topical media & game development
lib-of-vs-libs-QTDevWin-CIncludes-fp.h / h
/*
File: fp.h
Contains: FPCE Floating-Point Definitions and Declarations.
Version: Technology: MathLib v2
Release: QuickTime 6.0.2
Copyright: (c) 1987-2001 by Apple Computer, Inc., all rights reserved.
Bugs?: For bug reports, consult the following page on
the World Wide Web:
http://developer.apple.com/bugreporter/
*/
ifndef __FP__
define __FP__
ifndef __CONDITIONALMACROS__
include <ConditionalMacros.h>
endif
ifndef __MACTYPES__
include <MacTypes.h>
endif
******************************************************************************
*
A collection of numerical functions designed to facilitate a wide *
range of numerical programming as required by C9X. *
*
The <fp.h> declares many functions in support of numerical programming. *
It provides a superset of <math.h> and <SANE.h> functions. Some *
functionality previously found in <SANE.h> and not in the FPCE <fp.h> *
can be found in this <fp.h> under the heading "__NOEXTENSIONS__". *
*
All of these functions are IEEE 754 aware and treat exceptions, NaNs, *
positive and negative zero and infinity consistent with the floating- *
point standard. *
*
******************************************************************************
if PRAGMA_ONCE
#pragma once
endif
ifdef __cplusplus
extern "C" {
endif
if PRAGMA_IMPORT
#pragma import on
endif
if PRAGMA_STRUCT_ALIGN
#pragma options align=mac68k
#elif PRAGMA_STRUCT_PACKPUSH
#pragma pack(push, 2)
#elif PRAGMA_STRUCT_PACK
#pragma pack(2)
endif
******************************************************************************
*
Efficient types *
*
float_t Most efficient type at least as wide as float *
double_t Most efficient type at least as wide as double *
*
CPU float_t(bits) double_t(bits) *
-------- ----------------- ----------------- *
PowerPC float(32) double(64) *
68K long double(80/96) long double(80/96) *
x86 long double(80) long double(80) *
*
******************************************************************************
if defined(__MWERKS__) && defined(__cmath__)
/* these types were already defined in MSL's math.h */
else
if TARGET_CPU_PPC
typedef float float_t;
typedef double double_t;
#elif TARGET_CPU_68K
typedef long double float_t;
typedef long double double_t;
#elif TARGET_CPU_X86
if NeXT || TARGET_OS_MAC
typedef double float_t;
typedef double double_t;
else
typedef long double float_t;
typedef long double double_t;
endif /* NeXT || TARGET_OS_MAC */
#elif TARGET_CPU_MIPS
typedef double float_t;
typedef double double_t;
#elif TARGET_CPU_ALPHA
typedef double float_t;
typedef double double_t;
#elif TARGET_CPU_SPARC
typedef double float_t;
typedef double double_t;
else
#error unsupported CPU
endif /* */
******************************************************************************
*
Define some constants. *
*
HUGE_VAL IEEE 754 value of infinity. *
INFINITY IEEE 754 value of infinity. *
NAN A generic NaN (Not A Number). *
DECIMAL_DIG Satisfies the constraint that the conversion from *
double to decimal and back is the identity function. *
*
******************************************************************************
if TARGET_OS_MAC
#if TARGET_RT_MAC_MACHO
#define HUGE_VAL 1e500 /* compatible with bsd math.h */
#else
#define HUGE_VAL __inf()
#endif
#define INFINITY __inf()
#define NAN nan("255")
else
#define NAN sqrt(-1)
endif
if TARGET_CPU_PPC
#define DECIMAL_DIG 17 /* does not exist for double-double */
#elif TARGET_CPU_68K
#define DECIMAL_DIG 21
endif
endif /* __MWERKS__ && __cmath__ */
if TARGET_OS_MAC
/* MSL already defines these */
if !defined(__MWERKS__) || !defined(__cmath__)
******************************************************************************
*
Trigonometric functions *
*
acos result is in [0,pi]. *
asin result is in [-pi/2,pi/2]. *
atan result is in [-pi/2,pi/2]. *
atan2 Computes the arc tangent of y/x in [-pi,pi] using the sign of *
