
STEP: A Scripting Language for Embodied
Agents

Zhisheng Huang, Anton Eliëns and Cees Visser

Intelligent Multimedia Group
Division of Computer Science, Faculty of Sciences
Vrije Universiteit Amsterdam, The Netherlands
{huang,eliens,ctv}@cs.vu.nl

Summary. In this chapter we propose a scripting language, called STEP, for em-
bodied agents, in particular for their communicative acts like gestures and postures.
Based on the formal semantics of dynamic logic, STEP has a solid semantic foun-
dation, in spite of a rich number of variants of the compositional operators and
interaction facilities on worlds. STEP has been implemented in the distributed logic
programming language DLP, a tool for the implementation of 3D web agents. In
this chapter, we discuss principles of scripting language design for embodied agents
and several aspects of the application of STEP.

1 Introduction

Embodied agents are autonomous agents which have bodies by which the
agents can perceive their world directly through sensors and act on the world
directly through effectors. Embodied agents whose experienced worlds are
located in real environments, are usually called cognitive robots. Web agents
are embodied agents whose experienced worlds are the Web; typically they
act and collaborate in networked virtual environments. In addition, 3D web
agents are embodied agents whose 3D avatars can interact with each other or
with users via Web browsers [11].

Embodied agents usually interact with users or each other via multimodal
communicative acts, which can be verbal or non-verbal. Gestures, postures
and facial expressions are typical non-verbal communicative acts which con-
tribute to the representation of avatars as life-like characters. In general, spec-
ifying communicative acts for embodied agents is not easy; they often require
a lot of geometric data and detailed movement equations for the specification
of gestures.

In this chapter we propose the scripting language STEP (Scripting Tech-
nology for Embodied Persona), in particular for communicative acts of embod-
ied agents. At present, we focus on aspects of the specification and modeling

2 Zhisheng Huang, Anton Eliëns and Cees Visser

of gestures and postures for 3D web agents. However, STEP can be extended
for other communicative acts like facial expressions or speech, and other types
of embodied agents, like cognitive robots. Scripting languages are to a certain
extent simplified languages which ease the task of programming and devel-
opment. One of the main advantages of using scripting languages is that the
specification of communicative acts can be separated from the programs which
specify the agent architecture and mental state reasoning. Thus, changing the
specification of communicative acts does not require to re-program an agent.

The avatars of our 3D web agents are built in the Virtual Reality Modeling
Language (VRML) or X3D, the next generation of VRML. These avatars have
a humanoid appearance. The humanoid animation working group1 proposes
a specification, called H-anim specification, for the creation of libraries of
reusable humanoids in Web-based applications as well as authoring tools that
make it easy to create humanoids and animate them in various ways. H-
anim specifies a standard way of representing humanoids in VRML. We have
implemented the proposed scripting language for H-anim based humanoids in
the distributed logic programming language DLP[5].2

DLP is a tool for the implementation of 3D intelligent agents[12].3 In this
chapter, we discuss how STEP can be used for embodied agents. STEP in-
troduces a Prolog-like syntax, which makes it compatible with most standard
logic programming languages, whereas the formal semantics of STEP is based
on dynamic logic[9]. Thus, STEP has a solid semantic foundation, in spite
of a rich number of variants of the compositional operators and interaction
facilities on worlds.

2 Principles

We designed the scripting language primarily for the specification of commu-
nicative acts for embodied agents; we have separated the external-oriented
communicative acts from internal changes of the mental states of embodied
agents because the former involves only geometric changes of the body ob-
jects and the natural transition of the actions, whereas the latter involves
more complicated computation and reasoning. Of course, a question is: why
not use the same scripting language for both external gestures and internal
agent specification? Our answer is: the scripting language is designed to be a
simplified, user-friendly specification language for embodied agents, whereas
the formalization of intelligent agents requires a powerful specification and
programming language. It is not our intention to design a scripting language
with fully-functional computation facilities, as found in programming lan-
guages like Java, Prolog or DLP. A scripting language should be interoperable
1 http://h-anim.org
2 http://www.cs.vu.nl/∼eliens/projects/logic/index.html
3 http://wasp.cs.vu.nl/wasp

STEP: A Scripting Language for Embodied Agents 3

with a fully powered agent implementation language, but offer a rather easy
way for authoring. Although communicative acts are the result of the internal
reasoning of embodied agents, they do not need the expressiveness of a gen-
eral programming language. However, we do require that a scripting language
should be able to interact with the mental states of embodied agents in some
ways, which will be discussed in more detail later.

We consider the following design principles for a scripting language.

Principle 1: Convenience

As mentioned, the specification of communicative acts, like gestures and facial
expressions usually involves a lot of geometric data, like ROUTE statements
in VRML or movement equations in computer graphics. A scripting language
should hide these geometric difficulties, so that even the authors who have
limited knowledge of computer graphics can use it in a natural way. For ex-
ample, suppose that authors want to specify that an agent turns his left arm
forward slowly. This can be specified as:

turn(Agent, left_arm, front, slow)

It should not be necessary to specify it as follows, which requires knowledge
of a coordinate system, rotation axis, etc.

turn(Agent, left_arm, rotation(1,0,0,1.57), 3)

One of the implications of this principle is that embodied agents should
be aware of their context; they should be able to understand what certain
indications mean, like the directions ’left’ and ’right’, or the body parts ’left
arm’, etc.

Principle 2: Compositional Semantics

Specification of composite actions based on existing components, for example
an action of an agent which turns his arms forward slowly, can be defined in
terms of two primitive actions, turn-left-arm and turn-right-arm:

par([turn(Agent, left_arm, front, slow),

turn(Agent, right_arm, front, slow)])

Typical composite operators for actions are the sequence action seq, par-
allel action par, and repeat action repeat, which are used in dynamic logic [9].

