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The Poincaré conjecture was one of the most fundamental unsolved problems in
mathematics for close to a century. This was solved in a series of highly original
preprints by the Russian mathematician Grisha Perelman, for which he was awarded
the Fields medal. Perelman’s proof, buliding on the work of Hamilton, was based on
the Ricci flow, which resembles a non-linear heat equation. Many of Perelman’s and
Hamilton’s fundamental ideas may be of considerable significance in other settings.

1. Introduction

The field of Topology was born out of the realisation that in some fundamental
sense, a sphere and an ellipsoid resemble each other but differ from a torus – the
surface of a rubber tube (or a doughnut). A striking instance of this can be seen
by imagining water flowing smoothly on these. On the surface of a sphere or an
ellipsoid (or an egg), the water must (at any given instant of time) be stationary
somewhere. This is not so in the case of the torus.

In topology, we regard the sphere and the ellipsoid as having the same topological

type, which we make precise later. Topology is the study of properties that are
shared by objects of the same topological type. These are generally the global
properties. Understanding the different topological types of spaces, the so called
classification problem, is thus a fundamental question in topology.

In the case of surfaces (more precisely closed surfaces), there are two infinite
sequences of topological types. The first sequence, consisting of the so called ori-

entable surfaces, consist of the sphere, the torus, the 2-holed torus, the 3-holed
torus and so on (see figure 1). One would like to have a similar classification in
all dimensions. However, due to fundamental algorithmic issues, it is impossible to
have such a list in dimensions four and above.

There is a simple way to characterise the sphere among surfaces. If we take any
curve on the sphere, we can shrink it to a point while remaining on the sphere. A
space with this property is called simply-connected. A torus is not simply-connected
as a curve that goes around the torus cannot be shrunk to a point while remaining
on the torus. In fact, the sphere is the only simply-connected surface.

In 1904, Poincaré raised the question as to whether a similar characterisation of
the (3-dimensional) sphere holds in dimension 3. That this is so has come to be
known as the Poincaré conjecture. As topology exploded in the twentieth century,
several attempts were made to prove this (and some to disprove it). However, at the
turn of the millennium this remained unsolved. Surprisingly, the higher dimensional
analogue of this statement turned out to be easier and has been solved.
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Figure 1. The first three orientable surfaces

In 2002-2003, three preprints ([8], [9] and [10]) rich in ideas but frugal with de-
tails, were posted by the Russian mathematician Grisha Perelman, who had been
working on this in in solitude for seven years at the Steklov Institute. These were
based on the Ricci flow, which was introduced by Richard Hamilton in 1982. Hamil-
ton had developed the theory of Ricci flow through the 1980’s and 1990’s, proving
many important results and developing a programme [4] which, if completed, would
lead to the Poincaré conjecture and much more. Perelman introduced a series of
highly original ideas and powerful techniques to complete Hamilton’s programme.

It has taken two years for the mathematical community to assimilate Perelman’s
ideas and expand his preprints into complete proofs. Very recently, a book [7]
containing complete and mostly self-contained proofs of the Poincare conjecture
have been posted. An earlier set of notes which filled in many details in Perelman’s
papers is [5].

In this article we attempt to give an exposition of Perelman’s work and the
mathematics that went into it. An expanded version of this article will be submitted
to the Mathematical Intelligencer.

Acknowledgements. It is our pleasure to thank Kalyan Mukherjea for several helpful
comments that have considerably improved the exposition and Gerard Besson for
inspiring lectures on Perelman’s work. We would also like to thank Basudeb Datta,
Gautham Bharali and Joseph Samuel for helpful comments.

2. Some notions of topology

In this section, we informally formulate the Poincaré conjecture. To do this, we
first need to introduce the higher-dimensional analogues of surfaces, namely smooth

manifolds. For those in the know, we consider throughout diffeomorphism types of
smooth manifolds as this suffices in dimension 3.

We first take a closer look at surfaces. A surface in R
3 is the set of zeroes of a

smooth function f(x, y, z) which is non-singular, i.e., for each point on the surface
the gradient ∇f(x, y, z) of f is non-zero. Basic examples of this are the plane z = 0
and the sphere x2 + y2 + z2 − 1 = 0.