both arguments to determine the quadrant of the computed value. *
*
******************************************************************************
EXTERN_API_C( double_t ) cos(double_t x);
EXTERN_API_C( double_t ) sin(double_t x);
EXTERN_API_C( double_t ) tan(double_t x);
EXTERN_API_C( double_t ) acos(double_t x);
EXTERN_API_C( double_t ) asin(double_t x);
EXTERN_API_C( double_t ) atan(double_t x);
EXTERN_API_C( double_t ) atan2(double_t y, double_t x);
******************************************************************************
*
Hyperbolic functions *
*
******************************************************************************
EXTERN_API_C( double_t ) cosh(double_t x);
EXTERN_API_C( double_t ) sinh(double_t x);
EXTERN_API_C( double_t ) tanh(double_t x);
EXTERN_API_C( double_t ) acosh(double_t x);
EXTERN_API_C( double_t ) asinh(double_t x);
EXTERN_API_C( double_t ) atanh(double_t x);
******************************************************************************
*
Exponential functions *
*
expm1 expm1(x) = exp(x) - 1. But, for small enough arguments, *
expm1(x) is expected to be more accurate than exp(x) - 1. *
frexp Breaks a floating-point number into a normalized fraction *
and an integral power of 2. It stores the integer in the *
object pointed by *exponent. *
ldexp Multiplies a floating-point number by an integer power of 2. *
log1p log1p = log(1 + x). But, for small enough arguments, *
log1p is expected to be more accurate than log(1 + x). *
logb Extracts the exponent of its argument, as a signed integral *
value. A subnormal argument is treated as though it were first *
normalized. Thus: *
1 <= x * 2^(-logb(x)) < 2 *
modf Returns fractional part of x as function result and returns *
integral part of x via iptr. Note C9X uses double not double_t. *
scalb Computes x * 2^n efficently. This is not normally done by *
computing 2^n explicitly. *
*
******************************************************************************
EXTERN_API_C( double_t ) exp(double_t x);
EXTERN_API_C( double_t ) expm1(double_t x);
EXTERN_API_C( double_t ) exp2(double_t x);
EXTERN_API_C( double_t ) frexp(double_t x, int *exponent);
EXTERN_API_C( double_t ) ldexp(double_t x, int n);
EXTERN_API_C( double_t ) log(double_t x);
EXTERN_API_C( double_t ) log2(double_t x);
EXTERN_API_C( double_t ) log1p(double_t x);
EXTERN_API_C( double_t ) log10(double_t x);
EXTERN_API_C( double_t ) logb(double_t x);
if !TARGET_RT_MAC_MACHO
EXTERN_API_C( long double ) modfl(long double x, long double *iptrl);
endif /* !TARGET_RT_MAC_MACHO */
EXTERN_API_C( double_t ) modf(double_t x, double_t *iptr);
EXTERN_API_C( float ) modff(float x, float *iptrf);
EXTERN_API_C( double_t ) scalb(double_t x, long n);
******************************************************************************
*
Power and absolute value functions *
*
hypot Computes the square root of the sum of the squares of its *
arguments, without undue overflow or underflow. *
pow Returns x raised to the power of y. Result is more accurate *
than using exp(log(x)*y). *
*
******************************************************************************
EXTERN_API_C( double_t ) fabs(double_t x);
EXTERN_API_C( double_t ) hypot(double_t x, double_t y);
EXTERN_API_C( double_t ) pow(double_t x, double_t y);
EXTERN_API_C( double_t ) sqrt(double_t x);
******************************************************************************
*
Gamma and Error functions *
*
erf The error function. *
erfc Complementary error function. *
gamma The gamma function. *
lgamma Computes the base-e logarithm of the absolute value of *
gamma of its argument x, for x > 0. *
*
******************************************************************************
EXTERN_API_C( double_t ) erf(double_t x);
EXTERN_API_C( double_t ) erfc(double_t x);
EXTERN_API_C( double_t ) gamma(double_t x);
EXTERN_API_C( double_t ) lgamma(double_t x);
******************************************************************************
*