Principle 3: Re-definability

Scripting actions (e.g. composite actions) can be defined in terms of other
actions explicitly. The scripting language incorporates a rule-based specifica-
tion system, where scripting actions can be defined by their own set of rules.

4 Zhisheng Huang, Anton Eliëns and Cees Visser

These defined actions can be re-used for other scripting purposes. For exam-
ple, if we have defined two scripting actions run and kick, then a new action
run then kick can be defined in terms of run and kick:

run_then_kick(Agent)=

seq([run(Agent), kick(Agent)]).

which can be specified in a Prolog-like syntax:

script(run_then_kick(Agent), Action):-

Action = seq([run(Agent),kick(Agent)]).

Principle 4: Parametrization

Scripting actions can be adapted to be other actions; actions can be specified in
terms of how they cause changes over time to each individual degree of freedom,
as proposed by Perlin and Goldberg in [16]. For example, suppose that we
define a scripting action run: we know that running can be done at different
paces. It can be done ‘fast’ or ‘slow’. It should not be necessary to define run
actions for particular paces. We can define the action ‘run’ with respect to
a degree of freedom ‘tempo’. Changing the tempo for a generic run action
should be enough to achieve a run action at different paces. Another method
of parametrization is to introduce variables or parameters in the names of
scripting actions, which allows for a similar action with different values. In
particular, agent names and their relevant parameters are specified as variables
in script libraries, by which the same scripting actions can be re-used for
different embodied agents under different situations by different authors. It
would significantly improve the reusability of scripting actions for the purpose
of productivity. This is one of the reasons why we introduce a Prolog-like
syntax in STEP.

Principle 5: Interaction

Scripting actions should be able to interact with the world, including objects
and other agents. More exactly, scripting actions can perceive the world, even
embodied agents’ states, in order to decide whether or not the current action
should be continued, or replaced by other actions. This kind of interaction
can be achieved by the introduction of high-level interaction operators as
defined in dynamic logic. The operator ‘test’ and the operator ‘conditional’
are an example of operators that facilitate the interaction between actions
and states.

These five principles are a guideline for the design of the scripting language
STEP. The principle of convenience implies that STEP uses some natural-
language-like terms for references. The principle of compositional semantics
states that STEP has a set of built-in action operators. The principle of re-
definability suggests that STEP should incorporate a rule-based specification

STEP: A Scripting Language for Embodied Agents 5

system. The principle of parametrization justifies that STEP introduces a
Prolog-like syntax. The principle of interaction requires that STEP is based
on a more powerful meta-language.

3 The Scripting Language STEP

In this section, we discuss the general aspects of the scripting language STEP.
We propose the reference systems for STEP first.

3.1 Reference Systems

The reference system of STEP consists of three components: Direction Refer-
ence, Body Reference, and Time Reference.

Direction Reference

The direction reference system in STEP is based on the H-anim specification:
the initial humanoid position should be modeled in a standing position, facing
in the +Z direction with +Y up and +X to the humanoid’s left. The origin
〈0, 0, 0〉 is located at ground level, between the humanoid’s feet. The arms
should be straight and parallel to the sides of the body with the palms of the
hands facing inwards towards the thighs.

Based on the standard pose of the humanoid, we can define the direc-
tion reference system as sketched in figure 1. The direction reference system
is based on these three dimensions: front vs. back which corresponds to the
Z-axis, up vs. down which corresponds to the Y-axis, and left vs. right which
corresponds to the X-axis. Based on these three dimensions, we can introduce
a more natural-language-like direction reference scheme, for example, turning
left-arm to ‘front-up’, is to turn the left-arm such that the front-end of the
arm will point to the up front direction. Figure 2 shows several combinations
of directions based on these three dimensions for the left-arm. The direction
references for other body parts are similar. These combinations are designed
for convenience and are discussed in Section 2. However, they are in general
not sufficient for more complex applications. To solve this kind of problem, we
introduce interpolations with respect to the mentioned direction references.
For instance, the direction ‘left front2’ is referred to as one which is located
between ‘left front’ and ‘left’, which is shown in Figure 2. Natural-language-
like references are convenient for authors to specify scripting actions, since
they do not require the author to have a detailed knowledge of reference sys-
tems in VRML. Moreover, the proposed scripting language also supports the
original VRML reference system, which is useful for experienced authors. Di-
rections can also be specified to be a four-place tuple 〈X,Y, Z,R〉, for example
rotation(1, 0, 0, 1.57).

6 Zhisheng Huang, Anton Eliëns and Cees Visser

Fig. 1. Direction Reference for Humanoid

Body Reference

According to the H-anim standard, an H-anim specification contains a set of
Joint nodes that are arranged to form a hierarchy. Each Joint node can contain
other Joint nodes and may also contain a Segment node which describes the
body part associated with that joint. Each Segment can also have a number
of Site nodes, which define locations relative to the segment. Sites can be
used for attaching accessories, like hat, clothing and jewelry. In addition, they
can be used to define eye points and viewpoint locations. Each Segment node
can have a number of Displacer nodes, that specify which vertices within the
segment correspond to a particular feature or configuration of vertices.