In analogy with this, we can consider a subset M ⊂ R
n which is the set of zeroes

of n−k smooth functions f1,. . . , fn−k whose gradients ∇fi are linearly independent
for all points in M . Such a subset of R

n is a k-dimensional manifold or a k-manifold.
More generally, a set M given as above may have several components. We

consider each component of M to be a k-manifold. For the rest of this article, by
a k-manifold M we mean a component of the subset M ⊂ R

n which is the set
of zeroes of n − k smooth functions f1,. . . , fn−k whose gradients ∇fi are linearly
independent for all points in M .1

1This is equivalent to the usual definition by a theorem of Nash.
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Figure 2. A knotted curve

We say that two smooth k-dimensional manifolds M and N are diffeomorphic if
there is a smooth one-to-one correspondence f : M → N between the points of the
manifolds with a smooth inverse. The function f is called a diffeomorphism.

We say that a manifold (defined as above) is closed or compact if it is contained
in a bounded subset of R

n.
In this language, the Poincaré conjecture can be stated as follows.

Conjecture (Poincaré). Any closed, simply-connected 3-manifold is diffeomorphic

to the 3-dimensional sphere S3.

For a brief history of the Poincaré conjecture, see [6].
A small region around any point in a surface can be given a pair of local coor-

dinates. For example, away from the poles, the latitude and the longitude form
coordinates for any small region on the sphere. Local coordinates correspond to
making a map of a region of the surface on a piece of paper in such a way that
objects that are close to each other on the surface remain close on the map. One
cannot make a single such map of the whole surface, but it is easy to see that one
can construct an atlas of such maps. Each map is usually called a chart.

Similarly, a small region around any point in a k-manifold M can be given a
system of k local coordinates x1,. . . xk. It is frequently convenient to study local
properties of a manifold using these coordinates. These allow one to treat small
regions of the manifold as subsets of Euclidean space, using a chart as in the case
of surfaces. By using an atlas of such charts, one can study the whole manifold.

3. Why the Poincaré conjecture is difficult

Both the plane and 3-dimensional space are simply-connected but with an im-
portant difference. If we take a closed, embedded curve in the plane (i.e., a curve
which does not cross itself), it is the boundary of an embedded disc. However, an
embedded curve in 3-dimensional space may be knotted(see figure 2). This means
that as we deform a knotted curve to a point, along the way it must cross itself.

Thus, an embedded curve in a simply-connected 3-manifold M may not bound
an embedded disc. Furthermore, such a curve may not be contained in a ball B in
M . While embedded disks are useful in topology, immersed disks (i.e., disks that
cross themselves) are not. It is this which makes the Poincaré conjecture difficult
(in dimension 3).

The analogue of the Poincaré conjecture in dimensions 5 and above is easier than
in dimension 3 for a related reason. Namely, any (2-dimensional) disc in a manifold
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of dimension at least 5 can be perturbed to an embedded disc, just as a curve in
3-dimensional space can be perturbed so that it does not cross itself.

What made Perelman’s proof, and Hamilton’s programme, possible was the work
of Thurston in the 70’s, where he proposed a kind of classification of 3-manifolds,
the so called geometrization conjecture [11]. Thurston’s geometrization conjecture
had as a special case the Poincaré conjecture, but being a statement about all 3-
manifolds could be approached without using the hypothesis of simple-connectivity.

However most of the work on geometrization in the 1980’s and 1990’s was done by
splitting into cases, so to prove the Poincaré conjecture one was still stuck with try-
ing to use the simple-connectivity hypothesis. An exception to this was Hamilton’s
programme. Interestingly, Perelman found a nice way to use simple-connectivity
within Hamilton’s programme, which simplified his proof of the Poincaré conjecture
(but not of the full geometrization conjecture).

To introduce Hamilton’s approach we need to reformulate the Poincaré con-
jecture as a statement relating topology to Riemannian geometry, namely that a
compact, simply-connected 3-manifold has an Einstein metric. To make sense of
this we need some Riemannian geometry.

4. Some Riemannian geometry

4.1. Intrinsic differential geometry and curvature. In intrinsic differential

geometry, we study the geometry of a space M in terms of measurements made on
the space M . This began with the work of Gauss, who was involved in surveying
large areas of land where one had to take into account the curvature of the earth.
Even though the earth is embedded in 3-dimensional space, the measurements we
make cannot take advantage of this.

