topical media & game development
lib-flex-book-com-foxaweb-pageflip-PageFlip.ax
lib-flex-book-com-foxaweb-pageflip-PageFlip.ax
(swf
)
[ flash
]
flex
package com.foxaweb.pageflip {
import flash.geom.Point;
import flash.display.BitmapData;
import flash.geom.Matrix;
import flash.display.Shape;
Computes, generates, and draws a pageflip.
@notice @ax-lib-flex-book-com-foxaweb-pageflip-PageFlip drawer
@author Foxy
@version 1.0
@date 2007-01-18
Original author :
-----------------
Didier Brun aka Foxy
webmaster@foxaweb.com
http://www.foxaweb.com
*
AUTHOR * *****************************************************************************
authorName : Didier Brun - www.foxaweb.com
contribution : the original class
date : 2007-01-18
VISIT www.byteArray.org
LICENSE ******************************************************************************
This class is under RECIPROCAL PUBLIC LICENSE.
http://www.opensource.org/licenses/rpl.php
*
Please, keep this header and the list of all authors
Nomenclature
------------
PT(0,0) PT(1,0)
---------------------------------------------------
| <-------------------PW----------------------> |
| ^ Offset(0,0) x--> |
| | |
| | y |
| | | |
| | | |
| | V |
| | pPoints[] |
| | |
| | |
| | |
| | (T3) |
| PH ---|
| | --- /
| | --- /
| | --- /
| | --- /
| | --- /
| | --- /
| | PTD --- cPoints[] /
| | \ /
| | \ /
| | \ /
| | \ /
| | \ /
| V \ /
|-------------------------------- \/
PT(0,1) PT(1,1)
public class @ax-lib-flex-book-com-foxaweb-pageflip-PageFlip {
// ------------------------------------------------
//
// ---o public static methods
//
// ------------------------------------------------
Compute and generate a new flip.
@param ptd Point indicating the position of the PTD point (the drag one) relative to the upper-left corner.
@param pt Point indicating the original position of the dragged point. The two possible values for its x and y properties are 0 or 1. pt(0,0) is the upper-left corner, for example, pt (1,1) is the bottom-right one.
@param pw int indicating the sheet width in pixels.
@param ph int indicating the sheet height in pixels.
@param ish If true, horizontal mode is provided, if false, vertical.
@param sens Number indicating the constraints sensibility. This parametter is a multiplicator for the constraints values. It's intended to prevent some awefull flickering effects. Its possible value is ranged between 0.9 and 1. 0.9 -> when ptd move is free (drag'n'drop), 1 -> when ptd move is progresive (tween when release). At best, you should never swap it from .9 to 1. A progressive incrementation is better. If flickering effects don't disturb you or if your ptd moves is coded, keep this parametter to 1.
@return Object containing:<br />
cPoints:Array - Array of points which describes the flipped part of the sheet. Note that in case of the ptd point is aligned with its original position or if the height of the shape is very small (<1) this array is set to null.<br />
pPoints:Array - Array of points wich describes the fixed part of the sheet.<br />
matrix:Matrix - Transformation matrix for the flipped part of the sheet.<br />
width:Number - Sheet width.<br />
height:Number - Sheet height.
public static function computeFlip(ptd:Point,pt:Point,pw:int,ph:int,ish:Boolean,sens:int):Object{
// useful vars
var dfx:Number=ptd.x-pw*pt.x;
var dfy:Number=ptd.y-ph*pt.y;
var spt:Point=pt.clone();
var opw:int=pw;
var oph:int=ph;
// offset corections
var temp:Number;
// transform matrix
var mat:Matrix=new Matrix();
if (!ish){
// size
temp=pw;
pw=ph;
ph=temp;
// ptd
temp=ptd.x;
ptd.x=ptd.y;
ptd.y=temp;
// pt
temp=pt.x;
spt.x=pt.y;
spt.y=temp;
}
// pt1 & pt2 are the two fixed points of the sheet. opposed to ptd drag one.
var pt1:Point=new Point(0,0);
var pt2:Point=new Point(0,ph);
// default points array
// cPoints -> the fliped part
var cPoints:Array=[null,null,null,null];
// pPoints -> the fixed part
var pPoints:Array=[new Point(0,0),new Point(pw,0),null,null,new Point(0,ph)];
// compute some flip
flipDrag(ptd,spt,pw,ph);
// ditstance
// it allows you to have a valid position for ptd.
