//============================================================================= // SolarSysDemo.cpp by Frank Luna (C) 2005 All Rights Reserved. // // Another demonstrates of how to animate mesh hierarchies. // // Controls: Use mouse to orbit and zoom; use the 'W' and 'S' keys to // alter the height of the camera. //============================================================================= #include "d3dApp.h" #include "DirectInput.h" #include #include "GfxStats.h" #include #include "Vertex.h" // We classify the objects in our scene as one of three types. enum SolarType { SUN, PLANET, MOON }; struct SolarObject { void set(SolarType type, D3DXVECTOR3 p, float yRot, int parentIndex, float s, IDirect3DTexture9* t) { typeID = type; pos = p; yAngle = yRot; parent = parentIndex; size = s; tex = t; } // Note: The root's "parent" frame is the world space. SolarType typeID; D3DXVECTOR3 pos; // Relative to parent frame. float yAngle; // Relative to parent frame. int parent; // Index to parent frame (-1 if root, i.e., no parent) float size; // Relative to world frame. IDirect3DTexture9* tex; D3DXMATRIX toParentXForm; D3DXMATRIX toWorldXForm; }; class SolarSysDemo : public D3DApp { public: SolarSysDemo(HINSTANCE hInstance, std::string winCaption, D3DDEVTYPE devType, DWORD requestedVP); ~SolarSysDemo(); bool checkDeviceCaps(); void onLostDevice(); void onResetDevice(); void updateScene(float dt); void drawScene(); // Helper methods void buildFX(); void buildViewMtx(); void buildProjMtx(); void buildObjectWorldTransforms(); void genSphericalTexCoords(); private: GfxStats* mGfxStats; // We only need one sphere mesh. To draw several solar objects we just // draw the same mesh several times, but with a different transformation // applied so that it is drawn in a different place. ID3DXMesh* mSphere; static const int NUM_OBJECTS = 10; SolarObject mObject[NUM_OBJECTS]; IDirect3DTexture9* mSunTex; IDirect3DTexture9* mPlanet1Tex; IDirect3DTexture9* mPlanet2Tex; IDirect3DTexture9* mPlanet3Tex; IDirect3DTexture9* mMoonTex; // Use a white material--the color will come from the texture. Mtrl mWhiteMtrl; DirLight mLight; ID3DXEffect* mFX; D3DXHANDLE mhTech; D3DXHANDLE mhWVP; D3DXHANDLE mhWorldInvTrans; D3DXHANDLE mhEyePos; D3DXHANDLE mhWorld; D3DXHANDLE mhTex; D3DXHANDLE mhMtrl; D3DXHANDLE mhLight; float mCameraRotationY; float mCameraRadius; float mCameraHeight; D3DXMATRIX mWorld; D3DXMATRIX mView; D3DXMATRIX mProj; }; int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE prevInstance, PSTR cmdLine, int showCmd) { // Enable run-time memory check for debug builds. #if defined(DEBUG) | defined(_DEBUG) _CrtSetDbgFlag( _CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF ); #endif SolarSysDemo app(hInstance, "Solar System Demo", D3DDEVTYPE_HAL, D3DCREATE_HARDWARE_VERTEXPROCESSING); gd3dApp = &app; DirectInput di(DISCL_NONEXCLUSIVE|DISCL_FOREGROUND, DISCL_NONEXCLUSIVE|DISCL_FOREGROUND); gDInput = &di; return gd3dApp->run(); } SolarSysDemo::SolarSysDemo(HINSTANCE hInstance, std::string winCaption, D3DDEVTYPE devType, DWORD requestedVP) : D3DApp(hInstance, winCaption, devType, requestedVP) { if(!checkDeviceCaps()) { MessageBox(0, "checkDeviceCaps() Failed", 