Concretely, one has to consider the question of whether one can make a map of a
region of the earth on a flat surface (a piece of paper) without distorting distances
(allowing all distances to be scaled by the same amount). This is impossible, as can
be seen by considering the area of the region consisting of points with distance at
most r from a fixed point P on the surface M . The area in case M is a sphere can
be seen to be less than πr2, which would be the area if we did have a map that did
not distort distances. In fact for r small the area of the corresponding region on a
surface is of the form πr2(1− K

12r2 + . . . ), and K is called the Gaussian curvature.
Intrinsic differential geometry gained new importance because of the general

theory of relativity, where one studies curved space-time. Thus, we have manifolds
with distances on them that do not arise from an embedding in some R

n. This
depended on the higher-dimensional, and more sophisticated, version of intrinsic
differential geometry developed by Riemann. Today, intrinsic differential geometry
is generally referred to as Riemannian geometry.

To study Riemannian geometry, we need to understand the analogues of the
usual geometric concepts from Euclidean geometry as well as the new subtleties
encountered in the more general setting. Most of the new subtleties are captured
by the curvature.

4.2. Tangent spaces. Let M be a k-dimensional manifold in R
n and let p ∈ M

be a point. Consider all smooth curves γ : (−1, 1) → M with γ(0) = p. The set of
vectors v = γ′(0) for such curves γ gives the tangent space TpM . This is a vector
space of dimension k contained in R

n. For example, the tangent space of a sphere
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with center the origin at a point p on the sphere consists of vectors perpendicular
to p.

If a particle moves smoothly in M along the curve α(t), its velocity V (t) = α′(t)
is a vector tangent to M at the point α(t), i.e., V (t) ∈ Tα(t)M .

4.3. Riemannian metrics. If α : (a, b) → R
n is a smooth curve then its length is

given by l(α) =
∫ b

a
‖α′(t)‖dt. In Riemannian geometry we consider manifolds with

distances that are given in a similar fashion in terms of inner products on tangent
spaces.

A Riemannian metric g on M is an inner product specified on TpM for each
p ∈ M . Thus, g refers to a collection of inner products, one for each TpM . We
further require that g varies smoothly in M . For a point p ∈ M and vectors
V, W ∈ TpM , the inner product of V and W corresponding to the Riemannian
metric g is denoted g(V, W ).

A Riemannian manifold (M, g) is a manifold M with a Riemannian metric g on
it. Recall that near any point in M , a small region U ⊂ M can be given a system
of local coordinates x1,. . . ,xk. If we denote the corresponding coordinate vectors
by ê1,. . . ,êk, then for any point p in U the inner product on TpU is determined by
the matrix gij = g(êi, êj). This is a symmetric matrix.

The first examples of Riemannian manifolds are manifolds M ⊂ R
n, with the

inner product on TpM the restriction of the usual inner product on R
n. This metric

is called the metric induced from R
n.

A second important class of examples are product metrics. If (M, g) and (N, h)
are Riemannian manifolds, we can define their product (M ×N, g⊕h). The points
of M × N consist of pairs (x, y), with x ∈ M and y ∈ N . The tangent space
T(x,y)M × N of the product consists of pairs of vectors (U, V ) with U ∈ TxM and
V ∈ TyN . The inner product (g ⊕ h) is given by

(g ⊕ h)((U, V ), (U ′, V ′)) = g(U, U ′) + h(V, V ′)

We can identify the space of vectors of the form (U, 0) (respectively (0, V ) with
TxM (respectively TyN).

4.4. Distances and isometries. Given a pair of points p, q ∈ M in a Riemannian
manifold (M, g), the distance d(p, q) between the points p and q is the minimum
(more precisely the infimum) of the lengths of curves in M joining p to q.

For p ∈ M and b > 0, the ball of redius r in M around p is the set of points
q ∈ M such that d(p, q) < r. Note that this is not in general diffeomorphic to a
ball in Euclidean space.

Two Riemannian manifolds (M, g) and (N, h) are said to be isometric if there is
a diffeomorphism from M to N so that the distance between any pair of points in
M is the same as the distance between their images in N . In Riemannian geometry,
we regard two isometric manifolds as the same.

4.5. Geodesics and the exponential map. Geodesics are the analogues of straight
lines. A straight line segment is the shortest path between its endpoints. A curve
with constant speed that minimises the distance between its endpoints is called a
minimal geodesic.

More generally, a geodesic is a smooth curve with constant speed that locally

minimises distances i.e., it is a smooth function γ : (a, b) → M such that ‖γ ′(t)‖
is constant and has the following property: for any p = γ(t0), there is an ε > 0
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so that the segment of the curve γ from time t0 − ε to t0 + ε has minimal length
among all curves joining γ(t0 − ε) to γ(t0 + ε).

