
Software Engineering Issues in
Interactive Installation Art

Anna Trifonova
Department of Computer and Information Science
Norwegian University of Science and Technology

Sem Saelands vei 7-9
7491 Trondheim, Norway

trifonova@idi.ntnu.no

Letizia Jaccheri
Department of Computer and Information Science
Norwegian University of Science and Technology

Sem Saelands vei 7-9
7491 Trondheim, Norway

letizia@idi.ntnu.no

ABSTRACT*
Software engineering has been in contact with new media art for
years, although the connections between the two fields have
rarely been explicit. In this article we discuss the important
software engineering issues that appear in one of the new media
art subfields, namely interactive installation art. Our deductions
and suggestions are based mainly on reports available in the
literature (i.e. published papers). Interactive installation art is
often heavily dependent on software and thus software
engineering issues are important to consider. Software
requirements, which are vague and frequently changeable, appear
to be one of the major and most difficult issues to be considered
in the development of interactive installation. Timely evaluation,
validation and testing with potential users are helpful for
successful completion of the artwork Special attention should be
paid to the choice of process model and software architecture to
allow flexibility. The final goal is to provide a road map for artists
who need software engineering skills to communicate with
software engineers and/or to act themselves as programmers or
software engineers of their artworks. Additionally, software
engineers who start working with interactive installation art will
profit from this summary of relevant reports.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General; J.5. [Arts and
Humanities]: Performing Arts

General Terms
Management, Documentation, Design, Human Factors.

Keywords
Software Engineering; New Media Art; Interactive Installation
Art; Development of Interactive Installations.

• Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
Submitted for DIS 2008, February 25–27, 2008, Cape Town, South Africa.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

1. INTRODUCTION
Computer art dates back to the 60s. The first computer art
exhibition took place at Technische Hochschule in Stuttgart in
1965. The same year at the Howard Wise Gallery in New York
City the earliest computer art exhibition took place in the United
States [1].

The first software engineering conference was held in Garmish in
1968 [2]. Software engineering and computer art, blooming at the
same time, have met several times, even if these relationships
may not have been rendered explicit.

The use of digital technology in contemporary art is often referred
to as new media art. Since the early 90s within the New Media
Art realm there is a growing production of interactive art
installations1. These artworks are generally complex and they are
heavily dependent on software for controlling the whole system.
The production of the software often needs the involvement of
programmers and software engineers.

As in other countries, interactive installations are often made in
Norway (several examples might be seen in [3]). Within the
Software Engineering group of the Norwegian University of
Science and Technology (NTNU) we have started a project,
called SArt (http://prosjekt.idi.ntnu.no/sart/). The members of
SArt participate in multidisciplinary projects for the development
of interactive installations that involve collaboration between
software engineers and artists. These projects motivate us for a
profound investigation in this domain and our goal is to find,
expose and bridge possible gaps between the two fields.

This paper contains several contributions. On one hand, artists
will find useful the list of software engineering issues with their
descriptions. This knowledge will help their work in projects with
software intensive systems. On the other hand, software engineers
in interactive installation art projects will profit from
practitioners’ experience reported in the literature and
summarized here. This includes a list of utilized tools.

1 ARS Electronica - Festival for Art, Technology and Society – is

one of the most popular annual events on art and technology. As
part of it, since 1987 prices are given to the best artworks in
different categories (Prix Ars). The evolvement of these
categories shows also the changes in the trends in the domain
(see www.aec.at/en/prix/). Interactive art, including
installations, is one of the categories. It first appeared in 1990.

Further this article is organized as follows: in section 2 we shortly
discuss interactive installation art field and some of its specifics,
namely multidisciplinarity and interactivity. In section 3 we
synthesize the major software engineering concepts and show in
section 4 how they apply in the production of interactive
installations. Section 5 presents a summary of the software
engineering issues in installation art projects and shows different
approaches found in the literature. A discussion (section 6) is
followed by conclusions (7) and references.

2. NEW MEDIA ART AND INTERACTIVE
INSTALLATION ART
New media art is a subclass of contemporary art that involves the
use of new media technology. In this work we do not try to give
an exact definition of new media art, we do not limit what it
includes, and do not intend to define how it relates to other art
domain. Instead, we point to the work of new media art
theoreticians like Manovich [4] and Tribe et al. [5] and reference
the practitioners. For example, Biswas and Singh [6] in their
article describing the software engineering issues in two case
studies define new media art as “type of new media application
where an artistic idea is expressed using technology or new media
artifacts”.