0, 0); PostQuitMessage(0); } InitAllVertexDeclarations(); mGfxStats = new GfxStats(); // Initialize Camera Settings mCameraRadius = 25.0f; mCameraRotationY = 1.2f * D3DX_PI; mCameraHeight = 10.0f; // Setup a directional light. mLight.dirW = D3DXVECTOR3(0.0f, 1.0f, 2.0f); D3DXVec3Normalize(&mLight.dirW, &mLight.dirW); mLight.ambient = D3DXCOLOR(1.0f, 1.0f, 1.0f, 1.0f); mLight.diffuse = D3DXCOLOR(1.0f, 1.0f, 1.0f, 1.0f); mLight.spec = D3DXCOLOR(0.6f, 0.6f, 0.6f, 1.0f); // Create a sphere to represent a solar object. HR(D3DXCreateSphere(gd3dDevice, 1.0f, 30, 30, &mSphere, 0)); genSphericalTexCoords(); D3DXMatrixIdentity(&mWorld); // Create the textures. HR(D3DXCreateTextureFromFile(gd3dDevice, "sun.dds", &mSunTex)); HR(D3DXCreateTextureFromFile(gd3dDevice, "planet1.dds", &mPlanet1Tex)); HR(D3DXCreateTextureFromFile(gd3dDevice, "planet2.dds", &mPlanet2Tex)); HR(D3DXCreateTextureFromFile(gd3dDevice, "planet3.dds", &mPlanet3Tex)); HR(D3DXCreateTextureFromFile(gd3dDevice, "moon.dds", &mMoonTex)); // Initialize default white material. mWhiteMtrl.ambient = WHITE; mWhiteMtrl.diffuse = WHITE; mWhiteMtrl.spec = WHITE * 0.5f; mWhiteMtrl.specPower = 48.0f; //================================================== // Specify how the solar object frames are related. D3DXVECTOR3 pos[NUM_OBJECTS] = { D3DXVECTOR3(0.0f, 0.0f, 0.0f), D3DXVECTOR3(7.0f, 0.0f, 7.0f), D3DXVECTOR3(-9.0f, 0.0f, 0.0f), D3DXVECTOR3(7.0f, 0.0f, -6.0f), D3DXVECTOR3(5.0f, 0.0f, 0.0f), D3DXVECTOR3(-5.0f, 0.0f, 0.0f), D3DXVECTOR3(3.0f, 0.0f, 0.0f), D3DXVECTOR3(2.0f, 0.0f, -2.0f), D3DXVECTOR3(-2.0f, 0.0f, 0.0f), D3DXVECTOR3(0.0f, 0.0f, 2.0f) }; mObject[0].set(SUN, pos[0], 0.0f, -1, 2.5f, mSunTex); // Sun mObject[1].set(PLANET, pos[1], 0.0f, 0, 1.5f, mPlanet1Tex);// P1 mObject[2].set(PLANET, pos[2], 0.0f, 0, 1.2f, mPlanet2Tex);// P2 mObject[3].set(PLANET, pos[3], 0.0f, 0, 0.8f, mPlanet3Tex);// P3 mObject[4].set(MOON, pos[4], 0.0f, 1, 0.5f, mMoonTex); // M1P1 mObject[5].set(MOON, pos[5], 0.0f, 1, 0.5f, mMoonTex); // M2P1 mObject[6].set(MOON, pos[6], 0.0f, 2, 0.4f, mMoonTex); // M1P2 mObject[7].set(MOON, pos[7], 0.0f, 3, 0.3f, mMoonTex); // M1P3 mObject[8].set(MOON, pos[8], 0.0f, 3, 0.3f, mMoonTex); // M2P3 mObject[9].set(MOON, pos[9], 0.0f, 3, 0.3f, mMoonTex); // M3P3 //================================================== mGfxStats->addVertices(mSphere->GetNumVertices() * NUM_OBJECTS); mGfxStats->addTriangles(mSphere->GetNumFaces() * NUM_OBJECTS); buildFX(); onResetDevice(); } SolarSysDemo::~SolarSysDemo() { delete mGfxStats; ReleaseCOM(mFX); ReleaseCOM(mSphere); ReleaseCOM(mSunTex); ReleaseCOM(mPlanet1Tex); ReleaseCOM(mPlanet2Tex); ReleaseCOM(mPlanet3Tex); ReleaseCOM(mMoonTex); DestroyAllVertexDeclarations(); } bool SolarSysDemo::checkDeviceCaps() { D3DCAPS9 caps; HR(gd3dDevice->GetDeviceCaps(&caps)); // Check for vertex shader version 2.0 support. if( caps.VertexShaderVersion < D3DVS_VERSION(2, 0) ) return false; // Check for pixel shader version 2.0 support. if( caps.PixelShaderVersion < D3DPS_VERSION(2, 0) ) return false; return true; } void SolarSysDemo::onLostDevice() { mGfxStats->onLostDevice(); HR(mFX->OnLostDevice()); } void