//============================================================================= // RobotArmDemo.cpp by Frank Luna (C) 2005 All Rights Reserved. // // Demonstrates how to animate mesh hierarchies. // // Controls: Use mouse to orbit and zoom; use the 'W' and 'S' keys to // alter the height of the camera. // Use '1', '2', '3', '4', and '5' keys to select the bone // to rotate. Use the 'A' and 'D' keys to rotate the bone. //============================================================================= #include "d3dApp.h" #include "DirectInput.h" #include #include "GfxStats.h" #include #include "Vertex.h" struct BoneFrame { // Note: The root bone's "parent" frame is the world space. D3DXVECTOR3 pos; // Relative to parent frame. float zAngle; // Relative to parent frame. D3DXMATRIX toParentXForm; D3DXMATRIX toWorldXForm; }; class RobotArmDemo : public D3DApp { public: RobotArmDemo(HINSTANCE hInstance, std::string winCaption, D3DDEVTYPE devType, DWORD requestedVP); ~RobotArmDemo(); bool checkDeviceCaps(); void onLostDevice(); void onResetDevice(); void updateScene(float dt); void drawScene(); // Helper methods void buildFX(); void buildViewMtx(); void buildProjMtx(); void buildBoneWorldTransforms(); private: GfxStats* mGfxStats; // We only need one bone mesh. To draw several bones we just draw the // same mesh several times, but with a different transformation // applied so that it is drawn in a different place. ID3DXMesh* mBoneMesh; std::vector mMtrl; std::vector mTex; // Our robot arm has five bones. static const int NUM_BONES = 5; BoneFrame mBones[NUM_BONES]; // Index into the bone array to the currently selected bone. // The user can select a bone and rotate it. int mBoneSelected; IDirect3DTexture9* mWhiteTex; ID3DXEffect* mFX; D3DXHANDLE mhTech; D3DXHANDLE mhWVP; D3DXHANDLE mhWorldInvTrans; D3DXHANDLE mhEyePos; D3DXHANDLE mhWorld; D3DXHANDLE mhTex; D3DXHANDLE mhMtrl; D3DXHANDLE mhLight; DirLight mLight; float mCameraRotationY; float mCameraRadius; float mCameraHeight; D3DXMATRIX mWorld; D3DXMATRIX mView; D3DXMATRIX mProj; }; int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE prevInstance, PSTR cmdLine, int showCmd) { // Enable run-time memory check for debug builds. #if defined(DEBUG) | defined(_DEBUG) _CrtSetDbgFlag( _CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF ); #endif RobotArmDemo app(hInstance, "Robot Arm Demo", D3DDEVTYPE_HAL, D3DCREATE_HARDWARE_VERTEXPROCESSING); gd3dApp = &app; DirectInput di(DISCL_NONEXCLUSIVE|DISCL_FOREGROUND, DISCL_NONEXCLUSIVE|DISCL_FOREGROUND); gDInput = &di; return gd3dApp->run(); } RobotArmDemo::RobotArmDemo(HINSTANCE hInstance, std::string winCaption, D3DDEVTYPE devType, DWORD requestedVP) : D3DApp(hInstance, winCaption, devType, requestedVP) { if(!checkDeviceCaps()) { MessageBox(0, "checkDeviceCaps() Failed", 0, 0); PostQuitMessage(0); } InitAllVertexDeclarations(); mGfxStats = new GfxStats(); // Initialize Camera Settings mCameraRadius = 9.0f; mCameraRotationY = 1.5f * D3DX_PI; mCameraHeight = 0.0f; // Setup a directional light. mLight.dirW = D3DXVECTOR3(0.0f, 1.0f, 2.0f); D3DXVec3Normalize(&mLight.dirW, &mLight.dirW); mLight.ambient = D3DXCOLOR(0.8f, 0.8f, 0.8f, 1.0f); mLight.diffuse = D3DXCOLOR(0.8f, 0.8f, 0.8f, 1.0f); mLight.spec = D3DXCOLOR(0.8f, 0.8f, 0.8f, 1.0f); // Load the bone .X file mesh. LoadXFile("bone.x", &mBoneMesh, mMtrl, mTex); D3DXMatrixIdentity(&mWorld); // Create the white dummy