Figure 3 shows several joints of humanoids. Turning body parts of hu-
manoids implies the setting of the corresponding joint’s rotation. Moving the
body parts means the setting of the corresponding joint’s position. For in-
stance, the action ’turning the left-arm to the front slowly’ is specified as:

turn(Agent, l_shoulder, front, slow)

Based on the H-anim specification, all body joints are contained in a hi-
erarchical structure. Accordingly, the direction reference of a body joint in
STEP is measured relative to the default rotations of its ancestor joints in the

STEP: A Scripting Language for Embodied Agents 7

Fig. 2. Combination of the Directions for Left Arm

hierarchy. For instance, Figure 4(a) shows the posture of the left elbow joint
to the direction ‘front’ relative to the default posture of the avatar. However,
when the left shoulder joint or one of its parents joints, point to the direction
‘front’, the left elbow joint pointing to ‘front’ results in a posture in which the
left hand points to the direction ‘up’, as shown in Figure 4(b). In practice,
this kind of direction reference does not cause difficulties for authoring, for
the correct direction can be obtained by reducing the directions of its ances-
tor body parts to be the default ones. Therefore, STEP is well suited for a
forward kinematics system. Moreover, we would like to point out that STEP
can also be used to solve inverse kinematics problems. That will be shown in
Section 4.

Time Reference

STEP has the same time reference system as VRML. For example, the action
turning the left arm to the front in 2 seconds can be specified as:

turn(Agent, l_shoulder, front, time(2, second))

This kind of explicit specification of duration in scripting actions does not
satisfy the parametrization principle. Therefore, we introduce a more flexible
time reference system based on the notions of beat and tempo. A beat is a
time interval for body movements, whereas the tempo is the number of beats

8 Zhisheng Huang, Anton Eliëns and Cees Visser

Fig. 3. Typical Joints for Humanoid

Fig. 4. Elbow joint in different situations

STEP: A Scripting Language for Embodied Agents 9

per minute. By default, the tempo is set to 60, i.e. a beat corresponds to a
second. However, the tempo can be changed. Moreover, we can define different
speeds for body movements, for example, the speed ‘fast’ can be defined as
one beat, whereas the speed ‘slow’ can be defined as three beats.

3.2 Primitive Actions and Composite Operators

Turn and move are the two main primitive actions for body movements. Turn
actions specify the change of the rotations of the body parts or the whole
body over time, whereas move actions specify the change of the positions of
the body parts or the whole body over time. A turn action of a body part is
defined as follows:

turn(Agent,BodyPart,Direction,Duration)

where Direction can be a natural-language-like direction like ‘front’ or a
rotation value like ‘rotation(1,0,0,3.14)’, and Duration a speed name like ‘fast’
or an explicit time specification, like ‘time(2,second)’.

A move action of a body part is defined as:

move(Agent,BodyPart,Direction,Duration)

where Direction can be a natural-language-like direction, like ‘front’,
a position value like ‘position(1,0,10)’, or an increment value like ‘incre-
ment(1,0,0)’. The turn and move actions of the whole body are defined as
follows:

turn_body(Agent,Direction,Duration)

move_body(Agent,Direction,Duration)

Typical composite operators for scripting actions are:

• Sequence operator ‘seq’: the action seq([Action1, ...,Actionn]) denotes
a composite action in which Action1, ..., and Actionn are executed sequen-
tially:

seq([turn(agent,l_shoulder,front,fast),

turn(agent,r_shoulder,front,fast)])

• Parallel operator ‘par’: the action par([Action1, ...,Actionn]) denotes a
composite action in which Action1, ..., and Actionn are executed simulta-
neously.

• Non-deterministic choice operator ‘choice’: the action choice([Action1,

..., Actionn]) denotes a composite action in which one of the Action1, ...,
and Actionn is executed.

• Repeat operator ‘repeat’: the action repeat(Action, T) denotes a compos-
ite action in which the Action is repeated T times.

10 Zhisheng Huang, Anton Eliëns and Cees Visser

3.3 STEP and Dynamic Logic

STEP is based on dynamic logic[9] and allows for arbitrary abstractions using
the primitives and composition operators provided by the logic. In dynamic
logic, there is a clear distinction between an action and a state. Semantically,
a state represents the properties at a particular moment, whereas an action
consists of a set of state pairs, which represent a relation between two states.
Thus, there are two sub-languages in dynamic logic: a sub-language for ac-
tions and a sub-language for states. The latter is called the meta language of
dynamic logic. Let a be an action represented in the action sub-language, and
ψ and φ the property formulas represented in the meta language. In dynamic
logic, a formula like

ψ → [a]φ

means that if the property ψ holds, then the property φ holds after doing the
action a. The formula above states a relation between the pre-condition ψ and
the post-condition φ for the action a.

A scripting language based on the semantics of dynamic logic is well suited
for the purpose of intelligent embodied agents. As discussed previously, the
scripting language is primarily designed for the specification of body lan-
guage and speech for embodied agents. In this framework, the specification
of external-oriented communicative acts can be separated from the internal
states of embodied agents because the former involves only geometric changes
of the body objects and the natural transition of the actions, whereas the
latter involves more complicated computation and reasoning.

Dynamic logic has several primitive action operators: ‘α;β’ means that
α is executed before β; ‘α ∪ β’ means that either α or β is executed nonde-
terministically; ‘α∗’ means that α is executed a finite, but nondeterministic
number of times; and p? means to proceed if p is true, else fail. Based on
these primitive action operators, some typical actions are relatively easy to
define [9], for example:

if p then α else β as (p?;α) ∪ (¬p?;β)
while p do α as (p?;α)∗;¬p?
repeat α until p as α(¬p?;α)∗; p?
IF p→ α ‖ q → β FI as (p?;α) ∪ (q?;β)

Therefore, based on the formal semantics of dynamic logic, STEP has a solid
semantic foundation, in spite of a rich number of variants of the compositional
operators. Refer to [15] for more details of the semantics issues about STEP.