Let p ∈ M be a fixed point. Then we can find r > 0 such that if d(p, q) < r,
then there is a unique minimal geodesic γ joining p to q. We can parametrise γ
(i.e., choose the speed along γ) so that γ(0) = p and γ(1) = q. Then the initial
velocity γ′(0) gives a vector in TpM with norm less than r. This gives a one-to-one
correspondance between points q in M with d(p, q) < r and vectors V ∈ TpM with
norm less than r. The point that corresponds to the vector V is denoted by expp(V )
and this correspondance is called the exponential map.

As an example, consider the exponential map at the north-pole of the 2-sphere
p. This map is one-to-one on B0(π) and it maps B0(π) to the sphere minus the
south pole.

4.6. Sectional, Ricci, and Scalar curvatures. Let p ∈ M be a point and let
ξ ⊂ TpM be a two-dimensional subspace. Choose an orthonormal basis {U, V } of
ξ and consider the following family of closed curves in M :

Cr(θ) = exp (r cos(θ) U + r sin(θ) V ), θ ∈ [0, 2π]

It can be proved that the length of Cr has the following expansion:

l(Cr) = 2πr(1 − K(p, ξ)

6
r2 + O(r3)).

We define the sectional curvature of (M, g) along ξ to be the number K(p, ξ)
above. Other notations for sectional curvature include Kg(p, ξ) to clarify what
metric we consider and K(p, U, V ) to indicate that ξ is the linear span of U and V .
In the latter notation, we put K(p, U, V ) = 0, if U and V are linearly dependent.
We often omit the point p in the notation if it is clear from the context.

Averaging all the sectional curvatures at a point gives the scalar curvature R(p).
More precisely, let {E1, .., En} be an orthonormal basis of TpM . Then we define

R(p) =
∑

i,j

K(Ei, Ej).

There is an intermediate quantity, called the Ricci tensor which is very funda-
mental in our situation. The Ricci tensor R(U, V ) at a point p ∈ M depends on a
pair of vectors U and V in TpM . Further, it is linear in U and V and is symmetric
(i.e., Ric(U, V ) = Ric(V, U)).

If U is any unit vector in TpM , then we define

Ric(U, U) = K(E1, U) + ... + K(En, U).

By linearity, for a general vector aU , with U a unit vector, Ric(aU, aU) =
a2Ric(U, U). Further, by linearity and symmetry, if U and V are any two arbitrary
vectors in TpM , then we put Ric(U, V ) = 1

4 (Ric(U +V, U +V )−Ric(U−V, U−V ))

(by the analogue of the formula (a + b)2 − (a − b)2 = 4ab).

Remark. It is important to note that in local coordinates these curvature quantities
can be expressed in terms of gij and its first and second derivatives.

We consider some examples.

(1) Euclidean space. This is just R
n with the usual inner product. In this case,

all the sectional curvatures are zero. Hence so is the Ricci tensor and the
scalar curvature.
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(2) Sphere Sn(r) of radius r with the metric induced from R
n+1. In this case,

all sectional curvatures are equal to r−2, Ric(U, V ) = (n − 1)r−2g(U, V )
and R(p) = n(n − 1)r−2 for any point p. Here g(·, ·) is (the restriction of)
the standard inner product in R

n

(3) There is an analogue of Example 2, called hyperbolic space, for which the
sectional curvature is −r−2. The underlying manifold can be taken to be
R

n. We will not describe the metric since we won’t need it.

We have the following important converse of the above examples: Let
(M, g) be a simply-connected complete Riemannian manifold of constant
sectional curvature k. Then M is isometric to Euclidean space, the sphere
of radius

√

1/k or hyperbolic space according as k = 0, k > 0 or k < 0
respectively.

(4) A product Riemannian manifold (M × N, g = g1 ⊕ g2): If ξ is a plane in
Tp(M × N) that is tangent to M(respectively N), then K(p, ξ) = K1(ξ)
(respectively K2(ξ)). Here K1 and K2 denote the sectional curvatures with
respect to g1 and g2. On the other hand, if ξ is the span of a vector tangent
to M and one tangent to N , then K(ξ) = 0

(5) As a special case of the above, consider a surface M which is the product
of two circles, possibly of different radii, with the product metric. Then
the tangent plane at any point is spanned by a vector tangent to the first
circle and one tangent to the second circle. Hence the sectional curvature
of M at any point is zero.

