4. multimedia platforms

with DirectX 9 digital convergence becomes a reality

learning objectives

After reading this chapter you should be able to characterize the functionality
of current multimedia platforms, to describe the capabilities of GPUs, to
mention the components of the Microsoft DirectX 9 SDK, and to discuss
how to integrate 3D and video.

Almost 15 years ago I bought my first multimedia PC, with Windows 3.1
Media Edition. This setup included a video capture card and a 4K baud modem.
It was, if I remember well, a 100 Mhz machine, with 16 Mb memory and a 100
Mb disk. At that time, expensive as it was, the best I could afford. Some 4 years
later, I acquired a Sun Sparc 1 multimedia workstation, with a video capture card
and 3D hardware accelerator. It allowed for programming OpenGL in C++ with
the GNU gcc compiler, and I could do live video texture mapping at a frame
rate of about one per second. If you consider what is common nowadays, a 3Ghz
machine with powerful GPU, 1 Gb of memory, a 1.5Mb cable or ADSL connection
and over 100 Gb of disk space, you realize what progress has been made over the
last 10 years.

In this chapter, we will look in more detail at the capability of current multi-
media platforms, and we will explore the functionality of the Microsoft DirectX 0
platform. In the final section of this chapter, I will then report about the work I
did with the DirectX 9 SDK to implement the ViP system, a presentation system
that merges video and 3D.

2 multimedia platforms

4.1 developments in hardware and software

Following Moore’s law (predicting the doubling of computing power every eigh-
teen months), computer hardware has significantly improved. But perhaps more
spectacular is the growth in computing power of dedicated multimedia hard-
ware, in particular what is nowadays called the GPU (graphics processing unit).
In Fernando and Kilgard (2003), he NVIDIA GeForce FX GPU is said to have
125 million of transistors, whereas the Intel 2.4GHz Pentium 4 contains only 55
million of transistors. Now, given the fact that the CPU (central processing unit)
is a general purpose, or as some may like to call it, universal device, why is it
necessary or desirable to have such specialized hardware, GPUs for graphics and,
to be complete DSPs (digital signal processors) for audio?

a little bit of history

Almost everyone knows the stunning animation and effects in movies made pos-
sible by computer graphics, as for example the latest production of Pixar, The
Incredibles. Such animation and effects are only possible by offline rendering,
using factories of thousands of CPUs, crunching day and night to render all the
frames.

At the basis of rendering lies traditional computer graphics technology. That
is, the transformation of vertices (points in 3D space), rasterization (that is
determining the pixel locations and pixel properties corresponding to the vertices),
and finally the so-called raster operations (determining whether and how the
pixels are written to the framebuffer). OpenGL, developed by SGI was the first
commonly available software API (application programmers interface) to control
the process of rendering. Later, Microsoft introduced Direct3D as an alternative
for game programming on the PC platform.

The process outlined above is called the graphics pipeline. You put models,
that is collections of vertices, in and you get (frames of) pixels out. This is indeed a
simplification in that it does not explain how, for example, animation and lighting
effects are obtained. To gain control over the computation done in the graphics
pipeline, Pixar developed Renderman, which allows for specifying transformations
on the models (vertices) as well as operations on the pixels (or fragments as they
are called in Fernando and Kilgard (2003)) in a high level language. As vertex
operations you may think of for example distortions of shape due to a force such as
an explosion. As pixel operations, the coloring of pixels using textures (images)
or special lighting and material properties. The languages for specifying such
vertex or pixel operations are collectively called shader languages. Using offline
rendering, almost anything is possible, as long as you specify it mathematically
in a computationally feasible way.

The breakthrough in computer graphics hardware was to make such shading
languages available for real-time computer graphics, in a way that allows, as Fer-
nando and Kilgard (2003) phrase it, 3D game and application programmers and
real-time 3D artists to use it in an effective way.

Leading to the programmable computer graphics hardware that we know

developments in hardware and software 3

today, Fernando and Kilgard (2003) distinguish between four generations of 3D
accellerators [
4 generations of GPU

e Before the introduction of the GPU, there only existed very expensive specialized
hardware such as the machines from SGI.

e The first generation of GPU, including NVIDIA TNT2, ATI Rage and 3dfx
Voodoo3, only supported rasterizing pre-transformed triangles and some limited
texture operations.

e The second generation of GPUs, which were introduced around 1999, included
the NVIDIA GeForce 2 and ATI Radeon 7500. They allowed for both 3D vertex
transformations and some lighting, conformant with OpenGL and DirectX 7.

e The tird generation GPUs, including NVIDIA GeForce 3, Microsoft Xbox and
ATI Radeon 8500, included both powerful vertex processing capabilities and some
pixel-based configuration operations, exceeding those of OpenGL and DirectX 7.

e Finally, the fourth generation of GPUs, such as the NVIDIA GeForce FX and ATI
Radeon 9700, allow for both complex vertex and pixel operations.

The capabilities of these latter generations GPUs motivated the development of
high level shader languages, such as NVIDIA Cg and Microsoft HLSL. High level
dedicated graphics hardware programming languages to control what may be
called the programmable graphics pipeline.

the (programmable) graphics pipeline

Before discussing shading languages any further, let’s look in some more detail at
the graphics pipeline. But before that you must have an intuitive grasp of what
is involved in rendering a scene.