Nearest integer functions *
*
rint Rounds its argument to an integral value in floating point *
format, honoring the current rounding direction. *
*
nearbyint Differs from rint only in that it does not raise the inexact *
exception. It is the nearbyint function recommended by the *
IEEE floating-point standard 854. *
*
rinttol Rounds its argument to the nearest long int using the current *
rounding direction. NOTE: if the rounded value is outside *
the range of long int, then the result is undefined. *
*
round Rounds the argument to the nearest integral value in floating *
point format similar to the Fortran "anint" function. That is: *
add half to the magnitude and chop. *
*
roundtol Similar to the Fortran function nint or to the Pascal round. *
NOTE: if the rounded value is outside the range of long int, *
then the result is undefined. *
*
trunc Computes the integral value, in floating format, nearest to *
but no larger in magnitude than its argument. NOTE: on 68K *
compilers when using -elems881, trunc must return an int *
*
******************************************************************************
EXTERN_API_C( double_t ) ceil(double_t x);
EXTERN_API_C( double_t ) floor(double_t x);
EXTERN_API_C( double_t ) rint(double_t x);
EXTERN_API_C( double_t ) nearbyint(double_t x);
EXTERN_API_C( long ) rinttol(double_t x);
EXTERN_API_C( double_t ) round(double_t x);
EXTERN_API_C( long ) roundtol(double_t round);
if TARGET_RT_MAC_68881
if CALL_NOT_IN_CARBON
EXTERN_API_C( int ) trunc(double_t x);
endif /* CALL_NOT_IN_CARBON */
else
EXTERN_API_C( double_t ) trunc(double_t x);
endif /* TARGET_RT_MAC_68881 */
******************************************************************************
*
Remainder functions *
*
remainder IEEE 754 floating point standard for remainder. *
remquo SANE remainder. It stores into 'quotient' the 7 low-order *
bits of the integer quotient x/y, such that: *
-127 <= quotient <= 127. *
*
******************************************************************************
EXTERN_API_C( double_t ) fmod(double_t x, double_t y);
EXTERN_API_C( double_t ) remainder(double_t x, double_t y);
EXTERN_API_C( double_t ) remquo(double_t x, double_t y, int *quo);
******************************************************************************
*
Auxiliary functions *
*
copysign Produces a value with the magnitude of its first argument *
and sign of its second argument. NOTE: the order of the *
arguments matches the recommendation of the IEEE 754 *
floating point standard, which is opposite from the SANE *
copysign function. *
*
nan The call 'nan("n-char-sequence")' returns a quiet NaN *
with content indicated through tagp in the selected *
data type format. *
*
nextafter Computes the next representable value after 'x' in the *
direction of 'y'. if x == y, then y is returned. *
*
******************************************************************************
EXTERN_API_C( double_t ) copysign(double_t x, double_t y);
if !TARGET_RT_MAC_MACHO
EXTERN_API_C( long double ) nanl(const char *tagp);
else
define nanl(tagp) ((long double)nan(tagp))
endif /* !TARGET_RT_MAC_MACHO */
EXTERN_API_C( double ) nan(const char *tagp);
EXTERN_API_C( float ) nanf(const char *tagp);
if !TARGET_RT_MAC_MACHO
EXTERN_API_C( long double ) nextafterl(long double x, long double y);
else
define nextafterl(x,y) ((long double)nextafter((double)x,(double)y))
endif /* !TARGET_RT_MAC_MACHO */
EXTERN_API_C( double ) nextafterd(double x, double y);
EXTERN_API_C( float ) nextafterf(float x, float y);
******************************************************************************
*
Inquiry macros *
*
fpclassify Returns one of the FP_* values. *
isnormal Non-zero if and only if the argument x is normalized. *
isfinite Non-zero if and only if the argument x is finite. *
isnan Non-zero if and only if the argument x is a NaN. *
signbit Non-zero if and only if the sign of the argument x is *