As software engineers, we have to be critical to the notion of new
media as what used to be new in the early 90´s, for example the
HTML language and web browsers, is now main stream
technology. Web 2.0 which can be regarded as new at the time of
writing will not be new in a couple of years from now. Manovich
gives an explanation of what artists intend as new in the New
Media: "... new media today can be understood as the mix
between older cultural conventions for data representation, access
and manipulation and newer conventions of data representation,
access and manipulation. The “old” data are representations of
visual reality and human experience, i.e., images, text-based and
audio-visual narratives – what we normally understand by
“culture.” The “new” data is numerical data." [7].

Installation art is a phenomenon which starts in the late 30s, for
example with artists like Duchamp. Interactive installations are
the evolution of installation art and are a part of New Media Art,
because of “their origins in, and reliance upon, computer-based
technology” [8]. An interactive installation includes a physical
construction which is generally placed in a public space. Usually
certain parts of the installation are changing in time (e.g. video,
audio, mechanical parts movement, etc.). Often these changes are
due to spectator(s) presence and/or actions. The creation of an
interactive installation commonly requires specialists with
different areas of competence to collaborate with the artist2. A
multidisciplinary team can involve artists (painters, composers,
etc.), constructors, hardware designers, electrical engineers,
software engineers, programmers, art curators, etc.

2 We often talk about the artist and/or developer (in singular) for

simplicity, although there might be cases where a group of
artists/developers (two or more) are working together on the
same artwork, either simultaneously on the whole work or on
different parts of it (e.g. one artist on the music components,
another on the visualisation; one software engineer on the
software architecture and another on implementation, etc.)

Interactivity is a major issue in interactive installations. Different
interactivity types might be defined. In fact, interaction is
extensively discussed in [almost] all articles describing interactive
installations.

Hannington and Reed [9] discuss three distinguished types of
interaction in multimedia applications: passive interaction is
where the content has a linear presentation and users interact by
only starting and stopping the presentation; interactive is when
users are allowed to choose a personal path through the content;
adaptive is the interaction in which users are able to “enter their
own content and control how it is used”.

In [10] Sommerer and Mignonneau discuss two types of
interaction that they have observed in existing interactive
artworks: pre-designed or pre-programmed paths of interaction,
as in interactive CDs where the viewer can choose his/her path,
but the possibilities are limited; and evolutionary3 interaction in
which the artwork’s processes are linked to interaction and is
evolving continuously.

Edmonds et al. [11] discuss four categories of “relationship
between the artwork, artist, viewer and environment: static,
dynamic-passive, dynamic-interactive and dynamic interactive
(varying). While the first is a lack of interaction, the latter three
describe situations in which the artwork responds to its context. In
dynamic-passive the artwork response is triggered by
environmental factors as temperature, humidity, etc. In dynamic-
interactive in addition to the environmental factor the human
presence and/or actions (purposeful or not) are captured and are
used as parameters for changing the artwork. The rules about how
the parameters are treated are static in this case. When an agent
(either human or program) is modifying it’s original specifications
the artwork is dynamic interactive (varying).

We find these three categorizations of interaction important, but
also each one is incomplete. In our viewpoint there are three
perspectives to be taken into consideration:

- Interaction Rules – the rules that control the interaction might
be static or dynamic. In [11] this difference is shown by
introducing the dynamic interactive (varying) category. The
evolutionary interaction in [10] is also based on dynamic
interaction rules, but limits the rules to evolutionary
algorithms.

- Triggering parameters – The interaction rules generally
depend on environment parameters that are changed by the
audience. Most often the audience is directly participating in
the interaction intentionally, but it is possible that no intention
is required and only the spectators’ presence is enough to
trigger the interaction rules. However, in some cases the
changes in the artwork might not depend on the audience at
all, but only on the environment – such option is foreseen
only in [11] with the dynamic-passive interaction category.

3 The term ‘evolutionary’ is used by the authors of the cited

article as reference to evolutionary image processes, as their
works are bio-inspired.

