topical media & game development
graphic-directx-game-15-RobotArmDemo-RobotArmDemo.cpp / cpp
//=============================================================================
// RobotArmDemo.cpp by Frank Luna (C) 2005 All Rights Reserved.
//
// Demonstrates how to animate mesh hierarchies.
//
// Controls: Use mouse to orbit and zoom; use the 'W' and 'S' keys to
// alter the height of the camera.
// Use '1', '2', '3', '4', and '5' keys to select the bone
// to rotate. Use the 'A' and 'D' keys to rotate the bone.
//=============================================================================
include <d3dApp.h>
include <DirectInput.h>
include <crtdbg.h>
include <GfxStats.h>
include <list>
include <Vertex.h>
struct BoneFrame
{
// Note: The root bone's "parent" frame is the world space.
D3DXVECTOR3 pos; // Relative to parent frame.
float zAngle; // Relative to parent frame.
D3DXMATRIX toParentXForm;
D3DXMATRIX toWorldXForm;
};
class RobotArmDemo : public D3DApp
{
public:
RobotArmDemo(HINSTANCE hInstance, std::string winCaption, D3DDEVTYPE devType, DWORD requestedVP);
~RobotArmDemo();
bool checkDeviceCaps();
void onLostDevice();
void onResetDevice();
void updateScene(float dt);
void drawScene();
// Helper methods
void buildFX();
void buildViewMtx();
void buildProjMtx();
void buildBoneWorldTransforms();
private:
GfxStats* mGfxStats;
// We only need one bone mesh. To draw several bones we just draw the
// same mesh several times, but with a different transformation
// applied so that it is drawn in a different place.
ID3DXMesh* mBoneMesh;
std::vector<Mtrl> mMtrl;
std::vector<IDirect3DTexture9*> mTex;
// Our robot arm has five bones.
static const int NUM_BONES = 5;
BoneFrame mBones[NUM_BONES];
// Index into the bone array to the currently selected bone.
// The user can select a bone and rotate it.
int mBoneSelected;
IDirect3DTexture9* mWhiteTex;
ID3DXEffect* mFX;
D3DXHANDLE mhTech;
D3DXHANDLE mhWVP;
D3DXHANDLE mhWorldInvTrans;
D3DXHANDLE mhEyePos;
D3DXHANDLE mhWorld;
D3DXHANDLE mhTex;
D3DXHANDLE mhMtrl;
D3DXHANDLE mhLight;
DirLight mLight;
float mCameraRotationY;
float mCameraRadius;
float mCameraHeight;
D3DXMATRIX mWorld;
D3DXMATRIX mView;
D3DXMATRIX mProj;
};
int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE prevInstance,
PSTR cmdLine, int showCmd)
{
// Enable run-time memory check for debug builds.
#if defined(DEBUG) | defined(_DEBUG)
_CrtSetDbgFlag( _CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF );
#endif
RobotArmDemo app(hInstance, "Robot Arm Demo", D3DDEVTYPE_HAL, D3DCREATE_HARDWARE_VERTEXPROCESSING);
gd3dApp = &app;
DirectInput di(DISCL_NONEXCLUSIVE|DISCL_FOREGROUND, DISCL_NONEXCLUSIVE|DISCL_FOREGROUND);
gDInput = &di;
return gd3dApp->run();
}
RobotArmDemo::RobotArmDemo(HINSTANCE hInstance, std::string winCaption, D3DDEVTYPE devType, DWORD requestedVP)
: D3DApp(hInstance, winCaption, devType, requestedVP)
{
if(!checkDeviceCaps())
{
MessageBox(0, "checkDeviceCaps() Failed", 0, 0);
PostQuitMessage(0);
}
InitAllVertexDeclarations();
mGfxStats = new GfxStats();
// Initialize Camera Settings
mCameraRadius = 9.0f;
mCameraRotationY = 1.5f * D3DX_PI;
mCameraHeight = 0.0f;
// Setup a directional light.
mLight.dirW = D3DXVECTOR3(0.0f, 1.0f, 2.0f);
D3DXVec3Normalize(&mLight.dirW, &mLight.dirW);
mLight.ambient = D3DXCOLOR(0.8f, 0.8f, 0.8f, 1.0f);
mLight.diffuse = D3DXCOLOR(0.8f, 0.8f, 0.8f, 1.0f);
mLight.spec = D3DXCOLOR(0.8f, 0.8f, 0.8f, 1.0f);
// Load the bone .X file mesh.
LoadXFile(<bone.x>, &mBoneMesh, mMtrl, mTex);
D3DXMatrixIdentity(&mWorld);
// Create the white dummy texture.
HR(D3DXCreateTextureFromFile(gd3dDevice, "whitetex.dds", &mWhiteTex));
// Initialize the bones relative to their parent frame.
