
1

HTTP Servers

Jacco van Ossenbruggen

CWI/VU Amsterdam

2

Learning goals

Understand:

–Basis HTTP server functionality

–Serving static content

• from HTML and other files

–Serving dynamic content

•from software within a HTTP server

•from external software

–Security & privacy issues

HTTP:
The Web‟s network protocol

• Early 90s: only a few HTTP servers, but many FTP
servers helped bootstrapping the Web

– Example: ftp://ftp.gnu.org/gnu/aspell/dict/en/

• HTTP servers based on the freely available httpd
web server from NSCA

• NCSA stopped httpd support when the associated
team left to start Netscape

• Webmasters started to send around software
patches to further improve httpd

• Result was referred to as “a patchy server”

• Now the open source Apache server is one of the
mostly used Web servers

3

ftp://ftp.gnu.org/gnu/aspell/dict/en/

4

HTTP server main loop

HTTP Request

HTTP Response

HTTP Request

HTTP Response

5

HTTP server main loop

while(forever)

listen to TCP port 80 and wait

read HTTP request from client

send HTTP response to client

Seems not that complicated …

But: regular Apache HTTP server installation
installs > 24Mb of software … ?!

What makes real servers so complex?

Static content

from files: HTML,

CSS, JavaScript, images, …

6

7

Example HTTP request

.GET / HTTP/1.0

.

8

Example HTTP request

.GET / HTTP/1.1

.Host: www.few.vu.nl

.

Why does the client need to tell the server the
server‟s own hostname?

– because the server doesn‟t know its own name!

– www.cs.vu.nl is hosted on the same machine by the
same server software

– server may need to send different responses for different
host names

– “Virtual host” configuration allows web masters to tune
server to do exactly this

9

Example HTTP request

.GET / HTTP/1.1

.Host: www.few.vu.nl

.

• Server needs to determine what resource is associated with
„/‟

• Also configurable, defaults to the file index.html
in the server‟s “document root” directory, e.g.
/var/www/www.few.vu.nl/html/index.html

• Security issues
– GET ~yourname/../../../passwd HTTP/1.1

– GET ~yourname/../~yourlogin/Mail HTTP/1.1

• Webmaster needs to configure which directories in the local
file system may be served by the web server

– Webmaster: “Oops, that dir should not have been on the Web”
– User: “Oops, I didn‟t know this dir was on the Web too”

10

Example HTTP request

.GET / HTTP/1.1

.Host: www.few.vu.nl

.

• Server needs to send content of file index.html to the client
• Along with

– length of the content
– the current time/date
– modification date
– expiration date
– MIME type of the content (e.g. text/html)
– character encoding (e.g. UTF-8)
– etc

• Most of these HTTP header values need to be looked up in a
configurable way

• Results need to be logged in the server log for later analysis

11

Example: apache HTTP logs

access_log.2:soling.few.vu.nl - - [11/Jan/2008:16:47:19 +0100] "GET /cgi-

bin/wt-test?naam=&textarea=+ HTTP/1.0" 200 1341 "-" "Mozilla/5.0

(Windows; U; Windows NT 5.1; en-US; rv:1.8.1.6) Gecko/20070725

Firefox/2.0.0.6"

access_log.2:soling.few.vu.nl - - [11/Jan/2008:16:47:48 +0100] "GET /cgi-

bin/wt-test?naam=&textarea=+ HTTP/1.0" 200 1341 "-" "Mozilla/5.0

(Windows; U; Windows NT 5.1; en-US; rv:1.8.1.6) Gecko/20070725

Firefox/2.0.0.6"

access_log.2:soling.few.vu.nl - - [11/Jan/2008:16:48:48 +0100] "GET /cgi-

bin/wt-test?naam=&textarea=+ HTTP/1.0" 200 1341 "-" "Mozilla/5.0

(Windows; U; Windows NT 5.1; en-US; rv:1.8.1.6) Gecko/20070725

Firefox/2.0.0.6"

access_log.2:soling.few.vu.nl - - [11/Jan/2008:16:55:59 +0100] "GET /cgi-

bin/wt-test?naam=&radio=inhoudelijk&textarea=+vxfvsdfsdf%0D%0A HTTP/1.0"

200 1409 "-“ "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.6)

Gecko/20070725 Firfox/2.0.0.6"

access_log.2:soling.few.vu.nl - - [11/Jan/2008:16:56:08 +0100] "GET /cgi-

bin/wt-

test?naam=Cjijij&radio=inhoudelijk&checkbox1=checkbox1&textarea=+vxfvsdfs

df%0D0A%0D%0Afsdfsdf HTTP/1.0" 200 1487 "-" "Mozilla/5.0 (Windows; U;

