available in the online version.

abstraction and grouping

• abstraction – Inline Switch*

• grouping – Billboard, Collision Group, Transform*

• scene – Background LOD NavigationInfo Viewpoint* WorldInfo

geometry and appearance

• geometry – Box* Cone Coordinate Cylinder ElevationGrid Extrusion Indexed-
FaceSet IndexedLineSet Normal PointSet Shape* Sphere*

Web3D – VRML/X3D 3

• appearance – Appearance* Color* Imagetexture* Material* MovieTexture Pic-
tureTexture TextureCoordinate TextureTransform

• text – FontStyle Text*

interaction and behavior

• sensors – Anchor CylinderSensor PlaneSensor ProximitySensor SphereSensor Time-
Sensor* TouchSensor* VisibilitySensor

• behavior – Script*

• interpolators – ColorInterpolator* CoordinateInterpolator NormalInterpolator
OrientationInterpolator* PositionInterpolator* ScalarInterpolator

special effects

• sound – AudioClip Sound

• light – DirectionalLight Fog PointLight Spotlight

extensions

• blaxxun – Camera DeviceSensor Event KeySensor Layer2D Layer3D MouseSensor
MultiTexture Particles TextureCoordGen

Not mentioned in this overview is the PROTO facility and the DEF/USE mech-
anism. The PROTO facility allows for defining nodes, by declaring an interface
and a body implementing the node. Once a PROTO definition is given, instances
of the PROTO can be created, in the same way as with built-in nodes. The
DEF/USE maechanism may be applied for routing events as well as the reuse of
fragments of code. Beware, however, that reuse using USE amounts to sharing
parts of the scenegraph. As a consequence, one little change might be visible
wherever that particular fragment is reused. In contrast, multiple instances of a
PROTO are independent of eachother.

3D slides – the code

As you may have discovered, the material in this book is also available in the form
of slides. Not Powerpoint slides but 3D slides, using VRML, with occasionally
some graphic effects or 3D objects. At the Web3D Symposium 2002, I was asked
What is the secret of the slides?. Well, there is no secret. Basically, it is just a
collection of PROTOs for displaying text in VRML.1

protos

• slideset – container for slides

• slide – container for text and objects

• slide – container for lines of text

• line – container for text

• break – empty text

1 The PROTOs were initially developed by Alex van Ballegooij, who also did the majority
of the coding of an extended collection of PROTOs.

4 Web3D – VRML/X3D

Note that for displaying 3D objects in a slide, we need no specific PROTO.
Before looking at the PROTO for a set of slides, let’s look at the slide PROTO.

It is surprisingly simple.
slide

PROTO slide [
exposedField SFVec3f translation 0 0 15
exposedField SFRotation rotation 0 1 0 0
exposedField SFVec3f scale 1 1 1
exposedField MFNode children []

] {
Transform {

children IS children
translation IS translation
rotation IS rotation
scale IS scale

}
}

The slide PROTO defines an interface which may be used to perform spatial
transformations on the slide, like translation, rotation and scaling. The interface
also includes a field to declare the content of the slide, that is text or (arbitrary)
3D objects.

The interface of the slideset PROTO allows for declaring which slides belong
to the set of slides.

slideset

PROTO slideset [
exposedField SFInt32 visible 0
exposedField MFNode slides []
eventIn SFInt32 next

] {
DEF select Switch {

choice IS slides
whichChoice IS visible

}

Script {
...
}

}

Apart from the visible field, which may be used to start a presentation with
another slide than the first one (zero being the first index in the array of slides),
the slideset PROTO interface also contains a so-called eventIn named next to
proceed to the next slide.

To select between the different slides a Switch node is used, which is controlled
by a Script. The code of the script is given below.

Web3D – VRML/X3D 5

script

Script {
directOutput TRUE
eventIn SFInt32 next IS next
field SFInt32 slide IS visible
field SFNode select USE select
field MFNode slides []
url "javascript:
function next(value) {
slides = select.choice;
Browser.print(’=’ + slide + ’ ’ + slides.length);
if (slide >= (slides.length-1)) slide = 0;
else slide += 1;
select.whichChoice = slide;
}"
}

In the interface of the script, we see both the use of IS and USE to connect the
(local) script fields to the scenegraph. The function next, that implements the
corresponding event, simply traverses through the slides, one step at a time, by
assigning a value to the whichChoice field of the Switch.

example As an example of applying the slide PROTOs, look at the fragment
below.

example

DEF slides slideset {
slides [

slide {
children [

text {
lines [
line { string ["What about the slide format?"] }
break { }
line { string ["yeh, what about it?"] }
break { }

] # lines
}
Sphere { radius 0.5 }

] # children
} # slide 1

slide { # 2
children [

Sphere { radius 0.5 }
]

} # slide 2
] # slides
}

6 Web3D – VRML/X3D

In the online version you may see how it works. (Not too good at this stage,
though, since we have not included a proper background and viewpoint.)

For traversing between slides, we need a mechanism to send the next event to
the slideset instance. In the current example, a timer has been used, defined by
the code below.

timer

DEF time TimeSensor { loop TRUE cycleInterval 10 }
DEF script Script {
eventIn SFTime pulse
eventOut SFInt32 next
url "javascript: function pulse(value) { next = 1; }"
}
ROUTE time.cycleTime TO script.pulse
ROUTE script.next TO slides.next

Obviously, better interaction facilities are needed here, for example a simple
button (which may be implemented using a TouchSensor and a Sphere) to proceed
to the next slide. These extensions, as well as the inclusion of a background and
viewpoint, are left as an exercise.

Naturally, the actual PROTOs used for the slides in this book are a bit more
complex than the collection of PROTOs presented here. And, also the way slides
themselves, that is the content, is different from what we have shown in the
example. In appendix ?? we will see how we can use XML to encode (the content)
of slides. However, we will deploy the PROTOs defined here to get them to work.