texture. HR(D3DXCreateTextureFromFile(gd3dDevice, "whitetex.dds", &mWhiteTex)); // Initialize the bones relative to their parent frame. // The root is special--its parent frame is the world space. // As such, its position and angle are ignored--its // toWorldXForm should be set explicitly (that is, the world // transform of the entire skeleton). // // *------*------*------*------ // 0 1 2 3 for(int i = 1; i < NUM_BONES; ++i) // Ignore root. { // Describe each bone frame relative to its parent frame. mBones[i].pos = D3DXVECTOR3(2.0f, 0.0f, 0.0f); mBones[i].zAngle = 0.0f; } // Root frame at center of world. mBones[0].pos = D3DXVECTOR3(0.0f, 0.0f, 0.0f); mBones[0].zAngle = 0.0f; // Start off with the last (leaf) bone: mBoneSelected = NUM_BONES-1; mGfxStats->addVertices(mBoneMesh->GetNumVertices() * NUM_BONES); mGfxStats->addTriangles(mBoneMesh->GetNumFaces() * NUM_BONES); buildFX(); onResetDevice(); } RobotArmDemo::~RobotArmDemo() { delete mGfxStats; ReleaseCOM(mFX); ReleaseCOM(mBoneMesh); for(int i = 0; i < mTex.size(); ++i) ReleaseCOM(mTex[i]); ReleaseCOM(mWhiteTex); DestroyAllVertexDeclarations(); } bool RobotArmDemo::checkDeviceCaps() { D3DCAPS9 caps; HR(gd3dDevice->GetDeviceCaps(&caps)); // Check for vertex shader version 2.0 support. if( caps.VertexShaderVersion < D3DVS_VERSION(2, 0) ) return false; // Check for pixel shader version 2.0 support. if( caps.PixelShaderVersion < D3DPS_VERSION(2, 0) ) return false; return true; } void RobotArmDemo::onLostDevice() { mGfxStats->onLostDevice(); HR(mFX->OnLostDevice()); } void RobotArmDemo::onResetDevice() { mGfxStats->onResetDevice(); HR(mFX->OnResetDevice()); // The aspect ratio depends on the backbuffer dimensions, which can // possibly change after a reset. So rebuild the projection matrix. buildProjMtx(); } void RobotArmDemo::updateScene(float dt) { mGfxStats->update(dt); // Get snapshot of input devices. gDInput->poll(); // Check input. if( gDInput->keyDown(DIK_W) ) mCameraHeight += 25.0f * dt; if( gDInput->keyDown(DIK_S) ) mCameraHeight -= 25.0f * dt; // Allow the user to select a bone (zero based index) if( gDInput->keyDown(DIK_1) ) mBoneSelected = 0; if( gDInput->keyDown(DIK_2) ) mBoneSelected = 1; if( gDInput->keyDown(DIK_3) ) mBoneSelected = 2; if( gDInput->keyDown(DIK_4) ) mBoneSelected = 3; if( gDInput->keyDown(DIK_5) ) mBoneSelected = 4; // Allow the user to rotate a bone. if( gDInput->keyDown(DIK_A) ) mBones[mBoneSelected].zAngle += 1.0f * dt; if( gDInput->keyDown(DIK_D) ) mBones[mBoneSelected].zAngle -= 1.0f * dt; // If we rotate over 360 degrees, just roll back to 0 if( fabsf(mBones[mBoneSelected].zAngle) >= 2.0f*D3DX_PI) mBones[mBoneSelected].zAngle = 0.0f; // Divide by 50 to make mouse less sensitive. mCameraRotationY += gDInput->mouseDX() / 100.0f; mCameraRadius += gDInput->mouseDY() / 25.0f; // If we rotate over 360 degrees, just roll back to 0 if( fabsf(mCameraRotationY) >= 2.0f * D3DX_PI ) mCameraRotationY = 0.0f; // Don't let radius get too small. if( mCameraRadius < 2.0f ) mCameraRadius = 2.0f; // The camera position/orientation relative to world space can // change every frame based on input, so we need to rebuild the // view matrix every frame with the latest changes. buildViewMtx(); } void RobotArmDemo::drawScene() { // Clear the backbuffer and depth buffer. HR(gd3dDevice->Clear(0, 0, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER, 0xffffffff, 1.0f, 0)); HR(gd3dDevice->BeginScene()); HR(mFX->SetValue(mhLight, &mLight, sizeof(DirLight))); HR(mFX->SetTechnique(mhTech)); UINT