Just imagine that you have created a model, say a teapot, in your favorite
tool, for example Maya or 3D Studio Max. Such a model may be regarded
as consisting of polygons, let’s say triangles, and each vertex (point) of these
triangles has apart from its position in (local) 3D space also a color. To render this
model it must first be positioned in your scene, using so-called world coordinates.
The world transformation is used to do this. The world transformation may
change the position, rotation and scale of your object/model. Since your scene is
looked at from one particular point of view we need to apply also a so-called view
transformation, and to define how our view will be projected on a 2D plane, we
must specify a projection transformation. Without going into the mathematical
details, we may observe that these transformations can be expressed as 4x4
matrices and be combined in a single matrix, often referred to as the world view
projection matriz, that can be applied to each of the vertices of our model. This
combined transformation is the first stage in the process of rendering;:

graphics pipeline

1. vertex transformation — apply world, view, projection transforms

1 The phrase GPU was introduced by NVIDIA to indicate that the capabilities of the GPU
far exceed those of the VGA (video graphics array) originally introduced by IBM, which is
nothing more than a dumb framebuffer, requiring updates from the CPU.

4 multimedia platforms

2. assembly and rasterization — combine, clip and determine pixel locations
3. fragment texturing and coloring — determine pixel colors
4. raster operations — update pixel values

The second phase, roughly, consists of cleaning up the collection of (transformed)
vertices and determining the pixel locations that correspond to the model. Then,
in the third phase, using interpolation or some more advanced method, coloring
and lighting is applied, and finally a sequence of per-fragment or pixel operations
is applied. Both OpenGL and Direct3D support among others an alpha (or
transparency) test, a depth test and blending. The above characterized the fixed
function graphics pipeline. Both the OpenGL and Direct3D API support the fixed
function pipeline, offering many ways to set relevant parameters for, for example,
applying lights, depth and texturing operations.

To understand what the programmable graphics pipeline can do for you, you
would best look at some simple shader programs. In essence, the programmable
pipeline allows you to perform arbitrary vertex operations and (almost) arbitrary
pixel operations. For example, you can apply a time dependent morphing opera-
tion to your model. Or you can apply an amplification to the colors of your scene.
But perhaps more interestingly, you can also apply an advanced lighting model
to increase realism.

A simple morphing shader in ViP, see section 4.3.

a simple shader

When I began with programming shaders myself, I started with looking at ex-
amples from the DirectX SDK. Usually these examples were quite complex, and
my attempt at modifying them often failed. Being raised in theoretical computer
science, I changed strategy and developed my first shader program called id, which
did nothing. Well, it just acted as the identity function. Then later I used this
program as a starting point for writing more complex shader programs.

The id shader program is written in the DirectX 9 HLSL (high level shader
language), and makes use of the DirectX Effects framework, which allows for
specifying multiple vertex and pixel shaders, as well as multiple techniques and
multiple passes in a single file.

developments in hardware and software)

The program starts with a declaration, specifying the global names for respec-
tively the texture and the world/view /projection matrix. Also a texture sampler
is declared, of which the function will become clear later.

HLSL declarations

texture tex;
float4x4 wvp; // World * View * Projection matriz

sampler tex_sampler = sampler_state

{
b

texture = /<tex/>;

It then defines, respectively, the vertex shader input and output, as structures.
This declaration follows the standard C-like syntax for specifying elements in a
structure, except for the identifiers in capitals, which indicate the semantics of
the fields, corresponding to pre-defined registers in the GPU data flow.

vertex shader data flow

struct vsinput {
float4 position : POSITION;
float3 normal : NORMAL;
float2 uv : TEXCOORDO;

%

struct vsoutput {
float4 position : POSITION; // vertex position
float4 color : COLORO; // vertex diffuse color
float2 uv : TEXCOORDO; // vertex texture coords

}s

When the vs_id function, given below, is called, the input arguments are filled
by the registers corresponding to the semantics pf the input structure. Similarly,
the output results in setting the registers corresponding to the semantics of the
output structure.

vertex shader

vsoutput vs_id(vsinput vx) {
vsoutput vs;

vs.position = mul(vx.position, wvp);
vs.color = color;
VS.UV = vX.uv;

return vs;

The wvs_id function does exactly what the fixed graphics pipeline would do when
transforming vertices. It applies the transformation to the vertex and passes both
color and texture sampling coordinates to the pixel shader.

6 multimedia platforms

The pixel shader has a single color as output, which is obtained by sampling
the texture, using the (interpolated) vertex color to modify the result.

pixel shader

struct psoutput

float4 color : COLORO;
h

psoutput ps_id(vsoutput vs)

{

psoutput ps;
ps.color = tex2D(tex_sampler, vs.uv) * vs.color;

return ps;

}

Note that the tex_sampler comes from the global declaration above. The function
text2D is a built-in for obtaining a color value from the sampler.

Finally, for each technique and each pass within a technique, in our case one
technique with one pass, it must be indicated which function must be used for
respectively the vertex shader and the pixel shader.

technique selection

technique render_id

{
pass PO
{
VertexShader = compile vs_1_1 vs_id();
PixelShader = compile ps_2_0 ps_id();
}
}

To make actual use of this program, the effect must be invoked from a DirectX
or OpenGL program using the interface offered by the API.

