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Learning goals

Understand:

–Basis HTTP server functionality

–Serving static content

• from HTML and other files

–Serving dynamic content

•from software within a HTTP server

•from external software

–Security & privacy issues



HTTP:
The Web‟s network protocol

• Early 90s: only a few HTTP servers, but many FTP 
servers helped bootstrapping the Web

– Example: ftp://ftp.gnu.org/gnu/aspell/dict/en/

• HTTP servers based on the freely available httpd
web server from NSCA

• NCSA stopped httpd support when the associated 
team left to start Netscape

• Webmasters started to send around software 
patches to further improve httpd

• Result was referred to as “a patchy server”

• Now the open source Apache server is one of the 
mostly used Web servers
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ftp://ftp.gnu.org/gnu/aspell/dict/en/
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HTTP server main loop

HTTP Request

HTTP Response

HTTP Request

HTTP Response
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HTTP server main loop

while(forever)

listen to TCP port 80 and wait

read HTTP request from client

send HTTP response to client

Seems not that complicated …

But: regular Apache HTTP server installation 
installs > 24Mb of software … ?!

What makes real servers so complex? 



Static content

from files: HTML,

CSS, JavaScript, images, …
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Example HTTP request

.GET / HTTP/1.0

.
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Example HTTP request

.GET / HTTP/1.1

.Host: www.few.vu.nl

.

Why does the client need to tell the server the 
server‟s own hostname?

– because the server doesn‟t know its own name!

– www.cs.vu.nl is hosted on the same machine by the 
same server software

– server may need to send different responses for different 
host names

– “Virtual host” configuration allows web masters to tune 
server to do exactly this 
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Example HTTP request

.GET / HTTP/1.1

.Host: www.few.vu.nl

.

• Server needs to determine what resource is associated with 
„/‟

• Also configurable, defaults to the file index.html
in the server‟s “document root” directory, e.g.
/var/www/www.few.vu.nl/html/index.html

• Security issues
– GET ~yourname/../../../passwd HTTP/1.1

– GET ~yourname/../~yourlogin/Mail HTTP/1.1

• Webmaster needs to configure which directories in the local 
file system may be served by the web server

– Webmaster: “Oops, that dir should not have been on the Web”
– User: “Oops, I didn‟t know this dir was on the Web too”
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Example HTTP request

.GET / HTTP/1.1

.Host: www.few.vu.nl

.

• Server needs to send content of file index.html to the client
• Along with 

– length of the content
– the current time/date
– modification date
– expiration date
– MIME type of the content (e.g. text/html)
– character encoding (e.g. UTF-8)
– etc

• Most of these HTTP header values need to be looked up in a 
configurable way

• Results need to be logged in the server log for later analysis
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Example: apache HTTP logs

access_log.2:soling.few.vu.nl - - [11/Jan/2008:16:47:19 +0100] "GET /cgi-

bin/wt-test?naam=&textarea=+ HTTP/1.0" 200 1341 "-" "Mozilla/5.0 

(Windows; U; Windows NT 5.1; en-US; rv:1.8.1.6) Gecko/20070725 

Firefox/2.0.0.6"

access_log.2:soling.few.vu.nl - - [11/Jan/2008:16:47:48 +0100] "GET /cgi-

bin/wt-test?naam=&textarea=+ HTTP/1.0" 200 1341 "-" "Mozilla/5.0 

(Windows; U; Windows NT 5.1; en-US; rv:1.8.1.6) Gecko/20070725 

Firefox/2.0.0.6"

access_log.2:soling.few.vu.nl - - [11/Jan/2008:16:48:48 +0100] "GET /cgi-

bin/wt-test?naam=&textarea=+ HTTP/1.0" 200 1341 "-" "Mozilla/5.0 

(Windows; U; Windows NT 5.1; en-US; rv:1.8.1.6) Gecko/20070725 

Firefox/2.0.0.6"

access_log.2:soling.few.vu.nl - - [11/Jan/2008:16:55:59 +0100] "GET /cgi-

bin/wt-test?naam=&radio=inhoudelijk&textarea=+vxfvsdfsdf%0D%0A HTTP/1.0" 

200 1409 "-“ "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.6) 

Gecko/20070725 Firfox/2.0.0.6"

access_log.2:soling.few.vu.nl - - [11/Jan/2008:16:56:08 +0100] "GET /cgi-

bin/wt-

test?naam=Cjijij&radio=inhoudelijk&checkbox1=checkbox1&textarea=+vxfvsdfs

df%0D0A%0D%0Afsdfsdf HTTP/1.0" 200 1487 "-" "Mozilla/5.0 (Windows; U; 