Windows NT 5.1 en-US; rv:1.8.1.6) Gecko/20070725 Firefox/2.0.0.6"

access_log.2:soling.few.vu.nl - - [11/Jan/2008:16:58:25 +0100] "GET /cgi-

bin/wt-test?naam=&radio=structuur1&textarea=+ HTTP/1.0" 200 1375 "-"

"Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.6)

Gecko/20070725 Firefox/2.0.0.6"

12

13

14

Top N of …

Top 10 of 2094 Total Sites

#Hits Files Kbytes Visits Hostname

1 28066 25.26% 27754 27.89% 529851 34.02% 50 0.97% *.search.live.com

2 14434 12.99% 13899 13.96% 206962 13.29% 7 0.14% *.googlebot.com

3 8963 8.07% 5779 5.81% 47864 3.07% 17 0.33% *.speedy.telkom.net.id

4 6142 5.53% 5871 5.90% 59502 3.82% 82 1.59% *.cwi.nl

5 1265 1.14% 1203 1.21% 6455 0.41% 3 0.06% ipXX.speed.planet.nl

6 1237 1.11% 1228 1.23% 10163 0.65% 18 0.35% soling.few.vu.nl

7 1169 1.05% 1026 1.03% 6181 0.40% 1 0.02% XX.demon.nl

8 1050 0.94% 972 0.98% 16429 1.05% 5 0.10% XXadsl.sinica.edu.tw

9 956 0.86% 904 0.91% 5634 0.36% 5 0.10% XX.adslsurfen.hetnet.nl

10 908 0.82% 889 0.89% 13028 0.84% 21 0.41% XX.wise-guys.nl

Top 7 Search Strings

1 60 37.97% the scream

2 8 5.06% vu

3 6 3.80% scream

4 4 2.53% eculture

5 4 2.53% the scream painting

6 3 1.90% the scream paintings

7 2 1.27% *.gif

15

Example HTTP request

.GET / HTTP/1.1

.Host: www.few.vu.nl

.

• Server needs to send content of file index.html to the client
• Along with

– length of the content
– the current time/date
– modification date
– expiration date
– MIME type of the content (e.g. text/html)
– character encoding (e.g. UTF-8)
– etc

• Most of these HTTP header values need to be looked up in a
configurable way

• Results need to be logged in the server log for later analysis
– Assume everything you do will be logged and

will be traceable back to you

16

Example HTTP response

HTTP/1.1 200 OK

Date: Mon, 21 Jan 2008 10:18:49 GMT

Server: Apache/2.0.58 (Unix) mod_ssl/2.0.58

OpenSSL/0.9.7d DAV/2 PHP/5.2.4 mod_python/3.3.1

Python/2.4.3

X-Powered-By: PHP/5.2.4

Expires: Mon, 21 Jan 2008 16:18:49 GMT

Connection: close

Content-Type: text/html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01

Transitional//EN">

<html>

<head>

17

Example HTTP response

HTTP/1.1 200 OK

Date: Mon, 21 Jan 2008 10:18:49 GMT

Server: Apache/2.0.58 (Unix) mod_ssl/2.0.58

OpenSSL/0.9.7d DAV/2 PHP/5.2.4 mod_python/3.3.1

Python/2.4.3

X-Powered-By: PHP/5.2.4

Expires: Mon, 21 Jan 2008 16:18:49 GMT

Connection: close

Content-Type: text/html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01

Transitional//EN">

<html>

<head>

18

Example HTTP response

HTTP/1.1 200 OK

Date: Mon, 21 Jan 2008 10:18:49 GMT

Server: Apache/2.0.58 (Unix) mod_ssl/2.0.58

OpenSSL/0.9.7d DAV/2 PHP/5.2.4 mod_python/3.3.1

Python/2.4.3

X-Powered-By: PHP/5.2.4

Expires: Mon, 21 Jan 2008 16:18:49 GMT

Connection: close

Content-Type: text/html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01

Transitional//EN">

<html>

<head>

19

Static vs dynamic content

• Not all requests are for static content stored in a
file

– some data needs to be requested by the server from
other applications
(e.g. from an organisation‟s database)

– some data needs to be computed “on the fly” in
response to the request
(e.g. results of a query on a search engine)

• Need for dynamic content by programmable
server behaviour

• Note: from the browser‟s perspective, static and
dynamic content look syntactically exactly the
same (“it‟s just a URI”)

20

REST

Roy Fielding
– co-author of the HTTP specification

– co-founder of Apache

– described the key principles of WWW network
architecture in his PhD thesis (UCI, 2000)

– He named these principles REST
(REpresentational State Transfer)

– Implementations are called RESTful

– REST strongly influenced the early network architecture
of the Web…

– … and still does:
• 15 Jan 2008:

W3C published the SPARQL Recommendation, a web query
language based on a RESTful design