FEzxamples of Impasto, see examples — impasto

developments in hardware and software 7

a morphing shader Slightly more complex is an example adapted from the
morphing shader that can be found in ATT’s Rendermonkey. To make a shader
that morphs a cube into a ball and back, you must manipulate the vertices and
the normals of the cube. For this to work your cube must have sufficient vertices,
which is a property you can set in the tool that you use to make a cube.

morphing (vertex) shader

float3 spherePos = normalize(vx.position.xyz);
float3 cubePos = 0.9 * vx.position.xyz;

float t = frac(speed * time);
t = smoothstep(0, 0.5, t) - smoothstep(0.5, 1, t);

// find the interpolation factor
float Irp = lerpMin + (lerpMax - lerpMin) * t;

// linearly interpolate the position and normal
vx.position.xyz = lerp(spherePos, cubePos, Irp);
vx.normal = lerp(sphereNormal, cubeNormal, Irp);

// apply the transformations
vs.position = mul(wvp, vx.position);

The example uses the built-in function lerp, that performs linear interpolation
between two values using an interpolation factor between 0 and 1.

color amplification As an example of a pixel shader, look at the fragment defin-
ing an amplification of coloring below. It merely amplifies the RGB components
of the colors when this exceeds a certain treshold.

coloring (pixel) shader

float4 x = tex2D(tex_sampler, vs.uv);

if (xr > x.g && x.r > x.b) { xr *= xi; x.g *= xd; x.b *= xd; }

else if (x.g > xr && x.g > x.b) { x.g *= xi; xr *= xd; x.b *=xd; }
else if (x.b > xr && x.b > x.g) { x.b *= xi; x.r *= xd; x.g *= xd; }
ps.color = x;

When you develop shaders you must keep in mind that a pixel shader is generally
invoked far more often than a vertex shader. For example a cube can be defined
using 12 triangles of each tree vertices. However, the number of pixels generated
by this might be up to a million. Therefore any complex computation in the pixel
shader will be immediately noticable in the performance. For example, a slightly
more complex pixel shader than the one above makes my NVIDIA GeForce FX
5200 accelerated 3 GHz machine drop to 5 frames per second!

8 multimedia platforms

rendering of van Gogh painting with Impasto

example(s) — impasto

IMPaST(El is a realistic, interactive model for paint. It allows the user to create
images in the style of famous painters as in the example above, which is after
a painting of van Gogh. The impasto system implements a physical model of
paint to simulate the effect of acrylic or oilpaint, using Cg shaders for real-time
rendering, Baxter et al. (2004).

research directions — the art of shader programming

At first sight, shader programming seems to be an esoteric endeavor. However, as
already indicated in this section, there are a number of high level languages for
shader programming, including NVIDIA Cg and Microsoft HLSL. Cg is a platform
independent language, suitable for both OpenGL and Direct3D. However, counter
to what you might expect also Microsoft HLSL can be used for the OpenGL
platform when you choose the proper runtime support.

To support the development of shaders there are, apart from a number of
books, some powerful tools to write and test your shaders, in particular the already
mentioned ATI Rendermonkey tool, the CgFx tool, which both produce HLSL
code, as well as the Cg viewer and the effect tool that comes with the Microsoft
DirectX 9 SDK.

Although T am only a beginning shader programmer myself, I find it truly
amazing what shaders can do. For a good introducion I advice Fernando and
Kilgard (2003). Futher you may consult Engel (2004a), Engel (2004b) and Engel
(2005). Written from an artist’s perspective is St-Laurent (2004).

E]

HiirectX
oitfafDirgoth 84 &

Stacks and stacks of books on DirectX

2gamma.cs.unc.edu/IMPaSTo

DirectX 9 SDK 9

4.2 DirectX 9 SDK

Many of the multimedia applications that you run on your PC, to play games,
watch video, or browse through your photos, require some version of Direct X to
be installed. The most widely distributed version of Direct X is 7.0. The latest
version is the october release of 2004. This is version 9c. What is DirectX? And,
more importantly, what can you do with it? In the DirectX documentation that
comes with the SDK, we may read:

DirectX

Microsoft DirectX is an advanced suite of multimedia application program-
ming interfaces (APIs) built into Microsoft Windows; operating systems.
DirectX provides a standard development platform for Windows-based PCs
by enabling software developers to access specialized hardware features
without having to write hardware-specific code. This technology was first
introduced in 1995 and is a recognized standard for multimedia application
development on the Windows platform.

Even if you don’t use the DirectX SDK yourself, and to do that you must be a
quite versatile programmer, then you will find that the tools or plugins that you
use do depend on it. For example, the WildTangemEI game engine plugin makes
the DirectX 7 functionality available through both javascript and a Java interface.
So understanding what DirectX has to offer may help you in understanding and
exploiting the functionality of your favorite tool(s) and plugin(s).

DirectX 9.0 components

In contrast to OpenGL, the DirectX SDK is not only about (3D) graphics. In
effect, it offers a wide range of software APIs and tools to assist the developer of
multimedia applications. The components of the DirectX 9 SDK include:
DirectX 9 components

e Direct3D — for graphics, both 2D and 3D

e DirectInput — supporting a variety of input devices

e DirectPlay — for multiplayer networked games

e DirectSound — for high performance audio

e DirectMusic — to manipulate (non-linear) musical tracks

e DirectShow — for capture and playback of multimedia (video) streams

In addition there is an API for setting up these components. Also, DirectX
supports so-called media objects, which provide a standard interface to write audio
and video encoders, decoders and effects.