Windows NT 5.1 en-US; rv:1.8.1.6) Gecko/20070725 Firefox/2.0.0.6"

access_log.2:soling.few.vu.nl - - [11/Jan/2008:16:58:25 +0100] "GET /cgi-

bin/wt-test?naam=&radio=structuur1&textarea=+ HTTP/1.0" 200 1375 "-" 

"Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.6) 

Gecko/20070725 Firefox/2.0.0.6"
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Top N of …

Top 10 of 2094 Total Sites

#Hits Files Kbytes Visits Hostname

1 28066 25.26% 27754 27.89% 529851 34.02% 50 0.97% *.search.live.com

2 14434 12.99% 13899 13.96% 206962 13.29% 7 0.14% *.googlebot.com

3 8963 8.07% 5779 5.81% 47864 3.07% 17 0.33% *.speedy.telkom.net.id

4 6142 5.53% 5871 5.90% 59502 3.82% 82 1.59% *.cwi.nl

5 1265 1.14% 1203 1.21% 6455 0.41% 3 0.06% ipXX.speed.planet.nl

6 1237 1.11% 1228 1.23% 10163 0.65% 18 0.35% soling.few.vu.nl

7 1169 1.05% 1026 1.03% 6181 0.40% 1 0.02% XX.demon.nl

8 1050 0.94% 972 0.98% 16429 1.05% 5 0.10% XXadsl.sinica.edu.tw

9 956 0.86% 904 0.91% 5634 0.36% 5 0.10% XX.adslsurfen.hetnet.nl

10 908 0.82% 889 0.89% 13028 0.84% 21 0.41% XX.wise-guys.nl

Top 7 Search Strings

1 60 37.97% the scream

2 8 5.06% vu

3 6 3.80% scream

4 4 2.53% eculture

5 4 2.53% the scream painting

6 3 1.90% the scream paintings

7 2 1.27% *.gif
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Example HTTP request

.GET / HTTP/1.1

.Host: www.few.vu.nl

.

• Server needs to send content of file index.html to the client
• Along with 

– length of the content
– the current time/date
– modification date
– expiration date
– MIME type of the content (e.g. text/html)
– character encoding (e.g. UTF-8)
– etc

• Most of these HTTP header values need to be looked up in a 
configurable way

• Results need to be logged in the server log for later analysis
– Assume everything you do will be logged and 

will be traceable back to you
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Example HTTP response

HTTP/1.1 200 OK

Date: Mon, 21 Jan 2008 10:18:49 GMT

Server: Apache/2.0.58 (Unix) mod_ssl/2.0.58 

OpenSSL/0.9.7d DAV/2 PHP/5.2.4 mod_python/3.3.1 

Python/2.4.3

X-Powered-By: PHP/5.2.4

Expires: Mon, 21 Jan 2008 16:18:49 GMT

Connection: close

Content-Type: text/html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 

Transitional//EN">

<html>

<head>
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Example HTTP response

HTTP/1.1 200 OK

Date: Mon, 21 Jan 2008 10:18:49 GMT

Server: Apache/2.0.58 (Unix) mod_ssl/2.0.58 

OpenSSL/0.9.7d DAV/2 PHP/5.2.4 mod_python/3.3.1 

Python/2.4.3

X-Powered-By: PHP/5.2.4

Expires: Mon, 21 Jan 2008 16:18:49 GMT

Connection: close

Content-Type: text/html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 

Transitional//EN">

<html>

<head>
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Example HTTP response

HTTP/1.1 200 OK

Date: Mon, 21 Jan 2008 10:18:49 GMT

Server: Apache/2.0.58 (Unix) mod_ssl/2.0.58 

OpenSSL/0.9.7d DAV/2 PHP/5.2.4 mod_python/3.3.1

Python/2.4.3

X-Powered-By: PHP/5.2.4

Expires: Mon, 21 Jan 2008 16:18:49 GMT

Connection: close

Content-Type: text/html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 

Transitional//EN">

<html>

<head>
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Static vs dynamic content

• Not all requests are for static content stored in a 
file

– some data needs to be requested by the server from 
other applications 
(e.g. from an organisation‟s database)

– some data needs to be computed “on the fly” in 
response to the request 
(e.g. results of a query on a search engine)

• Need for dynamic content by programmable
server behaviour

• Note: from the browser‟s perspective, static and 
dynamic content look syntactically exactly the 
same (“it‟s just a URI”)
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REST

Roy Fielding
– co-author of the HTTP specification

– co-founder of Apache 

– described the key principles of WWW network 
architecture in his PhD thesis (UCI, 2000)

– He named these principles REST 
(REpresentational State Transfer)

– Implementations are called RESTful

– REST strongly influenced the early network architecture 
of the Web…

– … and still does:
• 15 Jan 2008: 

W3C published the SPARQL Recommendation, a web query 
language based on a RESTful design
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REST: key principles

• All sources of information (files and applications) are resources
that are uniquely addressable using a URI