negative. This includes, NaNs, infinities and zeros. *
*
******************************************************************************
enum {
FP_SNAN = 0, /* signaling NaN */
FP_QNAN = 1, /* quiet NaN */
FP_INFINITE = 2, /* + or - infinity */
FP_ZERO = 3, /* + or - zero */
FP_NORMAL = 4, /* all normal numbers */
FP_SUBNORMAL = 5 /* denormal numbers */
};
if TARGET_RT_MAC_MACHO
define __fpclassify(x) __fpclassifyd((double)x)
define __isnormal(x) __isnormald((double)x)
define __isfinite(x) __isfinited((double)x)
define __isnan(x) __isnand((double)x)
define __signbit(x) __signbitd((double)x)
endif
define fpclassify(x) ( ( sizeof ( x ) == sizeof(long double) ) ? \
__fpclassify ( x ) : \
( sizeof ( x ) == sizeof(double) ) ? \
__fpclassifyd ( x ) : \
__fpclassifyf ( x ) )
define isnormal(x) ( ( sizeof ( x ) == sizeof(long double) ) ? \
__isnormal ( x ) : \
( sizeof ( x ) == sizeof(double) ) ? \
__isnormald ( x ) : \
__isnormalf ( x ) )
define isfinite(x) ( ( sizeof ( x ) == sizeof(long double) ) ? \
__isfinite ( x ) : \
( sizeof ( x ) == sizeof(double) ) ? \
__isfinited ( x ) : \
__isfinitef ( x ) )
define isnan(x) ( ( sizeof ( x ) == sizeof(long double) ) ? \
__isnan ( x ) : \
( sizeof ( x ) == sizeof(double) ) ? \
__isnand ( x ) : \
__isnanf ( x ) )
define signbit(x) ( ( sizeof ( x ) == sizeof(long double) ) ? \
__signbit ( x ) : \
( sizeof ( x ) == sizeof(double) ) ? \
__signbitd ( x ) : \
__signbitf ( x ) )
if !TARGET_RT_MAC_MACHO
EXTERN_API_C( long ) __fpclassify(long double x);
endif /* !TARGET_RT_MAC_MACHO */
EXTERN_API_C( long ) __fpclassifyd(double x);
EXTERN_API_C( long ) __fpclassifyf(float x);
if !TARGET_RT_MAC_MACHO
EXTERN_API_C( long ) __isnormal(long double x);
endif /* !TARGET_RT_MAC_MACHO */
EXTERN_API_C( long ) __isnormald(double x);
EXTERN_API_C( long ) __isnormalf(float x);
if !TARGET_RT_MAC_MACHO
EXTERN_API_C( long ) __isfinite(long double x);
endif /* !TARGET_RT_MAC_MACHO */
EXTERN_API_C( long ) __isfinited(double x);
EXTERN_API_C( long ) __isfinitef(float x);
if !TARGET_RT_MAC_MACHO
EXTERN_API_C( long ) __isnan(long double x);
endif /* !TARGET_RT_MAC_MACHO */
EXTERN_API_C( long ) __isnand(double x);
EXTERN_API_C( long ) __isnanf(float x);
if !TARGET_RT_MAC_MACHO
EXTERN_API_C( long ) __signbit(long double x);
endif /* !TARGET_RT_MAC_MACHO */
EXTERN_API_C( long ) __signbitd(double x);
EXTERN_API_C( long ) __signbitf(float x);
EXTERN_API_C( double_t ) __inf(void );
******************************************************************************
*
Max, Min and Positive Difference *
*
fdim Determines the 'positive difference' between its arguments: *
{ x - y, if x > y }, { +0, if x <= y }. If one argument is *
NaN, then fdim returns that NaN. if both arguments are NaNs, *
then fdim returns the first argument. *
*
fmax Returns the maximum of the two arguments. Corresponds to the *
max function in FORTRAN. NaN arguments are treated as missing *
data. If one argument is NaN and the other is a number, then *
the number is returned. If both are NaNs then the first *
argument is returned. *
*
fmin Returns the minimum of the two arguments. Corresponds to the *
min function in FORTRAN. NaN arguments are treated as missing *
data. If one argument is NaN and the other is a number, then *
the number is returned. If both are NaNs then the first *
argument is returned. *
*
******************************************************************************
EXTERN_API_C( double_t ) fdim(double_t x, double_t y);
EXTERN_API_C( double_t ) fmax(double_t x, double_t y);
EXTERN_API_C( double_t ) fmin(double_t x, double_t y);
endif /* !defined(__MWERKS__) || !defined(__cmath__) */
*****************************************************************************
Constants *
*****************************************************************************
extern const double_t pi;
******************************************************************************
*