(6) Another example of a product metric that we need is that on M = S2 ×R.
In this case, the sectional curvature K(x, ξ) is 1 if ξ is the tangent plane of
S2 and 0 if ξ contains the tangent space of R.

4.7. Manifolds with non-negative sectional curvature. We have defined sec-
tional curvature in terms of the growth of lengths of circles under the exponential
map. In other words, sectional curvature measure the divergence of radial geodesics.

In particular, if a Riemannian manifold has non-negative curvature, geodesics
do not diverge faster than in Euclidean space. This has strong consequences for the
geometry and topology of these manifolds. In fact, if a simply-connected 3-manifold
(M, g) has non-negative sectional curvature, it has to be diffeomorphic to one of
R

3, S3 and S2 × R.

4.8. Scaling and curvature. Suppose (M, g) is a Riemannian manifold and c > 0
is a constant. Then the sectional curvature K ′ of the Riemannian manifold (M, cg)
is related to the sectional curvature K of (M, g) by

K ′(p, ξ) = c−1K(p, ξ)

for every point p ∈ M and every tangent plane ξ ⊂ TpM at that point.
Note that if c is large, then K ′ is small. Hence, given a compact Riemannian

manifold (M, g) we can always choose c large enough so that (M, cg) has sectional
curvatures lying between −1 and 1.

5. Einstein metrics and the Poincaré conjecture

An Einstein metric is a metric of constant Ricci curvature. More precisely, an
Einstein metric with constant curvature a is a metric that satisfies, for all p ∈ M
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and U, V ∈ TpM , the equation

Ric(U, V ) = ag(U, V ).

In general Relativity, one studies an action functional on the space of Riemannian
metrics called the Einstein-Hilbert action, which is the integral of the scalar curva-
ture of a metric. Einstein metrics are the critical points of this functional among
Riemannian metrics on a manifold with fixed volume.

To relate Einstein metrics to the Poincaré conjecture, one notes that an Einstein
metric g on a 3-manifold necessarily has constant sectional curvature (in all dimen-
sions metrics of constant sectional curvature are Einstein metrics). Hence, by 4.6,
one concludes that if (M, g) is closed, simply-connected and Einstein, then (M, g)
is isometric to S3 with a round metric. Note that we can rule out Euclidean and
Hyperbolic space since they are not closed. In particular, M is diffeomorphic to
S3.

Hence the Poincaré conjecture can be formulated as saying that any closed,

simply-connected 3-manifold has an Einstein metric. More generally, Thurston’s
geometrisation conjecture says that every closed 3-manifold can be decomposed into
pieces in some specified way so that each piece admits a locally homogeneous metric,
a concept more general than that of a metric with constant sectional curvature.

6. Hamilton’s Ricci flow

In the 1980’s and 1990’s Hamilton built a programme to prove geometrisation,
beginning with a paper [3] where he showed that if a 3-manifold has a metric with
positive Ricci curvature then it has an Einstein metric. By positive Ricci curvature

we mean that if p ∈ M and U ∈ TpM is non-zero, then Ric(U, U) > 0.
Hamilton’s approach was to start with a given metric g and consider the 1-

parameter family of Riemannian metrics g(t) satisfying the Ricci flow equation

(1)
∂g

∂t
= −2Ric(t), g(0) = g,

where Ric(t) is the Ricci curvature of the metric g(t).
To get a feeling for the analytical properties of this equation, we first consider the

simpler case of the heat equation which governs the diffusion of heat in an isolated
body. The heat equation is

∂u

∂t
= 4u.

The temperature in an isolated body becomes uniform as time progresses. Further,
the minimum temperature of the isolated body increases (and the maximum tem-
perature decreases) with time. This latter property is called a maximum principle.

To see the relation of the Ricci flow with the heat equation, we use special
local coordinates called harmonic coordinates (i.e., coordinates {xi} such that the
functions xi are harmonic). We can find such coordinates around any point in a
Riemannian manifold M . In these coordinates we have

Ricij = −1

2
4gij + Q(g, ∂g),

where Q is an expression involving g and the first partial derivatives of g and
Rij = Ric(êi, êj).
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Hence the Ricci flow resembles the heat flow
∂gij

∂t
= 4gij leading to the hope

that the metric becomes symmetric (more precisely, the Ricci curvature becomes
constant) as time progresses. However, there is an extra term Q(g, ∂g) of lower
order. Such a term is called the reaction term and equations of this form are
known as reaction-diffusion equation. In order to understand such an equation,
one needs to understand both the nature of the reaction term and conditions that
govern whether the reaction or the diffusion terms dominate.