• Clients and servers only need to know 
– the URI of the resource (e.g. http://www.few.vu.nl/ )
– the allowed actions (e.g. HTTP GET)
– the allowed representations (e.g. text/html )

• Client does not need to know how the server generates the 
representation

• Server does not need to know how the client presents it
• Both client and server do not need to be aware of intermediate 

proxies or caches
• There is no communication state

– HTTP response does not depend on previous request
– Methods are idempotent: requesting the same resource multiply 

times will yield the same content

• Simplifies global design and improves performance …
• … but sometimes makes server programming more difficult



dynamic content

computed by other software

computed by the server
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CGI:
common gateway interface

• Commonly agreed upon way to run batch 
programs in response to a HTTP request

• HTTP server executes program

– server recognizes a CGI request and 
determines which program from the URL

– supplying details about the request to the 
program via (OS environment) variables

– returning program‟s output verbatim to the 
client (output needs to supply content and all 
required HTTP headers)
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CGI Example: form URL you 
used in assignment 1

<form action="http://eculture.cs.vu.nl/cgi-bin/wt1-test"

method="get"> 

#!/usr/bin/perl

##

##  cgi-bin/wt1-test -- program which just prints its environment

##

print "Content-type: text/plain\n\n";

foreach $var (sort(keys(%ENV))) {

$val = $ENV{$var};

$val =~ s|\n|\\n|g;

$val =~ s|"|\\"|g;

print "${var}=\"${val}\"\n";

}
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CGI response

HTTP/1.1 200 OK

Date: Fri, 18 Jan 2008 14:09:18 GMT

Server: Apache/2.2.9

Connection: close

Content-Type: text/plain

DOCUMENT_ROOT="/export/data1/httpd/htdocs"

GATEWAY_INTERFACE="CGI/1.1"

HTTP_ACCEPT_LANGUAGE="en"

HTTP_HOST=”eculture.cs.vu.nl"

QUERY_STRING="name=value"

REMOTE_ADDR=“80.127.61.144"

REMOTE_HOST=“plan.xs4all.nl“
…
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CGI: pros & cons
Very flexible 

– can use programs written in any interpreted or compiled 
programming language

– easy way to reuse existing software in a Web context

−Creates a new process to re-execute program for 
every request

− very expensive: too slow for popular sites

− hard to maintain state between requests
(we will look deeper into the concept of state later)

−Mixes program logic and HTML generation
− hard to maintain by programmers and designers

−Not convenient to get data from databases
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CGI alternatives

• server-side scripting:
– server has a module that keeps the language interpreter 

running over multiple requests

– running little scripts at the server (“servlets”) is then 
relatively cheap

• Use general purpose scripting languages
– Apache comes standard with modules for many 

languages: mod_python, mod_perl, …
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Example HTTP response

HTTP/1.1 200 OK

Date: Fri, 18 Jan 2008 11:18:49 GMT

Server: Apache/2.0.58 (Unix) mod_ssl/2.0.58 

OpenSSL/0.9.7d DAV/2 PHP/5.2.4 mod_python/3.3.1 

Python/2.4.3

X-Powered-By: PHP/5.2.4

Expires: Fri, 21 Jan 2008 17:18:49 GMT

Connection: close

Content-Type: text/html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 

Transitional//EN">

<html>

<head>
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CGI alternatives: scripting

• Server-side scripting:
– server has a module that keeps the language interpreter 

running over multiple requests
– running little scripts at the server is then relatively cheap

• Use general purpose scripting languages:
– mod_python, mod_perl, …
– need rules to determine which URLs are deferred to script 

module (e.g. http://www.example.org/file.py)

• Compiled Java bytecode programs
– server modules running a Java Virtual Machine are known as a 

web or servlet container (e.g. tomcat)
– servlets typically use standard Java extensions to simplify 

programming  (javax.servlet.*)

• All these solutions result in files that look like programs
– HTML markup deeply hidden in “print” statements
– hard to maintain by non-programmers
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Example: code with hidden HTML

print “<html>”

…

print “<body>”

print “<ul>”

for (i=1; i<N; i++) {

data = get_item(i);

print “<li>” + data +</li>

}

print “</ul>”

…
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Dedicated frameworks

• Use dedicated scripting frameworks
– PHP: Hypertext Preprocessor

• Used to implement WordPress, MediaWiki
• mixes html, program code & database queries 

– JSP: Java Server Pages
•mixes html & java

• These approaches typically result in files 
that look like HTML pages, with embedded 
code and custom tags processed by the 
server
– complex func. still requires programming
– but results are easier to reuse
– easier to maintain, also by non-programmers
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Example: HTML with hidden code

<html>

…

<body>

<ul>

<? generate_items(N) ?>

</ul>

</body>

</html>
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Typical problems in server 
programming