Non NCEG extensions *
*
******************************************************************************
ifndef __NOEXTENSIONS__
******************************************************************************
*
Financial functions *
*
compound Computes the compound interest factor "(1 + rate)^periods" *
more accurately than the straightforward computation with *
the Power function. This is SANE's compound function. *
*
annuity Computes the present value factor for an annuity *
"(1 - (1 + rate)^(-periods)) /rate" more accurately than *
the straightforward computation with the Power function. *
This is SANE's annuity function. *
*
******************************************************************************
EXTERN_API_C( double_t ) compound(double_t rate, double_t periods);
EXTERN_API_C( double_t ) annuity(double_t rate, double_t periods);
******************************************************************************
*
Random function *
*
randomx A pseudorandom number generator. It uses the iteration: *
(7^5*x)mod(2^31-1) *
*
******************************************************************************
EXTERN_API_C( double_t ) randomx(double_t *x);
*****************************************************************************
Relational operator *
*****************************************************************************
/* relational operator */
typedef short relop;
enum {
GREATERTHAN = 0,
LESSTHAN = 1,
EQUALTO = 2,
UNORDERED = 3
};
if !defined(__MWERKS__) || !defined(__cmath__)
EXTERN_API_C( relop ) relation(double_t x, double_t y);
endif /* !defined(__MWERKS__) || !defined(__cmath__) */
******************************************************************************
*
Binary to decimal conversions *
*
SIGDIGLEN Significant decimal digits. *
*
decimal A record which provides an intermediate unpacked form for *
programmers who wish to do their own parsing of numeric input *
or formatting of numeric output. *
*
decform Controls each conversion to a decimal string. The style field *
is either FLOATDECIMAL or FIXEDDECIMAL. If FLOATDECIMAL, the *
value of the field digits is the number of significant digits. *
If FIXEDDECIMAL value of the field digits is the number of *
digits to the right of the decimal point. *
*
num2dec Converts a double_t to a decimal record using a decform. *
dec2num Converts a decimal record d to a double_t value. *
dec2str Converts a decform and decimal to a string using a decform. *
str2dec Converts a string to a decimal struct. *
dec2d Similar to dec2num except a double is returned (68k only). *
dec2f Similar to dec2num except a float is returned. *
dec2s Similar to dec2num except a short is returned. *
dec2l Similar to dec2num except a long is returned. *
*
******************************************************************************
if TARGET_CPU_PPC
#define SIGDIGLEN 36
#elif TARGET_CPU_68K
#define SIGDIGLEN 20
#elif TARGET_CPU_X86
#define SIGDIGLEN 20
endif
define DECSTROUTLEN 80 /* max length for dec2str output */
define FLOATDECIMAL ((char)(0))
define FIXEDDECIMAL ((char)(1))
struct decimal {
char sgn; /* sign 0 for +, 1 for - */
char unused;
short exp; /* decimal exponent */
struct {
unsigned char length;
unsigned char text[SIGDIGLEN]; /* significant digits */
unsigned char unused;
} sig;
};
typedef struct decimal decimal;
struct decform {
char style; /* FLOATDECIMAL or FIXEDDECIMAL */
char unused;
short digits;
};
typedef struct decform decform;
EXTERN_API_C( void ) num2dec(const decform *f, double_t x, decimal *d);
EXTERN_API_C( double_t ) dec2num(const decimal *d);
EXTERN_API_C( void ) dec2str(const decform *f, const decimal *d, char *s);
EXTERN_API_C( void ) str2dec(const char *s, short *ix, decimal *d, short *vp);
if TARGET_CPU_68K
if CALL_NOT_IN_CARBON
EXTERN_API_C( double ) dec2d(const decimal *d);
endif /* CALL_NOT_IN_CARBON */
endif /* TARGET_CPU_68K */
EXTERN_API_C( float ) dec2f(const decimal *d);