Let us consider some examples: If g is the induced metric on the sphere S3

of radius 1, then g(t) = (1 − 4t)g is the solution to (1). Note that the radius
of (S3, g(t)) is

√
1 − 4t and the sectional curvatures are 1

1−4t
. As t → 1

4 , these
curvatures blow-up.

More generally, if g(t) is an Einstein metric the Ricci flow simply rescales the
metric. In fact, if Ric = ag, then g(t) = (1−2at)g satisfies (1). Note that (M, g(t))
shrinks, expands or remains stationary depending on whether a > 0, a < 0 or
a = 0.

On the other hand, if the metric is fixed up to rescaling by the Ricci flow then
it is an Einstein metric.

Let (M1 ×M2, g1 ⊕ g2) be a product Riemannian manifold. Then the Ricci flow
beginning at g1 ⊕ g2 is of the form g(t) = g1(t) ⊕ g2(t), where g1(t) and g2(t) are
the flows on M1 and M2 beginning with g1 and g2. Ricci flow preserves product
structure. In particular, the flow beginning with the standard product metric g0⊕g1

on S2 × R is g(t) = (1 − 2t)g0 ⊕ g1, i.e., the S2 shrinks while the R direction does
not change. This example is crucial for understanding regions of high curvature
along Ricci flow.

We now consider some analytical properties of the Ricci flow. One of the first
results proved by Hamilton was that, given any initial metric g(0) on a smooth
manifold M , the Ricci flow equation has a solution on some time interval [0, ε).
Furthermore, this solution is unique. It follows that a solution to the equation with
initial metric g(0) exists on some maximal interval [0, T ), with T either finite or
infinite and is unique on this interval. Further, if T is finite then the maximum of
the absolute value of the sectional curvatures becomes very large as we approach
T .

The main idea of Hamilton’s programme is to evolve an arbitrary initial metric
on a closed simply-connected 3-manifold along the Ricci flow and hope that the
resulting metric converges, up to rescaling, to an Einstein metric. Hamilton showed
that this does happen when g has positive Ricci curvature.

It is convenient to analyse separately the cases where the maximal interval of
existence [0, T ) is finite and infinite. It turns out, as we explain later, that if the
manifold is simply-connected, then this time-interval is finite. In particular, the
curvature blows-up in finite time on certain parts of the manifold.

The central issue in Hamilton’s programme was to understand, topologically and
geometrically, the parts of the manifold where curvature blows-up along the Ricci
flow.

7. Curvature Pinching

The first major steps in understanding the geometry near points of large sectional
curvature were due to Hamilton and Ivey, using maximum principles.
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Figure 3. A sequence without bounded curvature with the limit singular

In the simple case of a heat equation we have the maximum principle which
implies that if the temperature is initially greater than a constant α at all points
in the manifold, then this continues to hold for all subsequent times. In the case
of the Ricci flow, we have a similar maximum principle for the scalar curvature.
This is because the scalar curvature also satisfies a reaction-diffusion equation with
the reaction term positive. As a consequence, the scalar curvature evolving along
the Ricci flow is larger than the solution to the heat equation with the same initial
conditions. In particular, we obtain the important conclusion that scalar curvature

R is bounded below along the Ricci flow.
Hamilton also developed a maximum principle for tensors. Using this, Hamilton

and Ivey independently obtained an inequality for the curvature using this maxi-
mum principle, which we mention and use in the next section. A consequence of
the Hamilton-Ivey inequality is that if for a point p ∈ M , if the maximum of the
absolute values |K(p, ξ)| goes to infinity, then R(p) → ∞.

All these maximum principles amount to showing and using positivity properties
of the reaction term.

8. Blow-up and convergence of Riemannian manifolds

To study points of high curvature, we use a version of a classical technique in
PDE’s called blow-up analysis. Namely, given a closed Riemannian manifold (M, g),
let kmax = |K(x, ξ)| be the maximum of the absolute values of sectional curvatures.
We rescale g to kmaxg to get a manifold with bounded sectional curvature, which
is necessary for considering limiting manifolds as below.