•Concurrency 

•Session management & cookies 

•Authentication & security

•Interfacing with other software 
(generating HTML from database 
content) 
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HTTP server main loop

HTTP Request

HTTP Response

HTTP Request

HTTP Response

HTTP Request?
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HTTP server concurrency

HTTP Request

HTTP Response

HTTP Request

HTTP Response

HTTP Request

HTTP Response

HTTP Request

HTTP Response
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HTTP server concurrency

HTTP Request

HTTP Response

HTTP Request

HTTP Response

HTTP Request

HTTP Response

HTTP Request

HTTP Response
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HTTP server concurrency

•Server-side software needs to be 
aware that other processes/threads 
processing other request may run at 
the same time (“multi-threading”, 
“MT-safe”)

–makes accessing global resources 
(variables, databases, files) more 
complicated and error prone
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HTTP server sessions

User A Request 1

User A Response 1

User B Request 1

User B Response 1

User B Request 2

User B Response 2

User A Request 2

User A Response 2
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HTTP server sessions

•How to recognize which requests 
belong to the same user?
–look at client‟s IP address

– in first response, send client a small but 
unique piece of data

–ask client to send this back as part of 
the HTTP header of all following 
requests

–piece of data is known as a (magic) 
cookie
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HTTP server sessions

User A Request 1

User A Response 1

User B Request 1

User B Response 1

User B Request 2

User B Response 2

User A Request 2

User A Response 2

cookie: id=user00001

cookie: id=user00001

cookie: id=user00001

cookie: id=user00002

cookie: id=user00002

cookie: id=user00002
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Cookie: bb.vu.nl response

HTTP/1.1 302 Moved Temporarily

Set-Cookie: ARPT=IZJNJNSbb3CYUQ; path=/

Date: Sun, 20 Jan 2008 20:24:23 GMT

Server: Apache/1.3.33 (Unix) mod_ssl/2.8.21 OpenSSL/0.9.7e 

mod_jk/1.2.4

Pragma: no-cache

Cache-Control: no-cache

Set-Cookie: session_id=@@BCCF1515B166A6BE2FF476EB20E9774F

Location: http://bb.vu.nl/nocookies.html

Content-Length: 0

Connection: close

Content-Type: application/octet-stream;charset=ISO-8859-1
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Cookies

• Introduced in Mosaic browser (1994)
– cookies were enabled by default

– users were not informed when a site set a cookie

– most users did not know about cookies at all

• Privacy issues became serious issue in 1996 after 
a publication in the Financial Times

• Now all major browsers allow users to delete 
cookies and to be alerted when cookies are set

• Many sites make privacy policies public on their 
site (P3P)
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Cookies

• Handy
– Electronic shopping basket
– Personalisation

• user preferences
• user profile

– Authentication

• Tricky
– User tracking across websites
– Direct marketing
– Privacy issues

• Note: sites may set cookies without knowing it or 
even using them…

• Check the cookies stored in your browser



Security issues

see also 
guest lecture Thursday
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Proxies & firewalls

•Some clients have no direct internet 
access to contact servers

–Browser can use a proxy server

–Content servers do not need to know

•Some servers have no direct internet 
access to be contacted (!)

–Server can use a reverse proxy server

–Clients do not need to know
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Firewall

client proxy server

client

reverse

proxy server

responsibility of 

client’s organization

responsibility of 

server’s organization
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Authentication & encryption

• HTTP 1.0 Basic Access Authentication

– username, password, content sent in plain text

• HTTP Digest Access Authentication

– username, password encrypted

– content still sent plain text 

• HTTPS: HTTP entirely over secure layer

– public key encryption, also for content

– less vulnerable to man in the middle attacks
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Man in the middle attack

• HTTPS requires web site to authenticate itself 
using a certificate stating its identity

• How do you know how to trust certificate 
authority?

– many generally trusted authorities are known by your 
browser

client

fake

mybank.com mybank.com
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Database connectivity

• All frameworks provide ways to simplify 
generating HTML out of database content

– Java Servlets, JSP

– PHP

– Content management systems

– …

client server   

SQL

database
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LAMP and the ubiquity of HTTP 
servers

• Typical web server needs:
1. Operating system with good TCP/IP support
2. HTTP server implementation
3. Database to store content
4. Framework for creating web pages from database 

content

• All these ingredients are currently commonly 
available (as open source software) and run on 
commodity PCs

• Frequently used combination is  Linux, Apache, 
MySQL and PHP (LAMP)

• Many sites are served by LAMP software running 
on old PC hardware …

• A “web server” is nothing special anymore!
> 185 million servers (Netcraft, Jan 2009) 
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Learning goals

•Understand

–Basis HTTP server functionality

–Serving static HTML and other files

–Serving dynamic content from software 
within a HTTP server

–Serving dynamic content from external 
software

–Be aware of security & privacy issues