21

REST: key principles

• All sources of information (files and applications) are resources
that are uniquely addressable using a URI

• Clients and servers only need to know
– the URI of the resource (e.g. http://www.few.vu.nl/)
– the allowed actions (e.g. HTTP GET)
– the allowed representations (e.g. text/html)

• Client does not need to know how the server generates the
representation

• Server does not need to know how the client presents it
• Both client and server do not need to be aware of intermediate

proxies or caches
• There is no communication state

– HTTP response does not depend on previous request
– Methods are idempotent: requesting the same resource multiply

times will yield the same content

• Simplifies global design and improves performance …
• … but sometimes makes server programming more difficult

dynamic content

computed by other software

computed by the server

22

23

CGI:
common gateway interface

• Commonly agreed upon way to run batch
programs in response to a HTTP request

• HTTP server executes program

– server recognizes a CGI request and
determines which program from the URL

– supplying details about the request to the
program via (OS environment) variables

– returning program‟s output verbatim to the
client (output needs to supply content and all
required HTTP headers)

24

CGI Example: form URL you
used in assignment 1

<form action="http://eculture.cs.vu.nl/cgi-bin/wt1-test"

method="get">

#!/usr/bin/perl

##

cgi-bin/wt1-test -- program which just prints its environment

##

print "Content-type: text/plain\n\n";

foreach $var (sort(keys(%ENV))) {

$val = $ENV{$var};

$val =~ s|\n|\\n|g;

$val =~ s|"|\\"|g;

print "${var}=\"${val}\"\n";

}

25

CGI response

HTTP/1.1 200 OK

Date: Fri, 18 Jan 2008 14:09:18 GMT

Server: Apache/2.2.9

Connection: close

Content-Type: text/plain

DOCUMENT_ROOT="/export/data1/httpd/htdocs"

GATEWAY_INTERFACE="CGI/1.1"

HTTP_ACCEPT_LANGUAGE="en"

HTTP_HOST=”eculture.cs.vu.nl"

QUERY_STRING="name=value"

REMOTE_ADDR=“80.127.61.144"

REMOTE_HOST=“plan.xs4all.nl“
…

26

CGI: pros & cons
Very flexible

– can use programs written in any interpreted or compiled
programming language

– easy way to reuse existing software in a Web context

−Creates a new process to re-execute program for
every request

− very expensive: too slow for popular sites

− hard to maintain state between requests
(we will look deeper into the concept of state later)

−Mixes program logic and HTML generation
− hard to maintain by programmers and designers

−Not convenient to get data from databases

27

CGI alternatives

• server-side scripting:
– server has a module that keeps the language interpreter

running over multiple requests

– running little scripts at the server (“servlets”) is then
relatively cheap

• Use general purpose scripting languages
– Apache comes standard with modules for many

languages: mod_python, mod_perl, …

28

Example HTTP response

HTTP/1.1 200 OK

Date: Fri, 18 Jan 2008 11:18:49 GMT

Server: Apache/2.0.58 (Unix) mod_ssl/2.0.58

OpenSSL/0.9.7d DAV/2 PHP/5.2.4 mod_python/3.3.1

Python/2.4.3

X-Powered-By: PHP/5.2.4

Expires: Fri, 21 Jan 2008 17:18:49 GMT

Connection: close

Content-Type: text/html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01

Transitional//EN">

<html>

<head>

29

CGI alternatives: scripting

• Server-side scripting:
– server has a module that keeps the language interpreter

running over multiple requests
– running little scripts at the server is then relatively cheap

• Use general purpose scripting languages:
– mod_python, mod_perl, …
– need rules to determine which URLs are deferred to script

module (e.g. http://www.example.org/file.py)

• Compiled Java bytecode programs
– server modules running a Java Virtual Machine are known as a

web or servlet container (e.g. tomcat)
– servlets typically use standard Java extensions to simplify

programming (javax.servlet.*)

• All these solutions result in files that look like programs
– HTML markup deeply hidden in “print” statements
– hard to maintain by non-programmers

30

Example: code with hidden HTML

print “<html>”

…

print “<body>”

print “”

for (i=1; i<N; i++) {

data = get_item(i);

print “” + data +

}

print “”

…

31

Dedicated frameworks

• Use dedicated scripting frameworks
– PHP: Hypertext Preprocessor

• Used to implement WordPress, MediaWiki
• mixes html, program code & database queries

– JSP: Java Server Pages
•mixes html & java

• These approaches typically result in files
that look like HTML pages, with embedded
code and custom tags processed by the
server
– complex func. still requires programming
– but results are easier to reuse
– easier to maintain, also by non-programmers

32

Example: HTML with hidden code

<html>

…

<body>

<? generate_items(N) ?>

</body>

</html>

33

Typical problems in server
programming

•Concurrency

•Session management & cookies

•Authentication & security

•Interfacing with other software
(generating HTML from database
content)

34

HTTP server main loop

HTTP Request

HTTP Response

HTTP Request

HTTP Response

HTTP Request?