3.4 High-level Interaction Operators

When using high-level interaction operators, scripting actions can directly
interact with internal states of embodied agents or with external states of
worlds. These interaction operators are based on a meta language which is

STEP: A Scripting Language for Embodied Agents 11

used to build embodied agents, say, in the distributed logic programming
language DLP. In the following, we use lower case Greek letters φ, ψ, χ to
denote formulas in the meta language. Similar to those in dynamic logic, STEP
has the following higher-level interaction operators:

• test: test(φ), check the state φ. If φ holds then skip, otherwise fail.
• execution: do(φ), make the state φ true, i.e. execute φ in the meta language.
• conditional: if then else(φ,action1,action2).
• until: until(action,φ), perform action until φ holds.

The above-mentioned action operators are sufficiently powerful to define a
number of variants of scripting actions. In particular, the execution operator
‘do’ is used to access certain computation and interaction capabilities from
the meta language level. In DLP and Prolog, the predicate ‘is’ is for the eval-
uation of arithmetic expressions. Accordingly, actions which involve the ‘do’
operator and the predicate ‘is’, like do(N is sqrt(S)), can be used to perform
computations in STEP. Actions with the ‘do’ operator in combination with
the VRML/X3D EAI predicates in DLP, like do(getPosition(Agent,X, Y, Z))
and do(setRotation(Object,X, Y, Z,R)), can be used to interact with virtual
worlds. The same patterns of actions in combination with the available com-
munication predicates at the meta language level can be used to achieve cer-
tain communication facilities between embodied agents. We will discuss some
details how these capabilities can be achieved in Section 4. Before doing so,
we will describe a brief example of how a number of temporal relations can
be defined in terms of the parallel action operator ‘par’ and the sequential
action operator ‘seq’ by means of the execution operator ‘do’. As discussed in
[1, 2], there are 13 possible temporal relations between two actions, that is,
before, meets, overlaps, starts, during, finishes, equals, and their inverse
relations. All these 13 possible temporal relations can be defined in STEP[15],
for example:

before(A1,A2)= seq([A1, do(random(N)), wait(N),A2])

meets(A1,A2)= seq(A1,A2)

overlaps(A1,A2)= par([A1,seq([duration(A1,T1),do(random(R)),

do(N is T1*R), wait(N), A2])])

starts(A1,A2)= par([A1,A2])

where duration(A, T) calculates the duration T for the action A, which
can be defined recursively on the sub-actions of A. wait(N) is a special action
which does nothing but just waiting for N seconds. The action wait(N) can
be defined as seq([do(T is N ∗1000), do(sleep(T))]).4 See [15] for more details
with respect to the expressiveness of STEP and its semantics.

We have implemented the scripting language STEP in the distributed logic
programming language DLP. See [13] for implementation issues of STEP.
Based on STEP, we have also implemented XSTEP[14], the XML-based
markup language for embodied agents.
4 Because the predicate sleep in DLP requires milliseconds.

12 Zhisheng Huang, Anton Eliëns and Cees Visser

4 Examples

In this section, we discuss several examples how STEP can be used to define
scripting actions for embodied agents. The first two examples ‘walk’ and ‘run’
describe general examples of body movements of embodied agents. The third
example ‘look at ball’ and ‘run to ball’ describe actions which demonstrate the
interaction between agents and virtual worlds. Finally, in the fourth example
‘touch’, we discuss how STEP can be used to solve some inverse kinemat-
ics problems for embodied agents. The first two examples demonstrate how
users can use STEP easily. The third and the fourth examples require some
knowledge of 3D geometry. They are designed for professional users.

4.1 Walk and its Variants

Fig. 5. Walk

A walking posture can be expressed as a movement which consists of the
following two main activities: an action in which the left-arm/right-leg move
forward while the right-arm/left-leg move backward, and an action in which
the right-arm/left-leg move forward while the left-arm/right-leg move back-
ward. The main poses and their linear interpolations are shown in Figure 5.
The walk action can be described in the scripting language as follows:

script(walk_pose(Agent), Action):-

Action = seq([par([

turn(Agent,r_shoulder,back_down2,fast),

turn(Agent,r_hip,front_down2,fast),

turn(Agent,l_shoulder,front_down2,fast),

turn(Agent,l_hip,back_down2,fast)]),

par([turn(Agent,l_shoulder,back_down2,fast),

turn(Agent,l_hip,front_down2,fast),

turn(Agent,r_shoulder,front_down2,fast),

turn(Agent,r_hip,back_down2,fast)])]).

As shown below, a walk step can be described as a parallel action which
consists of the walking posture and the moving action (i.e. changing position):

STEP: A Scripting Language for Embodied Agents 13

script(walk_forward_step(Agent),Action):-

Action= par([walk_pose(Agent),

move(Agent,front,fast)]).

The step length can be a concrete value. For example, for a 0.7 meter step
size, it can be defined as:

script(walk_forward_step07(Agent),Action):-

Action= par([walk_pose(Agent),

move(Agent,increment(0.0,0.0,0.7),fast)]).

Alternatively, the step length can also be a variable:

script(walk_forward_step0(Agent,StepLength),Action):-

Action = par([walk_pose(Agent),

move(Agent,increment(0.0,0.0,StepLength),fast)]).

Therefore, walking forward N steps with a particular StepLength can be
defined as follows:

script(walk_forward(Agent,StepLength,N),Action):-

Action = repeat(walk_forward_step0(Agent,StepLength),N).

As mentioned above, animations of the walk action based on these defini-
tions are simplified and approximated ones. As analysed in [7, 20], a realistic
animation of walk motions of human figure involves many computations which
rely on a robust simulator where forward and inverse kinematics are combined
with automatic collision detection and response. It is not our intention to use
the scripting language to achieve a fully realistic animation of the walk ac-
tion, because they are seldom necessary for most web applications. However,
we would like to point out that there does exist the possibility to accommo-
date some inverse kinematics to improve the realism by using the scripting
language.