We rescale the manifolds (M, g(t)) as t → T as above. This gives a sequence
of manifolds with curvature uniformly bounded. One can study such a sequence
by considering limiting manifolds, i.e. limits (in the sense of the next paragraph)
of subsequences of the given sequence of manifolds, provided that such limiting
manifolds exist.

Let (Mi, gi) be a sequence of Riemannian n-manifolds and (N, h) be another
Riemannian n-manifold. Let xi ∈ Mi and x ∈ N . We say that (Mi, gi, xi) converges
to (N, h, x) if for any ε > 0, we can find k large enough and a diffeomorphism f
from the ball Bk of radius 1/k in Mk to the ball B of radius 1/k in N with f(x) = y

so that for p, q ∈ Bk, 1 − ε < d(f(p),f(q))
d(p,q) ) < ε. We shall call such a map an almost

isometry. Note that our notion of limits depends on basepoints xi ∈ Mi.
As shown by the example in figure 3 it is necessary that the curvatures of (Mi, gi)

are bounded.
However, even a sequence of manifolds with bounded curvature need not have

limiting manifolds (of the same dimension) as the manifolds may collapse to lower
dimensions. For example, let Mi = S1 × S1 be the 2-torus, gi = i−1g0 ⊕ g0 and
pi = (p, q), where g0 is the usual metric on the circle. Observe that (Mi, gi) is



POINCARÉ CONJECTURE 11

Figure 4. An example of collapsing

Limiting manifold

Figure 5. Sequences of manifolds and their blow-up limits

the torus with the product metric obtained by viewing the torus as a product of a
circle of radius 1/i with a circle of radius 1. In this case the sectional curvature of
(Mi, gi) is zero for any i. On the other hand, the limit of this sequence of metrics
is the degenerate metric 0 ⊕ g0. Hence the limit of the Riemannian manifolds (in
the appropriate sense) is a circle (see Figure 4).

If no collapsing takes place, it is known that we do have limiting manifolds (which
are Riemannian manifolds of the same dimension). One of the major results of
Perelman was that in the situation of the blow-up limit of the previous section,
i.e., when the metrics gi arise as rescalings at certain times along the Ricci flow,
collapsing does not occur.

Further, the Hamilton-Ivey pinching estimate implies that the limiting manifold
is non-positively curved. This, together with Perelman’s non-collapsing result shows
that the Ricci flow for the limiting manifold is a so-called κ-solution. Perelman
proved that points in a κ-solution have canonical neighbourhoods (which we explain
below). Furthermore, he proved a technical result giving a bound on the derivative
of curvature for κ-solutions, which was crucial in understanding behaviour near
points of high (but not necessarily maximum) curvature.

9. Perelman’s canonical neighbourhoods

By considering limiting manifolds as above, it follows that small neighbourhoods
of the points of maximum curvature are close to being ‘standard’. However, this
procedure does not work if we want to understand points with high curvature which
are not the maximal curvature points. The problem is that rescaling with respect
to these points does not give metrics with curvature bounded independent of i.

A surprising and remarkable result of Perelman, which overcomes this difficulty
and can be considered to be one of the central results in his proofs is the canoni-

cal neighbourhood theorem. This says that, if M is simply-connected, either M is
diffeomorphic to S3 or every point of high scalar curvature has a canonical neigh-

bourhood which is an ε-neck or an ε-cap. An ε-neck is a Riemannian manifold almost
isometric to the product of a sphere of radius ε and an interval of length 1/ε. An
ε-cap is diffeomorphic to a ball and satisfies certain other geometric conditions.
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This result is surprising in many ways. Normally, by the kind of rescaling argu-
ment sketched above, we can study a neighbourhood of a point of maximal curva-
ture. However, one expects that near points of high (but not maximal) curvature,
there are nearby points where the curvature is much higher. This means that the
curvature can be fractal like, and the resulting system has behaviour at many scales
(as happens with complex systems)

To study a neighbourhood of a point of high scalar curvature, Perelman used
the bounds on the derivative of the curvature of standard solutions in an ingenious
inductive argument (which proceeds by contradiction) to show that the curvature of
the appropriate rescaled metric is bounded near the point. After refining this using
geometric arguments (based on so called Alexandrov spaces), Perelman showed that
one can construct blow-up limits at points of high (but not necessarily maximum)
curvature. Hence the results mentioned in the previous section can be used to
construct canonical neighbourhoods for all points of high curvature.

