/** * Circle Collision with Swapping Velocities * by Ira Greenberg. * * Based on Keith Peter's Solution in * Foundation Actionscript Animation: Making Things Move! */ Ball[] balls = { new Ball(100, 400, 20), new Ball(700, 400, 80) }; PVector[] vels = { new PVector(2.15, -1.35), new PVector(-1.65, .42) }; void setup() { size(640, 360); smooth(); noStroke(); } void draw() { background(51); fill(204); for (int i=0; i< 2; i++){ balls[i].x += vels[i].x; balls[i].y += vels[i].y; ellipse(balls[i].x, balls[i].y, balls[i].r*2, balls[i].r*2); checkBoundaryCollision(balls[i], vels[i]); } checkObjectCollision(balls, vels); } void checkObjectCollision(Ball[] b, PVector[] v){ // get distances between the balls components PVector bVect = new PVector(); bVect.x = b[1].x - b[0].x; bVect.y = b[1].y - b[0].y; // calculate magnitude of the vector separating the balls float bVectMag = sqrt(bVect.x * bVect.x + bVect.y * bVect.y); if (bVectMag < b[0].r + b[1].r){ // get angle of bVect float theta = atan2(bVect.y, bVect.x); // precalculate trig values float sine = sin(theta); float cosine = cos(theta); /* bTemp will hold rotated ball positions. You just need to worry about bTemp[1] position*/ Ball[] bTemp = { new Ball(), new Ball() }; /* b[1]'s position is relative to b[0]'s so you can use the vector between them (bVect) as the reference point in the rotation expressions. bTemp[0].x and bTemp[0].y will initialize automatically to 0.0, which is what you want since b[1] will rotate around b[0] */ bTemp[1].x = cosine * bVect.x + sine * bVect.y; bTemp[1].y = cosine * bVect.y - sine * bVect.x; // rotate Temporary velocities PVector[] vTemp = { new PVector(), new PVector() }; vTemp[0].x = cosine * v[0].x + sine * v[0].y; vTemp[0].y = cosine * v[0].y - sine * v[0].x; vTemp[1].x = cosine * v[1].x + sine * v[1].y; vTemp[1].y = cosine * v[1].y - sine * v[1].x; /* Now that velocities are rotated, you can use 1D conservation of momentum equations to calculate the final velocity along the x-axis. */ PVector[] vFinal = { new PVector(), new PVector() }; // final rotated velocity for b[0] vFinal[0].x = ((b[0].m - b[1].m) * vTemp[0].x + 2 * b[1].m * vTemp[1].x) / (b[0].m + b[1].m); vFinal[0].y = vTemp[0].y; // final rotated velocity for b[0] vFinal[1].x = ((b[1].m - b[0].m) * vTemp[1].x + 2 * b[0].m * vTemp[0].x) / (b[0].m + b[1].m); vFinal[1].y = vTemp[1].y; // hack to avoid clumping bTemp[0].x += vFinal[0].x; bTemp[1].x += vFinal[1].x; /* Rotate ball positions and velocities back Reverse signs in trig expressions to rotate in the opposite direction */ // rotate balls Ball[] bFinal = { new Ball(), new Ball() }; bFinal[0].x = cosine * bTemp[0].x - sine * bTemp[0].y; bFinal[0].y = cosine * bTemp[0].y + sine * bTemp[0].x; bFinal[1].x = cosine * bTemp[1].x - sine * bTemp[1].y; bFinal[1].y = cosine * bTemp[1].y + sine * bTemp[1].x; // update balls to screen position b[1].x = b[0].x + bFinal[1].x; b[1].y = b[0].y + bFinal[1].y; b[0].x = b[0].x + bFinal[0].x; b[0].y = b[0].y + bFinal[0].y; // update velocities v[0].x = cosine * vFinal[0].x - sine * vFinal[0].y; v[0].y = cosine * vFinal[0].y + sine * vFinal[0].x; v[1].x = cosine * vFinal[1].x - sine * vFinal[1].y; v[1].y = cosine * vFinal[1].y + sine * vFinal[1].x; } } void checkBoundaryCollision(Ball ball, PVector vel) { if (ball.x > width-ball.r) { ball.x = width-ball.r; vel.x *= -1; } else if (ball.x < ball.r) { ball.x = ball.r; vel.x *= -1; } else if (ball.y > height-ball.r) { ball.y = height-ball.r; vel.y *= -1; } else if (ball.y < ball.r) { ball.y = ball.r; vel.y *= -1; } }