// the limit is the diagonal of the sheet here
limitPoint(ptd,pt1,(pw*pw+ph*ph)*sens);
// the limit is about the opposite fixed point
limitPoint(ptd,pt2,(pw*pw)*sens);
// first fliped point
cPoints[0]=new Point(ptd.x,ptd.y);
var dy:Number=pt2.y-ptd.y;
var tot:Number=pw-ptd.x-pt1.x;
var drx:Number=getDx(dy,tot);
// fliped angle
var theta:Number=Math.atan2(dy,drx);
if (dy==0)theta=0;
// another fliped angle
var beta:Number=Math.PI/2-theta;
var hyp:Number=(pw-cPoints[0].x)/Math.cos(beta);
// vhyp is the hypotenuse of the fliped part
var vhyp:Number=hyp;
// if hyp is greater than the height of the sheet or hyp is
// negative, the fliped part has 4 points
// else, it's just a 3 points part (simple corner).
if (hyp>ph || hyp<0)vhyp=ph;
// second fliped point
cPoints[1]=new Point( cPoints[0].x+Math.cos(-beta)*vhyp,
cPoints[0].y+Math.sin(-beta)*vhyp);
// last fliped point
cPoints[3]=new Point(cPoints[0].x+drx,pt2.y);
// if we have a 4 points shape
if (hyp!=vhyp){
dy=pt1.y-cPoints[1].y;
tot=pw-cPoints[1].x;
drx=getDx(dy,tot);
// push the before the last point
cPoints[2]=new Point(cPoints[1].x+drx,pt1.y);
// we can now find the fixed points of the sheet
pPoints[1]=cPoints[2].clone();
pPoints[2]=cPoints[3].clone();
pPoints.splice(3,1);
}else{
// else we delete the point
cPoints.splice(2,1);
// we can now find the fixed points of the sheet
pPoints[2]=cPoints[1].clone();
pPoints[3]=cPoints[2].clone();
}
// these two polygons are always convex !
// now we can flip the two arrays
flipPoints(cPoints,spt,pw,ph);
flipPoints(pPoints,spt,pw,ph);
// if !ish (vertical mode)
// we have to change the points orientation
if (!ish){
oriPoints(cPoints,spt,pw,ph);
oriPoints(pPoints,spt,pw,ph);
}
// flipped part transfrom matrix
var gama:Number=theta;
if (pt.y==0)gama=-gama;
if (pt.x==0)gama=Math.PI+Math.PI-gama;
if (!ish)gama=Math.PI-gama;
mat.a=Math.cos(gama);
mat.b=Math.sin(gama);
mat.c=-Math.sin(gama);
mat.d=Math.cos(gama);
ordMatrix(mat,spt,opw,oph,ish,cPoints,pPoints,gama,beta);
// here we fix some mathematical bugs or instabilities
if (vhyp==0)cPoints=null;
if (Math.abs(dfx)<1 && Math.abs(dfy)<1)cPoints=null;
// now we just have to return all the stuff
return {cPoints:cPoints,pPoints:pPoints,matrix:mat,width:opw,height:oph};
}
Draw a sheet using two Bitmap objects.
