Creational patterns

Instructor's Guide


intro polymorphism idioms patterns events summary, Q/A, literature
Design for change means to defer commitment to particular object implementations as long as possible. Due to inheritance, or rather subtyping, the client, calling a particular method, can choose the most abstract class, highest in the hierarchy. However, when it comes to creating objects, there seems to be no other choice than naming the implementation class explicitly. Wrong. Creational patterns are meant to take care of that, that is to hide the actual class used as far away as possible.

Creational patterns

See Pattern Lectures
slide: Creational patterns

Creational patterns come in various flavors. In section delegation-in-Java some example realizations were presented. The factory class, for example, is a rather static way of hiding the implementation classes. As an alternative, you may use a factory method, similar to the instance method of the singleton class.

If you prefer a more dynamic approach, the prototype pattern might be better. A prototype is an object that may be used to create copies or clones, in a similar way as instances are created from a class. However, cloning is much more dynamic, the more so if delegation is used instead of inheritance to share resources with some ancestor class. See section prototypes.

The advantage of using a factory, or any of the other creational patterns, is that exchanging product families becomes very easy. Just look for example at the Java Swing library. Swing is supported under Unix, Windows and MacOS. The key to multiple platform support is here, indeed, the use of factories to create widgets. Factories are also essential when using CORBA, simply because calling a constructor is of no use for creating objects on a remote site.