Altogether, this is a truly impressive and complex collection of APIs. One
way to become familiar with what the DirectX 9 SDK has to offer is to start
up the sample browser that is part of the SDK and explore the demos. Another
way is to read the online documentation that comes with the SDK, but perhaps a

3www.wildtangent.com

10 multimedia platforms

better way to learn is to make your choice from the large collection of introductory
books, and start programming. At the end of this chapter, I will provide some
hints about how to get on your way.

Direct3D

In the DirectX 9 SDK, Direct3D replaces the DirectDraw component of previous
versions, providing a single API for all graphics programming. For Direct3D
there is a set of simple, well-written tutorials in the online documentation, that
you should start with to become familiar with the basics of graphics programming
in DirectX.

Direct3D tutorials

e tutorial 1: creating a device

e tutorial 2: rendering vertices

e tutorial 3: using matrices

e tutorial 4: creating and using lights
e tutorial 5: using texture maps

e tutorial 6: using meshes

Before you start working with the tutorial examples though, you should acquire
sufficient skill in C++ programmingﬂ and also some familiarity with Microsoft
Visual Studio .NET.

One of the most intricate (that means difficult) aspects of programming Di-
rect3D, and not only for novices, is the creation and manipulation of what is
called the device. It is advisable to take over the default settings from an example,
and only start experimenting with more advanced setting after you gained some
experience.

DirectSound — the drumpad example

The DirectX SDK includes various utility libraries, for example the D3DX library
for Direct3D, to simplify DirectX programming.

As an example of a class that you may create with DirectSound, using such a
utility library, look at the drumpad below. The drumpad class can be integrated
in your 3D program, using DirectInput, to create your own musical instrument.
The header of the class, which is, with some syntactical modifications, taken from
the SDK samples section, looks as follows:

class drumpad {
public:
drumpad()
~drumpad();
bool initialize(DWORD dwNumElements, HWND hwnd);
bool load(DWORD dwID, const TCHAR* tcszFilename);

4 The DirectX 9 SDK also offers APIs for C# and VisualBasic .NET. See the research
directions at the end of this section.

DirectX 9 SDK 11

bool play(DWORD dwlID);
protected:

void CleanUp();

CSoundManager* m_lpSoundManager;

CSound ** m_lpSamples;

};

The interface offers some methods for creating and destroying a drumpad object,
initialization, loading sounds and for playing the sounds that you loaded. The
CSoundManager is a class offered by the utility library for DirectSound.

The play function is surprisingly simple.

bool drumpad::play(DWORD id) {
m_lpSamples|id] -> Stop();
m_lpSamples|id] -> Reset();
m_lpSamples|id] -> Play(0, 0);
return true;

The id parameter is a number that may be associated with for example a key
on your keyboard or some other input device. Using the drumpad class allows
you to make your own VJ program, as I did in the system I will describe in the
next section. In case you are not familiar with either C+-+ or object-oriented
programming, you should study object-oriented software development first. See
for example Eliens (2000).

DirectShow

DirectShow is perhaps the most powerful component of the DirectX SDK. It is the
component which made Mark Pesce remark that with the DirectX 9 SDK digital
convergence has become a realityﬂ A technical reality, that is, Pesce (2003).
As we have seen in chapter 3, working with multimedia presents some major
challenges:
multimedia challenges
e volume — multimedia streams contain large amounts of data, which must be
processed very quickly.
e synchronization — audio and video must be synchronized so that it starts and stops
at the same time, and plays at the same rate.
e delivery — data can come from many sources, including local files, computer
networks, television broadcasts, and video cameras.
e formats — data comes in a variety of formats, such as Audio-Video Interleaved
(AVI), Advanced Streaming Format (ASF), Motion Picture Experts Group (MPEG),
and Digital Video (DV).

5 It is historically interesting to note that Mark Pesce may be regarded as the inventor, or
initiator, of VRML, which was introduced in 1992 as the technology to realize a 3D web, as
interlinked collection of 3D spaces.

12 multimedia platforms

e devices — the programmer does not know in advance what hardware devices will
be present on the end-user’s system.

The DirectShow component was designed, as we learn from the online documenta-
tion, to address these challenges and to simplify the task of creating applications
by isolating applications from the complexities of data transports, hardware dif-
ferences and synchronization. The solution DirectShow provides is a modular
architecture that allows the developer to set up a data flow graph consisting of
filters. Such filters may be used for capturing data from, for example, a video
camera or video file, for deploying a codec, through the audio compression man-
ager (ACM) or video compression manager (VCM) interfaces, and for rendering,
either to the file system or in the application using DirectSound and DirectDraw
and Direct3D.

I | Application I

T
Commands e
-+ 1

DirectS how
EllscSstan [Filter Graph Manager | Legacy
Rl P e |
£ Codecs
Imternet Source Transfarm Rendering
Filters Filte r= Filters File
= = T T Swystemn

Ring 3
Ring 0

Hardware

B acodars | Sound —ard |

6

The diagram above, taken from the DirectX 9 SDK online documentation, shows
the relations between an application, the DirectShow components, and some of
the hardware and software components that DirectShow supports.

An interesting and convenient feature of the filter-based dataflow architecture
of DirectShow is SmartConnect, which allows the developer to combine filters by
indicating constraints on media properties such as format. The actual connections
then, which involves linking input pins to output pins, is done automatically by
searching for the right order of filters, and possibly the introduction of auxiliary
filters to make things match.