10. Ricci flow with surgery

The canonical neighbourhood theorem allows one to understand regions where
the curvature becomes very large. However, if the curvature remains bounded
on some region of the manifold, we cannot deduce much about the topology of
the manifold. One would like to continue the Ricci flow in regions with bounded
curvature, while using the canonical neighbourhood to study regions with high
curvature. This is accomplished by a process known as Ricci flow with surgery.
This process involves modifying the manifold, geometrically and topologically, at
regions of high curvature at a time close to T . The resulting manifold has bounds
on curvature that allow the process to continue beyond time T .

In case T = ∞, the curvature remains bounded and there is no need to perform
surgery. Hence it suffices to consider the case where T < ∞.

Consider the subset Ωρ of M where the scalar curvature is bounded by a large
number ρ for all t ∈ [0, T ) i.e., let Ωρ = {x ∈ M |R(x, t) ≤ ρ for all t}. We choose
ρ large enough that points of scalar curvature greater than ρ have a canonical
neighbourhood.

For a time t close to T , the canonical neighbourhood theorem holds for the
complement N of the interior of Ωρ. Thus, every point in this complement has
a neighbourhood that is a neck, a cap or diffeomorphic to a sphere (if the initial
manifold is simply-connected). Putting these neighbourhoods together, we get
either a sphere or a manifold diffeomorphic to S2 × [−1, 1] (which is a union of
several necks) which may have a cap attached at one or both ends. Topologically in
each of these cases we obtain a sphere, a ball, or S2× [−1, 1]. It follows in particular
that the boundary of Ωρ consists of 2-spheres.

If Ωρ is empty however large we choose ρ, in other words if the curvature blows-
up on the entire manifold M , then the above implies that M is diffeomorphic to
S3. We then replace M by the empty manifold.

Otherwise, we remove the interior of the set N = M −Ωρ and we attach balls to
each of the boundary spheres of Ωρ to get a Riemannian manifold. This operation
is called surgery.

Now we continue to evolve the manifold, which in general has several components,
by the Ricci flow. Repeating the above procedure for each of the componenete, we
can inductively define Ricci flow with surgery (see Figure 6).
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Neck with Cap

Surgered Manifold

Neck

Figure 6. Surgery

Note that if the curvature beomes high at all points in all components of M ,
then the manifold after surgery is empty. In this case, we say that the manifold has
become extinct. One can deduce from the canonical neighbourhood theorem that,
in this case, the manifold just before surgery was a collection of 3-spheres.

We need technical results that say that all the properties that we have for the
ordinary Ricci flow hold for Ricci flow with surgery. We also need a result saying
that in any finite time interval only finitely many surgeries are required to show
that Ricci flow with surgery can be defined for all positive times. To achieve these
results one needs to choose the parameter ρ carefully, in general depending on the
time T .

11. Outline of the proof

We are now in a position to outline the proof of the Poincaré conjecture. Consider
a simply-connected 3-manifold M with a Riemannian metric on it. We evolve this
using the Ricci flow with surgery.

A result of Perelman (for which a simpler and more elegant proof was provided
by Colding and Minicozzi [2]) says that if the manifold M is simply-connected,
then the Ricci flow with surgery becomes extinct in finite time. This is proved by
considering a geometric quantity called the waist and showing that it goes to zero
in finite time.

Consider Ricci flow with surgery up to the time when it becomes extinct. If we
view the process backwards from the extinction time, we see that either spheres
are created (the opposite of extinction) or two components are connected by a tube
(the opposite of surgery). Note that when two spheres are connected by a tube, the
result is still a sphere. As a result, when each surgery is viewed backwards, we see
spheres either being created or merged with other spheres. Thus at each time the
manifold we see is a collection of spheres. In particular, as manifold M we started
with is connected, it must have been a sphere.
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12. Concluding remarks

The value of a mathematical theorem in Science and Engineering often lies not
just in its statement but in the ideas that are developed in the course of proving the
theorem. In this respect, Perelman’s (and Hamilton’s) work is very rich in ideas
which, when digested, may have consequences in a wide range of subjects outside
mathematics. Further, those techniques and ideas applicable to Ricci flow in all
dimensions may be widely applicable to complex systems, while those special to
dimension three may help us understand when a complex system is well behaved.

Remark. An article [1] concerning the proof of the Poincaré and geometrisation
conjectures has recently appeared.
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