// The root is special--its parent frame is the world space.
// As such, its position and angle are ignored--its
// toWorldXForm should be set explicitly (that is, the world
// transform of the entire skeleton).
//
// *------*------*------*------
// 0 1 2 3
for(int i = 1; i < NUM_BONES; ++i) // Ignore root.
{
// Describe each bone frame relative to its parent frame.
mBones[i].pos = D3DXVECTOR3(2.0f, 0.0f, 0.0f);
mBones[i].zAngle = 0.0f;
}
// Root frame at center of world.
mBones[0].pos = D3DXVECTOR3(0.0f, 0.0f, 0.0f);
mBones[0].zAngle = 0.0f;
// Start off with the last (leaf) bone:
mBoneSelected = NUM_BONES-1;
mGfxStats->addVertices(mBoneMesh->GetNumVertices() * NUM_BONES);
mGfxStats->addTriangles(mBoneMesh->GetNumFaces() * NUM_BONES);
buildFX();
onResetDevice();
}
RobotArmDemo::~RobotArmDemo()
{
delete mGfxStats;
ReleaseCOM(mFX);
ReleaseCOM(mBoneMesh);
for(int i = 0; i < mTex.size(); ++i)
ReleaseCOM(mTex[i]);
ReleaseCOM(mWhiteTex);
DestroyAllVertexDeclarations();
}
bool RobotArmDemo::checkDeviceCaps()
{
D3DCAPS9 caps;
HR(gd3dDevice->GetDeviceCaps(&caps));
// Check for vertex shader version 2.0 support.
if( caps.VertexShaderVersion < D3DVS_VERSION(2, 0) )
return false;
// Check for pixel shader version 2.0 support.
if( caps.PixelShaderVersion < D3DPS_VERSION(2, 0) )
return false;
return true;
}
void RobotArmDemo::onLostDevice()
{
mGfxStats->onLostDevice();
HR(mFX->OnLostDevice());
}
void RobotArmDemo::onResetDevice()
{
mGfxStats->onResetDevice();
HR(mFX->OnResetDevice());
// The aspect ratio depends on the backbuffer dimensions, which can
// possibly change after a reset. So rebuild the projection matrix.
buildProjMtx();
}
void RobotArmDemo::updateScene(float dt)
{
mGfxStats->update(dt);
// Get snapshot of input devices.
gDInput->poll();
// Check input.
if( gDInput->keyDown(DIK_W) )
mCameraHeight += 25.0f * dt;
if( gDInput->keyDown(DIK_S) )
mCameraHeight -= 25.0f * dt;
// Allow the user to select a bone (zero based index)
if( gDInput->keyDown(DIK_1) ) mBoneSelected = 0;
if( gDInput->keyDown(DIK_2) ) mBoneSelected = 1;
if( gDInput->keyDown(DIK_3) ) mBoneSelected = 2;
if( gDInput->keyDown(DIK_4) ) mBoneSelected = 3;
if( gDInput->keyDown(DIK_5) ) mBoneSelected = 4;
// Allow the user to rotate a bone.
if( gDInput->keyDown(DIK_A) )
mBones[mBoneSelected].zAngle += 1.0f * dt;
if( gDInput->keyDown(DIK_D) )
mBones[mBoneSelected].zAngle -= 1.0f * dt;
// If we rotate over 360 degrees, just roll back to 0
if( fabsf(mBones[mBoneSelected].zAngle) >= 2.0f*D3DX_PI)
mBones[mBoneSelected].zAngle = 0.0f;
// Divide by 50 to make mouse less sensitive.
mCameraRotationY += gDInput->mouseDX() / 100.0f;
mCameraRadius += gDInput->mouseDY() / 25.0f;
// If we rotate over 360 degrees, just roll back to 0
if( fabsf(mCameraRotationY) >= 2.0f * D3DX_PI )
mCameraRotationY = 0.0f;
// Don't let radius get too small.
if( mCameraRadius < 2.0f )
mCameraRadius = 2.0f;
// The camera position/orientation relative to world space can
// change every frame based on input, so we need to rebuild the
// view matrix every frame with the latest changes.
buildViewMtx();
}
void RobotArmDemo::drawScene()
{
// Clear the backbuffer and depth buffer.
