topical media & game development

talk show tell print

graphic-processing-site-examples-Topics-Cellular-Automata-Conway-Conway.pde / pde



  
Conway's Game of Life by Mike Davis. This program is a simple version of Conway's game of Life. A lit point turns off if there are fewer than two or more than three surrounding lit points. An unlit point turns on if there are exactly three lit neighbors. The 'density' parameter determines how much of the board will start out lit.

  
   
  int sx, sy; 
  float density = 0.5; 
  int[][][] world;
   
  void setup() 
  { 
    size(640, 200, P3D);
    frameRate(12);
    sx = width;
    sy = height;
    world = new int[sx][sy][2]; 
    stroke(255); 
     
    // Set random cells to 'on' 
    for (int i = 0; i < sx * sy * density; i++) { 
      world[(int)random(sx)][(int)random(sy)][1] = 1; 
    } 
  } 
   
  void draw() 
  { 
    background(0); 
    
    // Drawing and update cycle 
    for (int x = 0; x < sx; x=x+1) { 
      for (int y = 0; y < sy; y=y+1) { 
        //if (world[x][y][1] == 1) 
        // Change recommended by The.Lucky.Mutt
        if ((world[x][y][1] == 1) || (world[x][y][1] == 0 && world[x][y][0] == 1)) 
        { 
          world[x][y][0] = 1; 
          point(x, y); 
        } 
        if (world[x][y][1] == -1) 
        { 
          world[x][y][0] = 0; 
        } 
        world[x][y][1] = 0; 
      } 
    } 
    // Birth and death cycle 
    for (int x = 0; x < sx; x=x+1) { 
      for (int y = 0; y < sy; y=y+1) { 
        int count = neighbors(x, y); 
        if (count == 3 && world[x][y][0] == 0) 
        { 
          world[x][y][1] = 1; 
        } 
        if ((count < 2 || count > 3) && world[x][y][0] == 1) 
       { 
          world[x][y][1] = -1; 
        } 
      } 
    } 
  } 
   
  // Count the number of adjacent cells 'on' 
  int neighbors(int x, int y) 
  { 
    return world[(x + 1) % sx][y][0] + 
           world[x][(y + 1) % sy][0] + 
           world[(x + sx - 1) % sx][y][0] + 
           world[x][(y + sy - 1) % sy][0] + 
           world[(x + 1) % sx][(y + 1) % sy][0] + 
           world[(x + sx - 1) % sx][(y + 1) % sy][0] + 
           world[(x + sx - 1) % sx][(y + sy - 1) % sy][0] + 
           world[(x + 1) % sx][(y + sy - 1) % sy][0]; 
  } 
  


(C) Æliens 20/2/2008

You may not copy or print any of this material without explicit permission of the author or the publisher. In case of other copyright issues, contact the author.