35

HTTP server concurrency

HTTP Request

HTTP Response

HTTP Request

HTTP Response

HTTP Request

HTTP Response

HTTP Request

HTTP Response

36

HTTP server concurrency

HTTP Request

HTTP Response

HTTP Request

HTTP Response

HTTP Request

HTTP Response

HTTP Request

HTTP Response

37

HTTP server concurrency

•Server-side software needs to be
aware that other processes/threads
processing other request may run at
the same time (“multi-threading”,
“MT-safe”)

–makes accessing global resources
(variables, databases, files) more
complicated and error prone

38

HTTP server sessions

User A Request 1

User A Response 1

User B Request 1

User B Response 1

User B Request 2

User B Response 2

User A Request 2

User A Response 2

39

HTTP server sessions

•How to recognize which requests
belong to the same user?
–look at client‟s IP address

– in first response, send client a small but
unique piece of data

–ask client to send this back as part of
the HTTP header of all following
requests

–piece of data is known as a (magic)
cookie

40

HTTP server sessions

User A Request 1

User A Response 1

User B Request 1

User B Response 1

User B Request 2

User B Response 2

User A Request 2

User A Response 2

cookie: id=user00001

cookie: id=user00001

cookie: id=user00001

cookie: id=user00002

cookie: id=user00002

cookie: id=user00002

41

Cookie: bb.vu.nl response

HTTP/1.1 302 Moved Temporarily

Set-Cookie: ARPT=IZJNJNSbb3CYUQ; path=/

Date: Sun, 20 Jan 2008 20:24:23 GMT

Server: Apache/1.3.33 (Unix) mod_ssl/2.8.21 OpenSSL/0.9.7e

mod_jk/1.2.4

Pragma: no-cache

Cache-Control: no-cache

Set-Cookie: session_id=@@BCCF1515B166A6BE2FF476EB20E9774F

Location: http://bb.vu.nl/nocookies.html

Content-Length: 0

Connection: close

Content-Type: application/octet-stream;charset=ISO-8859-1

42

Cookies

• Introduced in Mosaic browser (1994)
– cookies were enabled by default

– users were not informed when a site set a cookie

– most users did not know about cookies at all

• Privacy issues became serious issue in 1996 after
a publication in the Financial Times

• Now all major browsers allow users to delete
cookies and to be alerted when cookies are set

• Many sites make privacy policies public on their
site (P3P)

43

Cookies

• Handy
– Electronic shopping basket
– Personalisation

• user preferences
• user profile

– Authentication

• Tricky
– User tracking across websites
– Direct marketing
– Privacy issues

• Note: sites may set cookies without knowing it or
even using them…

• Check the cookies stored in your browser

Security issues

see also
guest lecture Thursday

44

45

Proxies & firewalls

•Some clients have no direct internet
access to contact servers

–Browser can use a proxy server

–Content servers do not need to know

•Some servers have no direct internet
access to be contacted (!)

–Server can use a reverse proxy server

–Clients do not need to know

46

Firewall

client proxy server

client

reverse

proxy server

responsibility of

client’s organization

responsibility of

server’s organization

47

Authentication & encryption

• HTTP 1.0 Basic Access Authentication

– username, password, content sent in plain text

• HTTP Digest Access Authentication

– username, password encrypted

– content still sent plain text

• HTTPS: HTTP entirely over secure layer

– public key encryption, also for content

– less vulnerable to man in the middle attacks

48

Man in the middle attack

• HTTPS requires web site to authenticate itself
using a certificate stating its identity

• How do you know how to trust certificate
authority?

– many generally trusted authorities are known by your
browser

client

fake

mybank.com mybank.com

49

Database connectivity

• All frameworks provide ways to simplify
generating HTML out of database content

– Java Servlets, JSP

– PHP

– Content management systems

– …

client server

SQL

database

50

LAMP and the ubiquity of HTTP
servers

• Typical web server needs:
1. Operating system with good TCP/IP support
2. HTTP server implementation
3. Database to store content
4. Framework for creating web pages from database

content

• All these ingredients are currently commonly
available (as open source software) and run on
commodity PCs

• Frequently used combination is Linux, Apache,
MySQL and PHP (LAMP)

• Many sites are served by LAMP software running
on old PC hardware …

• A “web server” is nothing special anymore!
> 185 million servers (Netcraft, Jan 2009)

51

52

Learning goals

•Understand

–Basis HTTP server functionality

–Serving static HTML and other files

–Serving dynamic content from software
within a HTTP server

–Serving dynamic content from external
software

–Be aware of security & privacy issues