DepthCube, see example(s) — 3D vision

DirectX 9 SDK 13

DirectX application development

The examples that come with the DirectX‘9 SDK use an application utility
library, which includes a general application class that takes care of most of the
details of creating an application and rendering window, initialization and event
handling. For each of the SDK components there are numerous examples, ranging
in difficulty from beginners to expert level. There are also a number of examples
that illustrate how to mix the functionality of different SDK components, as for
example the projection of video on 3D, which we will discuss in more detail in the
next section.

3D vision Perspectra DepthCube

example(s) — 3D vision

Have you ever wondered how it would feel to be in Star Trek’s holodeck, or
experience your game in a truly spatial way, instead of on a flat LCD-display.
In Sullivan (2005), an overview is given of technology that is being developed to
enable volumetric display of 3D data, in particular the Perspecta swept-volume
display (middle) and LightSpace DepthCube (right), that uses a projector behind
a stack of 20 liquid-crystal screens.

The first approach of displaying volumetric data, taken by the Perspecta
swept-volume display, is to project a sequence of images on a rotating sheet
of reflective material to create the illusion of real volume. The psychological
mechanism that enables us to see volumes in this way is the same as the mechanism
that forces us to see motion in frame-based animation, at 24 frames per second,
namely persistence of vision.

LightSpace DepthCube uses a stack of 20 transparent screens and alternates
between these screens in a rapid way, thus creating the illusion of depth in a
similar way. In comparison with other approaches of creating depth illusion, the
solutions sketched above require no special eyewear and do not impose any strain
on the spectator due to unnatural focussing as for example with autostereoscopic
displays.

For rendering 3D images on either the Perspecta or DepthCube traditional
rendering with for example OpenGL suffices, where the z-coordinate is taken as
an indication for selecting a screen or depth position on the display. Rendering
with depth, however, comes at a price. Where traditional rendering has to deal

14 multimedia platforms

with, say 1024x748 pixels, the DepthCube for example needs to be able to display
1024x748x20, that is 15.3 million, vozels (the volumetric equivalent of a pixel) at
a comparable framerate.

research directions— the next generation multimedia platform

Factors that may influence your choice of multimedia development platform in-
clude:

e platform-dependence — both hardware and OS
e programming language — C/C++, Java, .NET languages
e functionality — graphics, streaming media

e deployment — PC/PDA, local or networked, web deployment

A first dividing line is whether you prefer to develop on/for Linux or Microsoft
windows. Another dividing line, indeed, is your choice of programming language,
C/C++, Java or .NET languages. Another factor that may influence your choice
is the functionality you strive for. For example, Managed DirectX, for the .NET
languages, provides only limited support for DirectShow and does not allow for
capturing live video from a DV camera. And finally, it matters what deployment
you wish to target for, mobile phone, PDAs or PCs, and whether you plan to
make stand-alone applications or applications that must run in a web browser.

Apart from the hard-core programming environments such as the Microsoft
DirectX 9 SDK, the Java Media Framework, OpenGL with OpenML extensions
for streaming media, or the various open source (game development) toolkits,
there are also high-level tools/environments, such as Macromedia Director MX,
that allow you to create similar functionality with generally less effort, but also
less control. In appendix E, a number of resources are listed that may assist you
in determining your choice.

Given the range of possible options it is futile to speculate on what the future
will offer. Nevertheless, whatever your choice is, it is good to keep in mind,
quoting Bill Gates:

Software will be the single most important force in digital entertainment over
the next decade.

It should not come as a surprise that this statement is meant to promote a new
initiative, XNA, which as the announcement says is targeted to help contain the
skyrocketing development costs and allow developers to concentrate on the unique
content that differentiates their games.

merging video and 3D 15

Animation in front of television news in ViP

4.3 merging video and 3D

In june 2003, I was approached by a theatre production company to advice on the
use of "VR in theatre". As described in more detail in section 9.3, I explored
what technology was available to realize such VR-augmented theatre. These
explorations resulted in the development of the ViP system, that I once announced
as follows:

www.virtualpoetry.tv

The ViP system enhances your party with innovative multimedia presenta-
tions.

It supports multiple webcams and digital video cameras, mized with video
and images, enhanced by 3D animations and text, in an integrated fashion.

For your party, we create a ViP presentation, with your content and special
effects, to entertain your audience.

In the course of time, I continued working on the system and, although I do not
use it for parties, but rather for enlivening my lectures, it does include many of
the features of a VJ system, such as the drumpad described in 3.2.

The major challenge, when I started its development, was to find an effective
way to map live video from a low/medium resolution camera as textures onto
3D geometry. I started with looking at the ARToolkit but I was at the time not
satisfied with its frame rate. Then, after some first explorations, I discovered
that mapping video on 3D was a new (to some extent still experimental) built-in
feature of the DirectX 9 SDK, in the form of the VMR (video mixing renderer)
filter.

the Video Mixing Renderer filter

The VMR filter is a compound class that handles connections, mixing, composit-
ing, as well as synchronization and presentation in an integrated fashion. But
before discussing the VMR in more detail, let’s look first at how a single media
stream is processed by the filter graph, as depicted in the figure below.