HR(gd3dDevice->Clear(0, 0, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER, 0xffffffff, 1.0f, 0));
HR(gd3dDevice->BeginScene());
HR(mFX->SetValue(mhLight, &mLight, sizeof(DirLight)));
HR(mFX->SetTechnique(mhTech));
UINT numPasses = 0;
HR(mFX->Begin(&numPasses, 0));
HR(mFX->BeginPass(0));
// Build the world transforms for each bone, then render them.
buildBoneWorldTransforms();
D3DXMATRIX T;
D3DXMatrixTranslation(&T, -NUM_BONES, 0.0f, 0.0f);
for(int i = 0; i < NUM_BONES; ++i)
{
// Append the transformation with a slight translation to better
// center the skeleton at the center of the scene.
mWorld = mBones[i].toWorldXForm * T;
HR(mFX->SetMatrix(mhWVP, &(mWorld*mView*mProj)));
D3DXMATRIX worldInvTrans;
D3DXMatrixInverse(&worldInvTrans, 0, &mWorld);
D3DXMatrixTranspose(&worldInvTrans, &worldInvTrans);
HR(mFX->SetMatrix(mhWorldInvTrans, &worldInvTrans));
HR(mFX->SetMatrix(mhWorld, &mWorld));
for(int j = 0; j < mMtrl.size(); ++j)
{
HR(mFX->SetValue(mhMtrl, &mMtrl[j], sizeof(Mtrl)));
// If there is a texture, then use.
if(mTex[j] != 0)
{
HR(mFX->SetTexture(mhTex, mTex[j]));
}
// But if not, then set a pure white texture. When the texture color
// is multiplied by the color from lighting, it is like multiplying by
// 1 and won't change the color from lighting.
else
{
HR(mFX->SetTexture(mhTex, mWhiteTex));
}
HR(mFX->CommitChanges());
HR(mBoneMesh->DrawSubset(j));
}
}
HR(mFX->EndPass());
HR(mFX->End());
mGfxStats->display();
HR(gd3dDevice->EndScene());
// Present the backbuffer.
HR(gd3dDevice->Present(0, 0, 0, 0));
}
void RobotArmDemo::buildFX()
{
// Create the FX from a .fx file.
ID3DXBuffer* errors = 0;
HR(D3DXCreateEffectFromFile(gd3dDevice, "PhongDirLtTex.fx",
0, 0, D3DXSHADER_DEBUG, 0, &mFX, &errors));
if( errors )
MessageBox(0, (char*)errors->GetBufferPointer(), 0, 0);
// Obtain handles.
mhTech = mFX->GetTechniqueByName("PhongDirLtTexTech");
mhWVP = mFX->GetParameterByName(0, "gWVP");
mhWorldInvTrans = mFX->GetParameterByName(0, "gWorldInvTrans");
mhMtrl = mFX->GetParameterByName(0, "gMtrl");
mhLight = mFX->GetParameterByName(0, "gLight");
mhEyePos = mFX->GetParameterByName(0, "gEyePosW");
mhWorld = mFX->GetParameterByName(0, "gWorld");
mhTex = mFX->GetParameterByName(0, "gTex");
}
void RobotArmDemo::buildViewMtx()
{
float x = mCameraRadius * cosf(mCameraRotationY);
float z = mCameraRadius * sinf(mCameraRotationY);
D3DXVECTOR3 pos(x, mCameraHeight, z);
D3DXVECTOR3 target(0.0f, 0.0f, 0.0f);
D3DXVECTOR3 up(0.0f, 1.0f, 0.0f);
D3DXMatrixLookAtLH(&mView, &pos, &target, &up);
HR(mFX->SetValue(mhEyePos, &pos, sizeof(D3DXVECTOR3)));
}
void RobotArmDemo::buildProjMtx()
{
float w = (float)md3dPP.BackBufferWidth;
float h = (float)md3dPP.BackBufferHeight;
D3DXMatrixPerspectiveFovLH(&mProj, D3DX_PI * 0.25f, w/h, 1.0f, 5000.0f);
}
void RobotArmDemo::buildBoneWorldTransforms()
{
// First, construct the transformation matrix that transforms
// the ith bone into the coordinate system of its parent.
D3DXMATRIX R, T;
D3DXVECTOR3 p;
for(int i = 0; i < NUM_BONES; ++i)
{
p = mBones[i].pos;
D3DXMatrixRotationZ(&R, mBones[i].zAngle);
D3DXMatrixTranslation(&T, p.x, p.y, p.z);
mBones[i].toParentXForm = R * T;
}
// Now, the ith object's world transform is given by its
// to-parent transform, followed by its parent's to-parent transform,
// followed by its grandparent's to-parent transform, and
// so on, up to the root's to-parent transform.
// For each bone...
for(int i = 0; i < NUM_BONES; ++i)
{
// Initialize to identity matrix.
D3DXMatrixIdentity(&mBones[i].toWorldXForm);
// Combine W[i] = W[i]*W[i-1]*...*W[0].
for(int j = i; j >= 0; --j)
{
mBones[i].toWorldXForm *= mBones[j].toParentXForm;
}
}
}
(C) Æliens
20/2/2008
You may not copy or print any of this material without explicit permission of the author or the publisher.
In case of other copyright issues, contact the author.