EXTERN_API_C( short ) dec2s(const decimal *d);
EXTERN_API_C( long ) dec2l(const decimal *d);
******************************************************************************
*
68k-only Transfer Function Prototypes *
*
******************************************************************************
if TARGET_CPU_68K
if CALL_NOT_IN_CARBON
EXTERN_API_C( void ) x96tox80(const extended96 *x, extended80 *x80);
EXTERN_API_C( void ) x80tox96(const extended80 *x80, extended96 *x);
endif /* CALL_NOT_IN_CARBON */
endif /* TARGET_CPU_68K */
endif /* !defined(__NOEXTENSIONS__) */
******************************************************************************
*
PowerPC-only Function Prototypes *
*
******************************************************************************
if TARGET_CPU_PPC
if !TARGET_RT_MAC_MACHO
ifndef __MWERKS__ /* Metrowerks does not support double double */
EXTERN_API_C( long double ) cosl(long double x);
EXTERN_API_C( long double ) sinl(long double x);
EXTERN_API_C( long double ) tanl(long double x);
EXTERN_API_C( long double ) acosl(long double x);
EXTERN_API_C( long double ) asinl(long double x);
EXTERN_API_C( long double ) atanl(long double x);
EXTERN_API_C( long double ) atan2l(long double y, long double x);
EXTERN_API_C( long double ) coshl(long double x);
EXTERN_API_C( long double ) sinhl(long double x);
EXTERN_API_C( long double ) tanhl(long double x);
EXTERN_API_C( long double ) acoshl(long double x);
EXTERN_API_C( long double ) asinhl(long double x);
EXTERN_API_C( long double ) atanhl(long double x);
EXTERN_API_C( long double ) expl(long double x);
EXTERN_API_C( long double ) expm1l(long double x);
EXTERN_API_C( long double ) exp2l(long double x);
EXTERN_API_C( long double ) frexpl(long double x, int *exponent);
EXTERN_API_C( long double ) ldexpl(long double x, int n);
EXTERN_API_C( long double ) logl(long double x);
EXTERN_API_C( long double ) log1pl(long double x);
EXTERN_API_C( long double ) log10l(long double x);
EXTERN_API_C( long double ) log2l(long double x);
EXTERN_API_C( long double ) logbl(long double x);
EXTERN_API_C( long double ) scalbl(long double x, long n);
EXTERN_API_C( long double ) fabsl(long double x);
EXTERN_API_C( long double ) hypotl(long double x, long double y);
EXTERN_API_C( long double ) powl(long double x, long double y);
EXTERN_API_C( long double ) sqrtl(long double x);
EXTERN_API_C( long double ) erfl(long double x);
EXTERN_API_C( long double ) erfcl(long double x);
EXTERN_API_C( long double ) gammal(long double x);
EXTERN_API_C( long double ) lgammal(long double x);
EXTERN_API_C( long double ) ceill(long double x);
EXTERN_API_C( long double ) floorl(long double x);
EXTERN_API_C( long double ) rintl(long double x);
EXTERN_API_C( long double ) nearbyintl(long double x);
EXTERN_API_C( long ) rinttoll(long double x);
EXTERN_API_C( long double ) roundl(long double x);
EXTERN_API_C( long ) roundtoll(long double round);
EXTERN_API_C( long double ) truncl(long double x);
EXTERN_API_C( long double ) remainderl(long double x, long double y);
EXTERN_API_C( long double ) remquol(long double x, long double y, int *quo);
EXTERN_API_C( long double ) copysignl(long double x, long double y);
EXTERN_API_C( long double ) fdiml(long double x, long double y);
EXTERN_API_C( long double ) fmaxl(long double x, long double y);
EXTERN_API_C( long double ) fminl(long double x, long double y);
endif /* __MWERKS__ */
else
define cosl(x) ((long double) cos((double_t)(x)))
define sinl(x) ((long double) sin((double_t)(x)))
define tanl(x) ((long double) tan((double_t)(x)))
define acosl(x) ((long double) acos((double_t)(x)))
define asinl(x) ((long double) asin((double_t)(x)))
define atanl(x) ((long double) atan((double_t)(x)))
define atan2l(y,x) ((long double) atan2((double_t)(y),(double_t)(x)))
define coshl(x) ((long double) cosh((double_t)(x)))
define sinhl(x) ((long double) sinh((double_t)(x)))