16 multimedia platforms

Parser T # Decoder T = Renderer
I I
i T I T
Sy | Allocator 1 | A Allocator 2 1
GetBuffer() | GetBuffer() w
‘il" Decoded
Video
Compressed Frame
Video Frame

Holding wuntil
Waiting to decode presentation time

10

Basically, the process consists of the phases of parsing, decoding and render-
ing. For each of these phases, dependent on respectively the source, format and
display requirements, a different filter may be used. Synchronization can be either
dtermined by the renderer, by pulling new frames in, or by the parser, as in the
case of live capture, by pushing data on the stream, possibly causing the loss of
data when decoding cannot keep up with the incoming stream.

The VMR was originally introduced to allow for mixing multiple video streams,
and allowed for user-defined compositor and allocator/presenter components.

IVMRSurfaceAllocator

|

S 1 VMR 1 5 Default
ource - AP
: z/ c g—
i % 77
g
Pin Mixer / Source2 | +++ | YMRZ o Z: E
@
Pin: i z §
I Core Syncronization Unit l Source 3 | +- VMR 3 g
VMR Filter

IVMRSurfaceAllocatorNotify IVMRImagePresenter

(a) VMR filter (b) multiple VMRs

11

Before the VMRY, images could be obtained from the video stream by inter-
cepting this stream and copying frames to a texture surface. The VMR9, however,
renders the frames directly on Direct3D surfaces, with (obviously) less overhead.
Although the VMRY supports multiple video pins, for combining multiple video
streams, it does not allow for independent search or access to these streams. To
do this you must deploy multiple video mixing renderers that are connected to
a common allocator/presenter component, as depicted on the right of the figure
above (b).

When using the VMR9 with Direct3D, the rendering of 3D scenes is driven
by the rate at which the video frames are processed.

merging video and 3D 17

Lecture on digital dossier for Abramovic, in ViP

12

the ViP system

In developing the ViP system, I proceeded from the requirement to project live
video capture in 3D space. As noted previously, this means that incoming video
drives the rendering of 3D scenes and that, hence, capture speed determines the
rendering frame rate.

I started with adapting the simple allocator/presenter example from the Di-
rectX 9 SDK, and developed a scene management system that could handle
incoming textures from the video stream. The scene class interface, which allows
for (one-time) initialization, time-dependent compositing, restore device setting
and rendering textures, looks as follows:

class scene {
public:
virtual int init(IDirect3DDevice9*); // initialize scene (once)
virtual int compose(float time); // compose (in the case of an
animation,)
virtual int restore(IDirect3DDevice9*); // restore device settings
virtual int render(IDirect3DDevice9* device, IDirect3DTexture9*
texture);
protected:

g

The scene graph itself was constructed as a tree, using both arrays of (sub) scenes
as well as a dictionary for named scenes, which is traversed each time a video
texture comes in. The requirements the scene management system had to satisfy
are further indicated in section 9.3. Leaving further details aside, observe that
for the simple case of one incoming video stream, transferring the texture by
parameter suffices.

Later on, I adapted the GamePlayer which uses multiple video mixing ren-
deres, and then the need arose to use a different way of indexing and accessing the
textures from the video stream(s). So, since it is good practice in object-oriented

18 multimedia platforms

software engineering to suppress parameters by using object instance variables,
the interface for the scene class changed into:

class scene {
public:
virtual int load(); // initialize scene (once)
virtual int compose(); // compose (in the case of an animation)
virtual int restore(); // restore device settings
virtual int render(); // display the (sub) scene
protected:

g

Adopting the scene class as the unifying interface for all 3D objects and compound
scenes proved to be a convenient way to control the complexity of the ViP
application. However, for manipulating the textures and allocating shader effects
to scenes, I needed a global data structure (dictionaries) to access these items
by name, whenever needed. As a final remark, which is actually more concerned
with the software engineering of such systems that its functionality per se, to be
able to deal with the multiple variant libraries that existed in the various releases
of DirectX 9, it was needed to develop the ViP library and its components as a
collection of DLLs, to avoid the name and linking clashes that would otherwise
occur.

installation reality of TV news

13

example(s) — reality of TV news
The Reality of TV mews project by Peter Frucht uses an interesting mix of
technology:

e live video capture from the device of an external USB2.0 TV card

e live audio capture from the soundcard (line in)

e display of live audio and video with java3D (had to be invented)

e autonomous 3D objects with a specified lifetime

merging video and 3D 19

e collision behaviour (had to be invented)
e changing of texture-, material- and sound characteristics at runtime

e dual-screen display with each screen rotated toward the other by 45 degrees about
the Y-axis

e 3D sound

In the project, as phrased by Peter Frucht, the permanent flow of the alternat-
ing adverts and news reports are captured live and displayed in a 3D virtual-reality
installation. The currently captured audio and video data is displayed on the
surface of 3D shapes as short loops. The stream enters the 3D universe piece
by piece (like water drops), in this way it is getting displaced in time and space -
news reports and advertising will be displayed partly in the same time. By colliding
to each other the 3D shapes exchange video material. This re-editing mizes the
short loops together, for instance some pieces of advertising will appear while the
newsreader speaks.

The software was developed by Martin Bouma, Anthony Augustin and Pe-
ter Frucht himself, with jdk 1.5, java3dd 1.31, Java Media Framework 2.1.le.
The primary technological background of the artist, Peter Frucht, was the book
CodeArﬂ Trogemann & Viehoff (2004), by his former professor from the Media
Art School in Cologne, Germany. The book is unfortunately only available in
German, and should be translated in English!

research directions— augmented reality

In the theatre production that motivated the development of the ViP system,
the idea was to have wearable LCD-projection glasses, with a head-mounted low
resolution camera. This setup is common in augmented reality applications, where
for example a historic site is enriched with graphics and text, laid on top of the
(video rendered) view of the site. Since realtime image analysis is generally
not feasible, either positioning and orientation information must be used, or
simplified markers indicating the significant spots in the scene, to determine what
information to use as an overlay and how it should be displayed.