Fig. 6. Poses of Run

14 Zhisheng Huang, Anton Eliëns and Cees Visser

4.2 Run and its Deformation

As a first approximation, the action ‘run’ is similar to the action ‘walk’, how-
ever, with bending arms and legs. The latter would make the legs look like
lifting from the ground, which is an important difference between the action
‘walk’ and the the action ‘run’[19]. The run pose is shown in Figure 6a. As we
can see from the figure, the left lower-arm points to the direction ‘front-up’
when the left upper-arm points to the direction ‘front down2’ during the run
action. Considering the hierarchies of the body parts, we should not use the
primitive action turn(Agent, l elbow, front up, fast) but the primitive action
turn(Agent, l elbow, front, fast), because the direction of the left lower-arm
should be defined relative to the direction of its parent body part, i.e. the
left arm (more exactly, the joint l shoulder). This kind of re-direction does
not impose major difficulties for authoring, because the correct direction can
be obtained by reducing the directions of its parent body parts to be the de-
fault ones. As we can see in Figure 6b, the lower-arm actually points to the
direction ‘front’.

Based on the action ‘walk’, the action ‘run pose’ can be defined as an
action which starts with a run pose as shown in Figure 6b and then repeat
the action ‘walk pose’ for N times:

script(basic_run_pose(Agent), Action):-

Action=par([turn(Agent,r_elbow,front,fast),

turn(Agent, l_elbow, front, fast),

turn(Agent, l_hip, front_down2, fast),

turn(Agent, r_hip, front_down2, fast),

turn(Agent, l_knee, back_down, fast),

turn(Agent, r_knee, back_down, fast)]).

script(run_pose(Agent,N),Action):-

Action = seq([basic_run_pose(Agent),

repeat(walk_pose(Agent),N)]).

Therefore, the action running forwardN steps with a particular StepLength
can be defined in the scripting language as follows:

script(run(Agent, StepLength,N),Action):-

Action=seq([basic_run_pose(Agent), walk_forward(Agent,StepLength,N)]).

In practice, the action ‘run’ may have many variants. For instance, the
lower-arm may point to different directions; they don’t necessarily point to
the direction ‘front’. Therefore, we may define the action ’run’ with respect to
certain degrees of freedom. Here is an example to define a degree of freedom
with respect to the angle of the lower arms to achieve the deformation.

script(basic_run_pose_elbow(Agent,Elbow_Angle),Action):-

Action = par([

turn(Agent,r_elbow,rotation(1,0,0,Elbow_Angle),fast),

turn(Agent,l_elbow,rotation(1,0,0,Elbow_Angle),fast),

STEP: A Scripting Language for Embodied Agents 15

Fig. 7. Run

turn(Agent,l_hip,front_down2,fast),

turn(Agent,r_hip,front_down2,fast),

turn(Agent,l_knee,back_down,fast),

turn(Agent,r_knee,back_down,fast)]).

script(run_e(Agent,StepLength,N,Elbow_Angle),Action):-

Action = seq([basic_run_pose_elbow(Agent,Elbow_Angle),

walk_forward(Agent, StepLength, N)]).

4.3 Interaction with Virtual Worlds

In this section we want to show how the interaction between embodied agents
and virtual worlds can be achieved by using the high-level interaction oper-
ators. Consider a situation in which there are several agents and a ball. The
position of the ball is always changing because other agents may kick the ball.
We want to design the script actions for embodied agents so that they can
always look at the ball and run to the ball no matter where the ball is located.

In the following, we suppose that the meta language of the scripts is
DLP. Other languages can be used following the same strategy. Using DLP’s
VRML/X3D predicates, we can manipulate 3D objects in virtual worlds. For
example, given the current position of the embodied agent and the ball, we
can always calculate the new rotation of the agent so that it will look at the
ball. By using the high-level interaction operator do with the built-in opera-
tors in the meta language we can define the script action ‘look at ball’ and
other relevant actions.

First we want to define a scripting action ‘turn to direction’ which trans-
forms a source direction vector into a destination direction by means of par-
ticular vector processing predicates. We know that the result of a vector cross
product of two vectors v1 and v2 is a normal vector, i.e. a vector that is per-
pendicular to the original vectors v1 and v2. Such a normal vector defines the
axis of the rotation and the corresponding angle θ between these two vectors
can be calculated by the following formula:

cosθ =
v1 · v2

|v1| × |v2|

Therefore, a scripting action ’turn to direction’ can be defined as:

16 Zhisheng Huang, Anton Eliëns and Cees Visser

Fig. 8. Look at Ball

script(turn_to_direction(Object,SrcVector,DestVector),Action):-

Action = seq([

do(vector_cross_product(SrcVector,DestVector,vector(X,Y,Z),R)),

do(setRotation(Object,X,Y,Z,R))]).

where the predicate vector cross product(S,D, V,R) calculates the cross
product V of the vector S and the vector D, as well as the angle R between
the two vectors.

In general, embodied agents turn to the ball along the XZ plane, there-
fore we can ignore the Y-parameters. The Y-parameters are useful only when
we want to calculate a rotation for the agent’s head so that it can look
down to the ball. H-anim avatars always face to the +Z direction by default.
Thus, the source vector is 〈0, 0, 1〉. The destination vector can be calculated
from the positions of the agent and the ball. Therefore, the scripting action
‘look at position’ can be defined as follows:

script(look_at_position(Agent,X1,_Y1,Z1),Action):-

Action = seq([do(getPosition(Agent,X,_Y,Z)),

do(Xdif is X1-X),

do(Zdif is Z1-Z),

turn_to_direction(Agent,vector(0.0,0.0,1.0),

vector(Xdif,0.0,Zdif))]).