SolarSysDemo::onResetDevice() { mGfxStats->onResetDevice(); HR(mFX->OnResetDevice()); // The aspect ratio depends on the backbuffer dimensions, which can // possibly change after a reset. So rebuild the projection matrix. buildProjMtx(); } void SolarSysDemo::updateScene(float dt) { mGfxStats->update(dt); // Get snapshot of input devices. gDInput->poll(); // Check input. if( gDInput->keyDown(DIK_W) ) mCameraHeight += 25.0f * dt; if( gDInput->keyDown(DIK_S) ) mCameraHeight -= 25.0f * dt; // Divide by 50 to make mouse less sensitive. mCameraRotationY += gDInput->mouseDX() / 100.0f; mCameraRadius += gDInput->mouseDY() / 25.0f; // If we rotate over 360 degrees, just roll back to 0 if( fabsf(mCameraRotationY) >= 2.0f * D3DX_PI ) mCameraRotationY = 0.0f; // Don't let radius get too small. if( mCameraRadius < 2.0f ) mCameraRadius = 2.0f; // The camera position/orientation relative to world space can // change every frame based on input, so we need to rebuild the // view matrix every frame with the latest changes. buildViewMtx(); //================================================ // Animate the solar objects with respect to time. for(int i = 0; i < NUM_OBJECTS; ++i) { switch(mObject[i].typeID) { case SUN: mObject[i].yAngle += 1.5f * dt; break; case PLANET: mObject[i].yAngle += 2.0f * dt; break; case MOON: mObject[i].yAngle += 2.5f * dt; break; } // If we rotate over 360 degrees, just roll back to 0. if(mObject[i].yAngle >= 2.0f*D3DX_PI) mObject[i].yAngle = 0.0f; } } void SolarSysDemo::drawScene() { // Clear the backbuffer and depth buffer. HR(gd3dDevice->Clear(0, 0, D3DCLEAR_TARGET | D3DCLEAR_ZBUFFER, 0xff000000, 1.0f, 0)); HR(gd3dDevice->BeginScene()); HR(mFX->SetValue(mhLight, &mLight, sizeof(DirLight))); HR(mFX->SetTechnique(mhTech)); UINT numPasses = 0; HR(mFX->Begin(&numPasses, 0)); HR(mFX->BeginPass(0)); // Wrap the texture coordinates that get assigned to TEXCOORD2 in the pixel shader. HR(gd3dDevice->SetRenderState(D3DRS_WRAP2, D3DWRAP_U)); // Build the world transforms for each frame, then render them. buildObjectWorldTransforms(); D3DXMATRIX S; for(int i = 0; i < NUM_OBJECTS; ++i) { float s = mObject[i].size; D3DXMatrixScaling(&S, s, s, s); // Prefix the frame matrix with a scaling transformation to // size it relative to the world. mWorld = S * mObject[i].toWorldXForm; HR(mFX->SetMatrix(mhWVP, &(mWorld*mView*mProj))); D3DXMATRIX worldInvTrans; D3DXMatrixInverse(&worldInvTrans, 0, &mWorld); D3DXMatrixTranspose(&worldInvTrans, &worldInvTrans); HR(mFX->SetMatrix(mhWorldInvTrans, &worldInvTrans)); HR(mFX->SetMatrix(mhWorld, &mWorld)); HR(mFX->SetValue(mhMtrl, &mWhiteMtrl, sizeof(Mtrl))); HR(mFX->SetTexture(mhTex, mObject[i].tex)); HR(mFX->CommitChanges()); mSphere->DrawSubset(0); } HR(gd3dDevice->SetRenderState(D3DRS_WRAP2, 0)); HR(mFX->EndPass()); HR(mFX->End()); mGfxStats->display(); HR(gd3dDevice->EndScene()); // Present the backbuffer. HR(gd3dDevice->Present(0, 0, 0, 0)); } void SolarSysDemo::buildFX() { // Create the FX from a .fx file. ID3DXBuffer* errors = 0; HR(D3DXCreateEffectFromFile(gd3dDevice, "PhongDirLtTex.fx", 0, 0, D3DXSHADER_DEBUG, 