numPasses = 0; HR(mFX->Begin(&numPasses, 0)); HR(mFX->BeginPass(0)); // Build the world transforms for each bone, then render them. buildBoneWorldTransforms(); D3DXMATRIX T; D3DXMatrixTranslation(&T, -NUM_BONES, 0.0f, 0.0f); for(int i = 0; i < NUM_BONES; ++i) { // Append the transformation with a slight translation to better // center the skeleton at the center of the scene. mWorld = mBones[i].toWorldXForm * T; HR(mFX->SetMatrix(mhWVP, &(mWorld*mView*mProj))); D3DXMATRIX worldInvTrans; D3DXMatrixInverse(&worldInvTrans, 0, &mWorld); D3DXMatrixTranspose(&worldInvTrans, &worldInvTrans); HR(mFX->SetMatrix(mhWorldInvTrans, &worldInvTrans)); HR(mFX->SetMatrix(mhWorld, &mWorld)); for(int j = 0; j < mMtrl.size(); ++j) { HR(mFX->SetValue(mhMtrl, &mMtrl[j], sizeof(Mtrl))); // If there is a texture, then use. if(mTex[j] != 0) { HR(mFX->SetTexture(mhTex, mTex[j])); } // But if not, then set a pure white texture. When the texture color // is multiplied by the color from lighting, it is like multiplying by // 1 and won't change the color from lighting. else { HR(mFX->SetTexture(mhTex, mWhiteTex)); } HR(mFX->CommitChanges()); HR(mBoneMesh->DrawSubset(j)); } } HR(mFX->EndPass()); HR(mFX->End()); mGfxStats->display(); HR(gd3dDevice->EndScene()); // Present the backbuffer. HR(gd3dDevice->Present(0, 0, 0, 0)); } void RobotArmDemo::buildFX() { // Create the FX from a .fx file. ID3DXBuffer* errors = 0; HR(D3DXCreateEffectFromFile(gd3dDevice, "PhongDirLtTex.fx", 0, 0, D3DXSHADER_DEBUG, 0, &mFX, &errors)); if( errors ) MessageBox(0, (char*)errors->GetBufferPointer(), 0, 0); // Obtain handles. mhTech = mFX->GetTechniqueByName("PhongDirLtTexTech"); mhWVP = mFX->GetParameterByName(0, "gWVP"); mhWorldInvTrans = mFX->GetParameterByName(0, "gWorldInvTrans"); mhMtrl = mFX->GetParameterByName(0, "gMtrl"); mhLight = mFX->GetParameterByName(0, "gLight"); mhEyePos = mFX->GetParameterByName(0, "gEyePosW"); mhWorld = mFX->GetParameterByName(0, "gWorld"); mhTex = mFX->GetParameterByName(0, "gTex"); } void RobotArmDemo::buildViewMtx() { float x = mCameraRadius * cosf(mCameraRotationY); float z = mCameraRadius * sinf(mCameraRotationY); D3DXVECTOR3 pos(x, mCameraHeight, z); D3DXVECTOR3 target(0.0f, 0.0f, 0.0f); D3DXVECTOR3 up(0.0f, 1.0f, 0.0f); D3DXMatrixLookAtLH(&mView, &pos, &target, &up); HR(mFX->SetValue(mhEyePos, &pos, sizeof(D3DXVECTOR3))); } void RobotArmDemo::buildProjMtx() { float w = (float)md3dPP.BackBufferWidth; float h = (float)md3dPP.BackBufferHeight; D3DXMatrixPerspectiveFovLH(&mProj, D3DX_PI * 0.25f, w/h, 1.0f, 5000.0f); } void RobotArmDemo::buildBoneWorldTransforms() { // First, construct the transformation matrix that transforms // the ith bone into the coordinate system of its parent. D3DXMATRIX R, T; D3DXVECTOR3 p; for(int i = 0; i < NUM_BONES; ++i) { p = mBones[i].pos; D3DXMatrixRotationZ(&R, mBones[i].zAngle); D3DXMatrixTranslation(&T, p.x, p.y, p.z); mBones[i].toParentXForm = R * T; } // Now, the ith object's world transform is given by its // to-parent transform, followed by its parent's to-parent transform, // followed by its grandparent's to-parent transform, and // so on, up to the root's to-parent transform. // For each bone... for(int i = 0; i < NUM_BONES; ++i) { // Initialize to identity matrix. D3DXMatrixIdentity(&mBones[i].toWorldXForm); // Combine W[i] = W[i]*W[i-1]*...*W[0]. for(int j = i; j >= 0; --j) { mBones[i].toWorldXForm *= mBones[j].toParentXForm; } } }