Based on the scripting action ‘look at position’, the scripting action ‘look at ball’
can be easily defined as follows:

script(look_at_ball(Agent,Ball),Action):-

Action = seq([do(getPosition(Ball, X1,Y1,Z1)),

look_at_position(Agent,X1,Y1,Z1)]).

In the following, we want to define a script action run to ball(Agent,Ball,N)
so that the agent can continually run to the ball in N steps. Similarly we use
the do-operator to obtain the current position of the agent and the ball first,
from which we can calculate the increments of the positions in X and Z di-
mensions.

STEP: A Scripting Language for Embodied Agents 17

script(run_to_ball(Agent,Ball,Steps),Action):-

Action = seq([do(getPosition(Agent,X,_,Z)),

do(getPosition(Ball, X1,_,Z1)),

do(StepLengthX is (X1-X)/Steps)),

do(StepLengthZ is (Z1-Z)/Steps)),

run_steps(Agent, increment(StepLengthX,0.0,

StepLengthZ),Steps)]).

The scripting action run steps(Agent, Increment,N) describes an action
in which the agent changes its position in N steps. This action can be defined
as a recursive action:

script(run_steps(Agent,increment(X,Y,Z),1),Action):-

Action = par([run_pose(Agent),

move(Agent,increment(X,Y,Z),fast)]).

script(run_steps(Agent,increment(X,Y,Z),Steps),Action):-

Action = seq([par([run_pose(Agent),

move(Agent,increment(X,Y,Z),fast)]),

do(Steps1 is Steps - 1),

run_steps(Agent,increment(X,Y,Z),Steps1)]).

4.4 Touch: An Inverse Kinematics Problem

A typical inverse kinematics problem is the calculation of the rotations of
arms and wrists of embodied agents so that their hands can touch an object.
As discussed in [20], many research efforts deal with this kind of problems.
Finding solutions to this kind of inverse kinematics problems usually involves
complex computations, like solving differential equations or applying particu-
lar non-linear optimizations [3, 20]. As discussed above, we can use high-level
interaction operators to access the computational capabilities of the meta
language in order to find the solutions by using the same methods which
have been proposed in the literature. However, adopting these analytical and
numerical methods to solve inverse kinematics problems may cause some per-
formance problems for web applications. Therefore, one of our concerns is to
find an acceptable trade-off between performance and realistic animations.

To illustrate this, we will discuss a ‘touch’ example in more detail to show
how the scripting language STEP can be used to solve some real-time inverse
kinematics problems with a satisfying performance result. To simplify the
problem, embodied agents are designed to behave like this: they will touch
an object by using their hands if the object is reachable, otherwise they will
point their hands in the direction of the object. In addition, we will ignore
the upper and lower limits of the rotations of the shoulder and elbow joints.
In particular, we assume that the elbow joint has enough degrees of freedom
for an appropriate solution.

This simplified ‘touch’ problem can be described as: given an agent Agent
and a position 〈x0, y0, z0〉 of an object, try to set the rotations of the joints of

18 Zhisheng Huang, Anton Eliëns and Cees Visser

the shoulder and the elbow so that the hand of the agent can touch exactly
the position if the position is reachable. Suppose that the length of the upper
arm is u, the length of the forearm is f , and the distance between the shoulder
center 〈x3, y3, z3〉 and the destination position 〈x0, y0, z0〉 is d. The position
〈x0, y0, z0〉 is reachable if and only if d ≤ u + f if we ignore the upper and
lower limits of the joint rotations. From the cosine law we know that if the
object is reachable, then α, the angle between the upperarm and the forearm,
can be calculated from:

α = arc cos(
u2 + f2 − d2

2uf
)

Furthermore, if v is the direction vector which points to the destination posi-
tion from the shoulder center, v0 the default direction vector of the arm, and
v1 the destinating direction vector of the upperarm (Figure 9), then the angle
β between the vector v and v1 is given by:

β = arc cos(
u2 + d2 − f2

2ud
)

if the object is within the agent’s reach.

Fig. 9. Inverse Kinematics of Touch

If the position is not reachable, then α = π and β = 0 so that the arm will
point to the direction of the destination position. Moreover, if d ≈ 0, then the

STEP: A Scripting Language for Embodied Agents 19

destination position is close to the shoulder center. In this case, we set α = 0
and β = 0. We can define a scripting action to realize the functions for α and
β as follows:5

script(getABvalue(Agent,position(X0,Y0,Z0),Hand,A,B),Action):-

Action = seq([

getDvalue(Agent,position(X0,Y0,Z0),Hand, D),

get_upperarm_length(Agent,L1),

get_forearm_length(Agent,L2),

do(D1 is L1 + L2),

if_then_else(sign(D1-D)>sign(0.001-D),

seq([do(cosine_law(L1,L2,D,A)),

do(cosine_law(L1, D, L2, B))]),

seq([do(A is 1.57*(1+sign(D-0.001))),

do(B is 0.0)]))]).

The predicate getDvalue is an action which calculates the distance D be-
tween the shoulder center and the destination touch position for an agent.
Suppose that the destination position 〈x0, y0, z0〉 is relative to the coordinate
system of the agent body at which the agent is positioned in the default posi-
tion and orientation of H-anim avatars, namely, it faces to the +Z direction
at the position 〈0, 0, 0〉. The action getDvalue can be defined by obtaining
the positions of the shoulder. In the following, we will define a ’touch’ action
for relative positions first. We call the ‘touch’ action for agents with arbitrary
position and arbitrary orientation a ’touch’ action for an absolute position.
We will show how the ‘touch’ action for absolute positions can be based on a
‘touch’ action for relative positions.