define tanhl(x) ((long double) tanh((double_t)(x)))
define acoshl(x) ((long double) acosh((double_t)(x)))
define asinhl(x) ((long double) asinh((double_t)(x)))
define atanhl(x) ((long double) atanh((double_t)(x)))
define expl(x) ((long double) exp((double_t)(x)))
define expm1l(x) ((long double) expm1((double_t)(x)))
define exp2l(x) ((long double) exp2((double_t)(x)))
define frexpl(x,exp) ((long double) frexp((double_t)(x),(exp)))
define ldexpl(x,n) ((long double) ldexp((double_t)(x),(n)))
define logl(x) ((long double) log((double_t)(x)))
define log1pl(x) ((long double) log1p((double_t)(x)))
define log10l(x) ((long double) log10((double_t)(x)))
define log2l(x) ((long double) log2((double_t)(x)))
define logbl(x) ((long double) logb((double_t)(x)))
define scalbl(x,n) ((long double) scalb((double_t)(x),(n)))
define fabsl(x) ((long double) fabs((double_t)(x)))
define hypotl(x,y) ((long double) hypot((double_t)(x),(double_t)(y)))
define powl(x,y) ((long double) pow((double_t)(x),(double_t)(y)))
define sqrtl(x) ((long double) sqrt((double_t)(x)))
define erfl(x) ((long double) erf((double_t)(x)))
define erfcl(x) ((long double) erfc((double_t)(x)))
define gammal(x) ((long double) gamma((double_t)(x)))
define lgammal(x) ((long double) lgamma((double_t)(x)))
define ceill(x) ((long double) ceil((double_t)(x)))
define floorl(x) ((long double) floor((double_t)(x)))
define rintl(x) ((long double) rint((double_t)(x)))
define nearbyintl(x) ((long double) nearbyint((double_t)(x)))
define rinttoll(x) (rinttol((double_t)(x)))
define roundl(x) ((long double) round((double_t)(x)))
define roundtoll(x) (roundtol((double_t)(x)))
define truncl(x) ((long double) trunc((double_t)(x)))
define remainderl(x,y) ((long double) remainder((double_t)(x),(double_t)(y)))
define remquol(x,y,quo) ((long double) remquo((double_t)(x),(double_t)(y),(quo)))
define copysignl(x,y) ((long double) copysign((double_t)(x),(double_t)(y)))
define fdiml(x,y) ((long double) fdim((double_t)(x),(double_t)(y)))
define fmaxl(x,y) ((long double) fmax((double_t)(x),(double_t)(y)))
define fminl(x,y) ((long double) fmin((double_t)(x),(double_t)(y)))
endif /* !TARGET_RT_MAC_MACHO */
ifndef __NOEXTENSIONS__
if !TARGET_RT_MAC_MACHO
EXTERN_API_C( relop ) relationl(long double x, long double y);
EXTERN_API_C( void ) num2decl(const decform *f, long double x, decimal *d);
EXTERN_API_C( long double ) dec2numl(const decimal *d);
else
#define relationl(x,y) (relation((double_t)x,(double_t)y))
#define num2decl(f,x,d) (num2dec(f,(double_t)x,d))
#define dec2numl(d) ((long double)dec2num(d))
endif /* !TARGET_RT_MAC_MACHO */
endif /* !defined(__NOEXTENSIONS__) */
endif /* TARGET_CPU_PPC */
endif /* TARGET_OS_MAC */
ifndef __NOEXTENSIONS__
if !TARGET_RT_MAC_MACHO
EXTERN_API_C( void ) x80told(const extended80 *x80, long double *x);
EXTERN_API_C( void ) ldtox80(const long double *x, extended80 *x80);
else
#define x80told(x80,ld) (*(ld) = x80tod(x80))
#define ldtox80(ld,x80) do { double d = (double) *(ld); dtox80(&d, (x80)); } while (0)
endif /* !TARGET_RT_MAC_MACHO */
/*
MathLib v2 has two new transfer functions: x80tod and dtox80. They can
be used to directly transform 68k 80-bit extended data types to double
and back for PowerPC based machines without using the functions
x80told or ldtox80. Double rounding may occur.
*/
EXTERN_API_C( double ) x80tod(const extended80 *x80);
EXTERN_API_C( void ) dtox80(const double *x, extended80 *x80);
endif /* !defined(__NOEXTENSIONS__) */
if PRAGMA_STRUCT_ALIGN
#pragma options align=reset
#elif PRAGMA_STRUCT_PACKPUSH
#pragma pack(pop)
#elif PRAGMA_STRUCT_PACK
#pragma pack()
endif
ifdef PRAGMA_IMPORT_OFF
#pragma import off
#elif PRAGMA_IMPORT
#pragma import reset
endif
ifdef __cplusplus
}
endif
endif /* __FP__ */
(C) Æliens
04/09/2009
You may not copy or print any of this material without explicit permission of the author or the publisher.
In case of other copyright issues, contact the author.