The ARToolkitD is an advanced, freely available, toolkit, that uses fast marker
recognition to determine the viewpoint of a spectator. The information that is
returned on the recognition of a marker includes both position and orientation,
which may be used by the application to draw the overlay graphics in accordance
with the spectator’s viewpoint.

Augnented reality is likely to become a hot thing. In april 2005 it was featured
at BBC World®] with a tour through Basel.

6java.khm.de
Tartoolkit.sourceforge.net
8www.bbcworld.com/content /template_clickonline.asp?pageid=665&co_pageid=3

20 multimedia platforms

4.4 development(s) — gaming is a waste of time

The title of this section is borrowed from a lecture given for the VU computer
science student association (STORMEI), indeed, entitled gaming is a waste of time.
This admittedly provocative title was on the one hand meant to emphasize the
notion waste of time, since according to some of my collegue staff members my
involvement in game development and multimedia technology was a mere waste
of time, from some (from my point of view) obscure academic perspective. On
the other hand, it (that is the title) also raised a more serious issue. Not being a
game player myself, I do (in some sense) consider game playing a waste of time.
Not that I deny the learning or entertainment aspects of games. On the contrary!
Yes, as a passing of time, I prefer to keep myself busy with the construction of
games, that is the creative and technological aspects of game development. And,
likewise, I advise my students to do so.

When I was asked, in an alumni interview with the magazine of CW]E,
whether I believed in Second Life, my answr was simply: [believe in nothing!
I take Second Life as an object of study, not in the last place because it has
recently become so surprisingly popular. Yet, to be fair, Second Life has, after
closer inspection, also technological merits of its own right.

In Eliens et al. (2007), we wrote: from a technical perspective, Second Life
offers an advanced game engine that visitors and builders use (implicitly) in
their activities. For essential components of game engine(s), we refer to section
11.1. In the following table, we give a brief comparative technical overview of,
respectively, the Blaxxun Community Server (BIC), AlphaWorld (AW), the open
source Delta3D engine (D3D), the Half Life 2 Source SDK (HL2), and Second
Life (SL).

BIC AW D3D HL2 SL

in-game building - + +/- - 4
avatar manipulation + ++ +/- + 4+
artifical intelligence + - +/- + _

server-side scripts + - +/- 4 4
client-side scripts ++ - +/- + -

extensibility — + - ++ + +/-

open source - - T - +/-

open standards - - +/- - +/-

interaction +/- +/- 4++ ++ +/-
graphics quality +/- +/- 4+ 44 +
built-in physics - - + 4 4
object collision - - 4+ 4 +
content tool support +/- - ++ + -

Obviously, open source engines allow for optimal extensibility, and in this respect
the open source version of the SL client may offer many opportunities. Strong

9
10

www.storm.vu.nl
www.cwi.nl

development(s) — gaming is a waste of time 21

points of SL appear to be in-game building, avatar manipulation, and in compari-
son with BIC and AW buwilt-in physics and object collision detection. Weak points
appear to be content development tool support, and especially in comparison with
D3D and HL2 interaction. For most types of action-game like interaction SL is
simply too slow. This even holds for script-driven animations, as we will discuss
in the next section. In comparison with a game as for example Age of Empires
Hﬂ which offers in-game building and collaboration, Second Life distinguishes
itself by providing a 3D immersive physics-driven environment, like the 'real’ game
engines.

Although we do not intend to realize Clima Futura in Second Life, we actually
use flash to reach an audience as wide as possible, as a pilot parts of the game
could fruitfully be realized in the VU virtual campus in Second Life, in particular
the search for knowlegde, that is looking for an expert in a particular area of
(climate-related) research. A similar quest was implemented in our Half Life 2
based game VULife, Eliens and Bhikharie (2006), where the player had to visit
nine information spots, which resulted in displaying in a HUD nine square matrix
the location of a hidden treasure, which was then actually the power to use arms.
Technical issues in realizing Clima Futura in Second Life are support for ranking,
as well as meta-information with respect to locations where relevant information
can be found, which may be realized with the techniques indicated in section 2.4.

In the beginning, we wrote in Eliens et al. (2007b), we envisioned the realiza-
tion of our climate game as a first-person perspective role-playing game in a 3D
immersive environment as for example supported by the Half Life 2 SDK, with
which we gained experience in creating a search the hidden treasurﬂ game in
a detailed 3D virtual replica of our faculty. However, we soon realized that the
use of such a development platform, would require far too much work, given the
complexity of our design. So, instead of totally giving up on immersion, we decided
to use flash Vide% indeed as a poor-man’s substitute for real 3D immersion,
which, using flasH™*| interactive animations, has as an additional benefit that
it can be used to play games online, in a web browser. Together with the
Flex 2 SDKIE which recently became open source, flash offers a rich internet
application (RIA) toolkit, that is sufficiently versatile for creating (online) games,
that require, in relation to console games or highly realistic narrative games like
Half Life, a comparatively moderate development effort. To allow for component-
wise development, we choose for a modular architecture, with four basic modules
and three (variants) of integration modules, as indicated below.