The cross product v0 × v, i.e. a normal vector n = 〈xn, yn, zn〉, can be
considered as a normal vector for v0 and v1, which defines the plane in which
the arm turns from its default rotation to a destination rotation. This means
that we require that the vector v1 is in the same plane as the vectors v and v0 so
that the arm will turn close to the destination position via a shortest path. The
angle γ between v0 and v, can be calculated with the vector predicates, like
those that are used in the last example. Thus, the rotation for the elbow joint
is 〈xn, yn, zn, π−α〉, and the rotation for the shoulder joint is 〈xn, yn, zn, γ−β〉.

The vector v can be calculated by using the following script, considered
that the destination position is a relative one.

script(getVvalue(Agent,position(X0,Y0,Z0),Hand,V),Action):-

Action = seq([

get_shoulder_center(Agent,Hand, position(X2,Y2,Z2)),

do(direction_vector(position(X2,Y2,Z2),position(X0,Y0,Z0),V))]).

where the predicate get shoulder center gets the position of the shoulder
center, and the predicate direction vector obtains a direction vector of the two
5 The predicate getABvalue(Agent, position(X0, Y 0, Z0), Hand, A, B) means that

for the agent Agent and the destination position (X0, Y 0, Z0) of the Hand, the
value of α is A, and the value of β is B.

20 Zhisheng Huang, Anton Eliëns and Cees Visser

positions. It is easy to define these two predicates at the STEP level. However,
the predicate direction vector is already available in DLP in order to obtain
a better performance.

Now, we define the scripting action ‘touch’ for relative positions with the
left hand as follows:

script(touch(Agent, position(X0,Y0,Z0),l),Action):-

Action = seq([

getABvalue(Agent,position(X0,Y0,Z0),l,A,B),

do(R1 is 3.14-A),

getVvalue(Agent,position(X0,Y0,Z0),l,V),

get_arm_vector(Agent,l,V0),

do(vector_cross_product(V0,V,vector(X3,Y3,Z3),C)),

do(R2 is C-B),

par([turn(Agent,l_shoulder,rotation(X3,Y3,Z3,R2),fast),

turn(Agent,l_elbow,rotation(X3,Y3,Z3,R1),fast),

turn(Agent,l_wrist,rotation(X3,Y3,Z3,-0.5),fast)])]).

Although we do not calculate the rotation for the wrist joint, we can adjust
the rotation of the wrist joint based on the same normal vector, so that the
hand can rotate a little bit to the position to achieve more realism. The ‘touch’
action with the right hand can be defined similarly.

Finally, we can define the ‘touch’ action for absolute positions in terms
of the ‘touch’ action for relative positions, by the translation of the absolute
position into a relative position, based on the agent’s current position and
orientation.

script(touch_absolutePosition(Agent,position(X1,Y1,Z1), Hand),Action):-

Action = seq([do(getPosition(Agent,X,Y,Z)),

do(getRotation(Agent, X2,Y2,Z2,R)),

do(X3 is X1-X),

do(Y3 is Y1-Y),

do(Z3 is Z1-Z),

do(R1 is -R),

do(position_rotation(position(X3,Y3,Z3),

rotation(X2,Y2,Z2,R1),position(X4,Y4,Z4))),

touch(Agent,position(X4,Y4,Z4), Hand)]).

where the predicate position rotation(P1, R, P2) gets the new position
P2 for a given position P1 after the rotation R.

Several touch situations based on this scripting action are shown in Figure
10. The tests show that STEP does not cause serious performance problems
for this kind of inverse kinematics problem. Currently the computation time
for each touch action is less than 50 milliseconds on a PC with a 500 mhz
CPU and 128 MB memory, a low-end computer nowadays, under Windows
NT running standard processes. There is still much room for improvement at
the STEP level and the DLP meta language level. Therefore, the scripting
language STEP can be used to achieve certain real-time inverse kinematics
effects with a satisfying realism without serious performance problems.

STEP: A Scripting Language for Embodied Agents 21

Fig. 10. Touch a Ball

5 Related Work

Our work is close to Perlin and Goldberg’s Improv system. In [16], Perlin and
Goldberg propose Improv, which is a system for scripting interactive actors in
virtual worlds. STEP is different from Perlin and Goldberg’s in the following
aspects: First, STEP is based on the H-anim specification, i.e. VRML-based,
which is convenient for Web applications. Secondly, we separate the scripting
language from the agent architecture. Therefore, it is relatively easy for users
to use the scripting language. Also, Signing Avatar6 has a powerful scripting
language. However, we wish to state that our scripting language is based
on dynamic logic, and has powerful abstraction capabilities and support for
parallelism.

In [4], Badler et al. discuss the system of Parameterized Action Representa-
tion (PAR), which provides an approach to use natural language instructions
for virtual agents. Similar to STEP, PAR supports the specification of complex
actions for agents, like pre- and post-conditions. PAR uses a special syntax
and has many built-in notions. STEP is more similar to Funge’s CML (Cogni-
tive Modeling Language) [8] 7, although CML is not VRML/X3D and H-anim
based. STEP shares many common operators with CML, like sequences, test,
non-deterministic choice, and conditional operators. CML is an implementa-
tion of complex actions within the situation calculus, an action logic based
on first order predicate logic. However, STEP is based on dynamic logic in
which there is a clear distinction between a sub-language for actions and a
meta language for states. As discussed before, such a distinction is very useful
for both the development of fully-functional intelligent agents by using a meta
language, and the realization of scripting actions by using a scripting language
for a better performance.
6 http://www.signingavatar.com
7 http://www.dgp.toronto.edu/∼funge/cml.html

22 Zhisheng Huang, Anton Eliëns and Cees Visser

In [17], Prendinger et al. are also using a Prolog-based scripting approach
for animated characters but they focus on higher-level concepts such as affect
and social context. In [18], Prendinger et al. discuss the systems MPML and
SCREAM, an approach of scripting the bodies and minds of life-like charac-
ters.