0, &mFX, &errors)); if( errors ) MessageBox(0, (char*)errors->GetBufferPointer(), 0, 0); // Obtain handles. mhTech = mFX->GetTechniqueByName("PhongDirLtTexTech"); mhWVP = mFX->GetParameterByName(0, "gWVP"); mhWorldInvTrans = mFX->GetParameterByName(0, "gWorldInvTrans"); mhMtrl = mFX->GetParameterByName(0, "gMtrl"); mhLight = mFX->GetParameterByName(0, "gLight"); mhEyePos = mFX->GetParameterByName(0, "gEyePosW"); mhWorld = mFX->GetParameterByName(0, "gWorld"); mhTex = mFX->GetParameterByName(0, "gTex"); } void SolarSysDemo::buildViewMtx() { float x = mCameraRadius * cosf(mCameraRotationY); float z = mCameraRadius * sinf(mCameraRotationY); D3DXVECTOR3 pos(x, mCameraHeight, z); D3DXVECTOR3 target(0.0f, 0.0f, 0.0f); D3DXVECTOR3 up(0.0f, 1.0f, 0.0f); D3DXMatrixLookAtLH(&mView, &pos, &target, &up); HR(mFX->SetValue(mhEyePos, &pos, sizeof(D3DXVECTOR3))); } void SolarSysDemo::buildProjMtx() { float w = (float)md3dPP.BackBufferWidth; float h = (float)md3dPP.BackBufferHeight; D3DXMatrixPerspectiveFovLH(&mProj, D3DX_PI * 0.25f, w/h, 1.0f, 5000.0f); } void SolarSysDemo::buildObjectWorldTransforms() { // First, construct the transformation matrix that transforms // the ith bone into the coordinate system of its parent. D3DXMATRIX R, T; D3DXVECTOR3 p; for(int i = 0; i < NUM_OBJECTS; ++i) { p = mObject[i].pos; D3DXMatrixRotationY(&R, mObject[i].yAngle); D3DXMatrixTranslation(&T, p.x, p.y, p.z); mObject[i].toParentXForm = R * T; } // For each object... for(int i = 0; i < NUM_OBJECTS; ++i) { // Initialize to identity matrix. D3DXMatrixIdentity(&mObject[i].toWorldXForm); // The ith object's world transform is given by its // to-parent transform, followed by its parent's to-parent transform, // followed by its grandparent's to-parent transform, and // so on, up to the root's to-parent transform. int k = i; while( k != -1 ) { mObject[i].toWorldXForm *= mObject[k].toParentXForm; k = mObject[k].parent; } } } void SolarSysDemo::genSphericalTexCoords() { // D3DXCreate* functions generate vertices with position // and normal data. But for texturing, we also need // tex-coords. So clone the mesh to change the vertex // format to a format with tex-coords. D3DVERTEXELEMENT9 elements[64]; UINT numElements = 0; VertexPNT::Decl->GetDeclaration(elements, &numElements); ID3DXMesh* temp = 0; HR(mSphere->CloneMesh(D3DXMESH_SYSTEMMEM, elements, gd3dDevice, &temp)); ReleaseCOM(mSphere); // Now generate texture coordinates for each vertex. VertexPNT* vertices = 0; HR(temp->LockVertexBuffer(0, (void**)&vertices)); for(UINT i = 0; i < temp->GetNumVertices(); ++i) { // Convert to spherical coordinates. D3DXVECTOR3 p = vertices[i].pos; float theta = atan2f(p.z, p.x); float phi = acosf(p.y / sqrtf(p.x*p.x+p.y*p.y+p.z*p.z)); // Phi and theta give the texture coordinates, but are not in // the range [0, 1], so scale them into that range. float u = theta / (2.0f*D3DX_PI); float v = phi / D3DX_PI; // Save texture coordinates. vertices[i].tex0.x = u; vertices[i].tex0.y = v; } HR(temp->UnlockVertexBuffer()); // Clone back to a hardware mesh. HR(temp->CloneMesh(D3DXMESH_MANAGED | D3DXMESH_WRITEONLY, elements, gd3dDevice, &mSphere)); ReleaseCOM(temp); }