11
12
13
14
15

www.ageofempires3.com
www.cs.vu.nl/~eliens/game
www.adobe.com/products/flash/video
www.adobe.com/devnet /flash
www.adobe.com/products/flex/sdk

22 multimedia platforms

Clima Futura architecture

module(s)
climate model(s) - action script module(s)
game play interaction - event-handler per game event
video content module - video fragment(s) and interaction overlays
minigame(s) - flash module(s) with actionscript interface

Clima Futura - integration of modules 1-4, plus server-side ranking

IR S

adapted versions — educational, commercial
7. multi-user version —with server-side support

In addition, we would like to develop a facility that allows players not only
submit their own video material, but also to build or modify their own minigames,
which might then be included in the collection of mini-games provided by Clima
Futura. This, however, requires apart from a participatory (web 2.0) web-site, an
appropriate game-description format, which we will discuss in section 11.4.

collada — gluing it all together

The wide variety of formats and tools for content production has been a stumbling
block for many projects. How to find a unified format for digital content creation
(DCC), so that content may be easily reused across projects and tools? A
promising attempt in this direction is the collada initiative, Arnaud & Barnes
(2006). The standard proposed in Arnaud & Barnes (2006) is meant to serve as
an intermediate or interchange format for interactive (multimedia) applications,
such as games, which can be characterized as:
interactive application(s)
e realtime interaction — providing information
e content navigation — providing view(s)

Interactive multimedia applications have as a common property that, in contrast
for example to computer graphics (CG) movies, everything must be available,
that is computed, in real time. The intermediate format (collada), presented
in Arnaud & Barnes (2006), is an XML-encoding of the various elements that
may result from the content pipeline, that is the workflow of (digital) content
creation, of a (multimedia) project, including:

colladd™d|

6www.collada.org

development(s) — gaming is a waste of time 23

e document(s) — schema, asset, library, technique, ...
e geometry — array, accessor, meshes, vertices, polygons, ...
e scene(s) — material, light, optics, camera, imager, ...
o cffect(s) — shader, profiles, techniques, pass, ...
e animation(s) — sampler, channel, controller, skin, morphing, ...
e physics — collision, equation, rigid body, constraints, force, ...
The list above gives an indication of what (description) primitives the collada

standard offers, to facilitate the exchange of (content) information and to promote
re-use across tools and platforms.

A a0) i i

14

questions

multimedia platforms

1. What components does a multimedia platform consist of 7 Discuss both hardware
and software components.

concepts
2. Characterize the functionality of current multimedia platforms.
3. Explain the notions of vertex shader and pixel shader.
4. Indicate what solutions exist for merging video and 3D graphics.
technology

Characterize the capabilty of current GPUs.

What does HLSL stand for? Give some examples of what it is used for.
What are the components of the DirectX 9 SDK?

Explain how the VMR9 works. Give an example.

© N o o

projects & further reading As a project, I suggest the development of shader
programs using RendermonkeyE] or the Cg ToolkiﬂT_g], or a simple game in DirectX.

You may further explore the possibilities of platform independent integration
of 3D and media, by studying for example OpenMIF;gl For further reading, among
the many books about DirectX, I advice Luna (2003), Adams (2003) and Fay et
al. (2004).

the artwork

17
18
19

www.ati.com/developer/RenderMOnkey
www.nvidia.com/cg
www.khronos.org/openml

24

e e e =
B~ W n = O

The

© X NS T e W N

multimedia platforms

dutch light — photographs from documentary film Dutch Ligh@
ViP — screenshot, with morphing shader, see section 4.3.
impasto — examples, see section 4.1

impasto — after a painting of van Gogh, using Cg shaders,

3D vision, from Sullivan (2005), see example(s) section 4.2.
idem.

photographs of DirectX and multimedia books, by the author.
DirectX — diagram from online documentation.

ViP — screenshot, with the news and animations.

DirectX — diagram from online documentation.

. DirectX — diagram from online documentation.

. ViP — screenshot, featuring Abramovic.

. Peter Frucht — Reality of TV news, see section 4.3.
. Clima Futura — architecture diagram.

15.

signs — people, van Rooijen (2003), p. 248, 249.

theme of the artwork of this chapter is realism. In the documentary dutch

light, it was investigated whether the famous dutch light in 17th century painting
really existed. The photographs shown here are a selection of shots that were
taken on particular locations over a period of time. However, as an art historian
formulated it in the documentary: dutch light is nothing but a bag of tricks shared
by dutch 17th century painters. The examples from impasto demonstrated that,
after all, realism is an arbitrary notion.

2

Owww.dutchlight.nl

	4. multimedia platforms
	learning objectives
	4.1 developments in hardware and software
	a little bit of history
	the (programmable) graphics pipeline
	a simple shader
	example(s) – impasto
	research directions – the art of shader programming

	4.2 DirectX 9 SDK
	DirectX 9.0 components
	Direct3D
	DirectSound – the drumpad example
	DirectShow
	DirectX application development
	example(s) – 3D vision
	research directions– the next generation multimedia platform

	4.3 merging video and 3D
	the Video Mixing Renderer filter
	the ViP system
	example(s) – reality of TV news
	research directions– augmented reality

	4.4 development(s) – gaming is a waste of time
	questions
	projects & further reading
	the artwork