XSTEP shares a number of interests with the VHML (Virtual Human
Markup Language) community8, which is developing a suite of markup lan-
guage for expressing humanoid behavior, including facial animation, body
animation, speech, emotional representation, and multimedia. We see this ac-
tivity as complementary to ours, since our research proceeds from technical
feasibility, that is how we can capture the semantics of humanoid gestures and
movements within our dynamic logic, which is implemented on top of DLP.

6 Conclusions

In this chapter we have proposed the scripting language STEP for embodied
agents, in particular for their communicative acts, like gestures and postures.
STEP will be extended for other communicative acts like facial expressions or
speech. We have discussed several principles of scripting language design for
embodied agents. These principles are justified by a number of typical exam-
ples of how the scripting language STEP can be used. The first two examples
‘walk’ and ‘run’ show that STEP can be used for authors to design a rich
number of variants of scripting actions. The third example demonstrates the
capabilities of STEP for applications which involve interactions with virtual
worlds. The fourth ‘touch’ example discusses the possibilities of using STEP
for real-time agents with inverse kinematics. The experiments show that STEP
can be used for embodied agents and applications of inverse kinematics with
a satisfying performance.

References

1. Allen, J.F., Maintaining Knowledge about Temporal Intervals, Communications
of the ACM 26, 11, 832-843, November 1983.

2. Allen, J.F., Time and time again: The many ways to represent time, Journal of
Intelligent Systems 6, 4, 341-356, July 1991.

3. Badler, N., Manoochehri, K., and Walters, G., Articulated figure positioning by
multiple constraints, IEEE Computer Graphics Applications, 7(6), 28-38, 1987.

4. Badler N., Bindiganavale, R., Bourne, J., Palmer, M., Shi, J., and Schuler, W.,
A Parameterized Action Representation for Virtual Human Agents, Workshop
on Embodied Conversational Characters, Lake Tahoe, California, 1998.

5. Eliëns, A., DLP, A Language for Distributed Logic Programming, Wiley, 1992.

8 http://www.vhml.org

STEP: A Scripting Language for Embodied Agents 23

6. Eliëns, A., Principles of Object-Oriented Software Development, Addison-
Wesley, 2000.

7. Faure, F., et al., Dynamic analysis of human walking, Proceedings of the 8th
Workshop on Computer Animation and Simulation, Budapest, 1997.

8. Funge, J., Making Them Behave: Cognitive Models for Computer Animation,
University of Toronto, 1998.

9. Harel, D., Dynamic Logic, Handbook of Philosophical Logic, Vol. II, D. Reidel
Publishing Company, 497-604, 1984.

10. Harel, D., Kozen, D., and Tiuryn, J., Dynamic Logic, MIT Press, 2000.
11. Huang, Z., Eliëns, A., van Ballegooij, A., and de Bra, P., A Taxonomy of Web

Agents, Proceedings of the 11th International Workshop on Database and Expert
Systems Applications, IEEE Computer Society Press, 765-769, 2000.

12. Huang, Z., Eliëns, A., and Visser, C., Programmability of Intelligent Agent
Avatars, Proceedings of Agents’01 Workshop on Embodied Agents, 2001.

13. Huang, Z., Eliëns, A., and Visser, C., Implementation of a Scripting Language
for VRML/X3D-based Embodied Agents, Proceedings of the 2003 Web 3D Con-
ference, ACM Press, 2003.

14. Huang, Z., Eliëns, A., and Visser, C., XSTEP: a Markup Language for Em-
bodied Agents, Proceedings of the 16th International Conference on Computer
Animation and Social Agents(CASA’2003), IEEE Computer Society Press, 2003.

15. Huang, Z., Eliëns, A., and Visser, C., Formal Semantics of STEP: a dynamic
logic approach, Research report, Vrije Universiteit Amsterdam, 2003.

16. Perlin, K., and Goldberg, A., Improv: A System for Scripting Interactive Actors
in Virtual Worlds, ACM Computer Graphics, Annual Conference Series, 205-
216, 1996.

17. Prendinger, H., Descamps, S., and Ishizuka, M., Scripting affective commu-
nication with life-like characters in web-based interaction systems, Journal of
Applied Artificial Intelligence, 16, 519-553, 2002.

18. Prendinger, H., Saeyor, S., Ishizuka, M., MPML and SCREAM: Scripting the
bodies and minds of life-like characters. In: Life-like Characters. Tools, Affective
Functions and Applications, ed. by Prendinger, H., Ishizuka, M. (Springer 2003).
This volume.

19. Rohr, K., Towards Model-based Recognition of Human Movements in Image
Sequences. Computer Vision, Graphics, and Image Processing (CVGIP): Image
Understanding, 59(1), 94-115, 1994.

20. Tolani, D., Goswami, A., and Badler, N., Real-Time Inverse Kinematics Tech-
niques for Anthropomorphic Limbs, Graphical Models, 62(5), 353-388, 2000.

Index

3d web agents, 1

Cognitive Modeling Language(CML),
21

cognitive robots, 1

distributed logic programming language,
2

DLP, 2
dynamic logic, 2, 10

embodied agents, 1
gesture, 1
interaction with virtual worlds, 15
posture, 1

gesture, 1

H-anim specification, 2

Improv, 21
inverse kinematics, 17

logic programming language, 2

MPML, 22

Parameterized Action Representation
(PAR), 21

posture, 1
Prolog, 2

run, 14

SCREAM, 22
scripting language, 1

principles, 3
STEP, 1

temporal relations, 11
touch, 17

VHML, 22
VRML, 2

walk, 12
web agents, 1

X3D, 2