@param ocf computeFlip() returned object
@param mc Target
@param bmp0 First page bitmap (left-top aligned)
@param bmp1 Second page bitmap (left-top aligned)
public static function drawBitmapSheet(ocf:Object,mc:Shape,bmp0:BitmapData,bmp1:BitmapData):void{
// affectations
var wid:Number=ocf.width;
var hei:Number=ocf.height;
var nb:Number;
var ppts:Array=ocf.pPoints;
var cpts:Array=ocf.cPoints;
// draw the fixed part
mc.graphics.beginBitmapFill(bmp0,new Matrix(),false,true);
nb=ppts.length;
mc.graphics.moveTo(ppts[nb-1].x,ppts[nb-1].y);
while (--nb>=0)mc.graphics.lineTo(ppts[nb].x,ppts[nb].y);
mc.graphics.endFill();
// draw the flipped part
if (cpts==null)return;
mc.graphics.beginBitmapFill(bmp1,ocf.matrix,false,true);
nb=cpts.length;
mc.graphics.moveTo(cpts[nb-1].x,cpts[nb-1].y);
while (--nb>=0)mc.graphics.lineTo(cpts[nb].x,cpts[nb].y);
mc.graphics.endFill();
}
// ------------------------------------------------
//
// ---o private static methods
//
// ------------------------------------------------
orientation correction
@private
private static function oriPoints(pts:Array,po:Point,pw:Number,ph:Number):void{
var nb:Number=pts.length;
var temp:Number;
while (--nb>=0){
temp=pts[nb].x;
pts[nb].x=pts[nb].y;
pts[nb].y=temp;
}
}
ptdarg correction
@private
private static function flipDrag(ptd:Point,po:Point,pw:Number,ph:Number):void{
// flip y
if (po.y==0)ptd.y=ph-ptd.y;
// flip x
if (po.x==0)ptd.x=pw-ptd.x;
}
flip correction
@private
private static function flipPoints(pts:Array,po:Point,pw:Number,ph:Number):void{
var nb:Number=pts.length;
// flip
if (po.y==0 || po.x==0){
while (--nb>=0){
if (po.y==0)pts[nb].y=ph-pts[nb].y;
if (po.x==0)pts[nb].x=pw-pts[nb].x;
}
}
}
compute some trigonometry equation
this one is more stable than Math.atan2 for our case
@private
private static function getDx(dy:Number,tot:Number):Number{
return (tot*tot-dy*dy)/(tot*2);
}
limit the ptdrag position
@private
private static function limitPoint(ptd:Point,pt:Point,dsquare:Number):void{
var theta:Number;
var lim:Number;
var dy:Number=ptd.y-pt.y;
var dx:Number=ptd.x-pt.x;
var dis:Number=dx*dx+dy*dy;
// we save some times using square
if (dis>dsquare){
theta=Math.atan2(dy,dx);
lim=Math.sqrt(dsquare);
ptd.x=pt.x+Math.cos(theta)*lim;
ptd.y=pt.y+Math.sin(theta)*lim;
}
}
matric correction
@private
private static function ordMatrix(mat:Matrix,spt:Point,opw:Number,oph:Number,ish:Boolean,cPoints:Array,pPoint:Array,gama:Number,beta:Number):void{
if (spt.x==1 && spt.y==0){
mat.tx=cPoints[0].x;
mat.ty=cPoints[0].y;
if (!ish){
mat.tx=cPoints[0].x-Math.cos(gama)*opw-Math.cos(-beta)*oph;
mat.ty=cPoints[0].y-Math.sin(gama)*opw-Math.sin(-beta)*oph;
}
}
if (spt.x==1 && spt.y==1){
mat.tx=cPoints[0].x+Math.cos(-beta)*oph;
mat.ty=cPoints[0].y+Math.sin(-beta)*oph;
if (!ish){
mat.tx=cPoints[0].x+Math.cos(-beta)*oph;
mat.ty=cPoints[0].y-Math.sin(-beta)*oph;
}
}
if (spt.x==0 && spt.y==0){
mat.tx=cPoints[0].x-Math.cos(gama)*opw;
mat.ty=cPoints[0].y-Math.sin(gama)*opw;
}
if (spt.x==0 && spt.y==1){
mat.tx=cPoints[0].x-Math.cos(gama)*opw-Math.cos(-beta)*oph;
mat.ty=cPoints[0].y-Math.sin(gama)*opw+Math.sin(-beta)*oph;
if (!ish){
mat.tx=cPoints[0].x;
mat.ty=cPoints[0].y;
}
}
}
}
}
(C) Æliens
18/6/2009
You may not copy or print any of this material without explicit permission of the author or the publisher.
In case of other copyright issues, contact the author.