- Content origin – weather the artwork presents visual or audio
content to the spectators this content might be dynamically
generated or predefined by the artist. The predefined content
might also be dynamically manipulated. In particular cases
the audience might also input content to the artwork, for
example by sending pictures/music from their phones. Such
option is only seen in [9] - category adaptive.

3. SOFTWARE ENGINEERING
Here we make an attempt to synthesize software engineering
concepts [12, 13] for the purpose of defining the intersection
between software engineering and interactive installation art. In
other words, this list points to software engineering theories that
one can use to reflect about new media art. We have developed
this list of concepts by looking at the topics of the latest
International Conference of Software Engineering (ICSE 20074)
and we have modified it supported by our experience and
discussions with colleagues. These concepts are:

1. Requirements – software requirements are the real-world
goals, needed functionality and constraints for the software to
be developed. The process of software requirements
engineering includes identifying the stakeholders and their
needs and documenting these for analysis and
implementation. For a software development project to be
successful, the software engineers and the client have to agree
on the requirements to be implemented.

2. Software Architecture and Design – software architecture is a
description of the high-level design of a system (i.e. the
product), its main parts and their relations and interactions.
Software design is the process of making and analyzing such
architectures.

3. Evaluation, Validation and Testing - Validation (of both
process and product) means showing that a delivered
product/system satisfies the user's real or future needs.
Testing is the controlled execution of program code. There are
different levels of testing: unit, module, subsystem, system,
acceptance etc. to check that actual execution with given
inputs produces the expected results.

4. Process Models and Project Management – process models
describe the activities with ordering and compositional
relations, artifacts being produced or consumed by such
activities, human work roles, what tools/techniques to use,
and possibly what measurements to apply (i.e. a formalization
of the software development process - e.g. agile). Project
management deals with planning and control of execution
process model, including schedulers, budget, etc.

5. Development environments and tools (e.g. Eclipse) are
programs used by software engineers and programmers as aid
for the software design and implementation, synonyms are
CASE – computer aided software engineering, or IPSE –
integrated process support environment.

4 ICSE 2007 took place in Minneapolis, 19-27 May 2007

http://web4.cs.ucl.ac.uk/icse07/

6. Maintenance (software maintenance) - Further development
of a software product after its first release, also usually
organized as a project. 2/3 of total software costs may fall on
software maintenance. We distinguish between perfective
(new or revised requirements), adaptive (new
technologies/platform), corrective (fixing faults) and
preventive maintenance (internal reorganization) – e.g. with
relative distribution 50%, 25%, 20%, and 5%. Reuse is a way
of software development that includes systematic activities
for creation and later incorporation ("reuse") of common,
domain-specific artifacts. Reuse may have profound
technological, practical, economic, and legal obstacles – but
the benefits may be huge. It mostly concerns program artifacts
in the form of components, see below. Standard use of
platform components – i.e. commodities like OS, DBMS,
Internet netware, GUI etc. – are normally not called reuse.

7. Open source software – Software for which the access to the
source code is open, the distribution and re-distribution is
global, free, the licenses are non-restrictive, etc. Traditionally,
open source software has been developed by interested
communities and software users and developers have been
volunteers. In the recent years, large and small enterprises
(among the large ones we mention IBM and Sun
Microsystem) are exploiting business model centered around
production, customization, and service of OSS products.

8. Quality Attributes (performance, reliability, security, safety,
etc.) Performance is the measuring of the speed or volume
offered by a service, e.g. delay/transmission time for data
communication, storage capacity in a database, image
resolution on a screen, or sound quality over a telephone line.
Reliability is the probability of failure-free behaviour (vs.
stated requirements), in a specific context (executing
environment and usage profile) and time period. Security is
the level of protection against unauthorized access (e.g. read /
write / search) of data / information. Safety is the degree of
protection against dangerous events, i.e. events with possible
serious consequences for humans, environment, business,
and/or society.

4. INTERACTIVE INSTALLATIONS AS
SOFTWARE ENGINEERING PRODUCTS
In 2005 Briony Oates [14] proposes to extend IS research in the
domain of computer art. The first suggestion is that “computer art
might be seen as a kind of information system”. In this section we
extend this idea and discuss more concretely the mapping
between an interactive installation and a software engineering
product. Schematically, a software engineering product might be
presented as a black box that receives a digital input, processes it
and the result is outputted to the user. Interactive installations
might be mapped to this schema, as they receive certain input that
is digitally processed and the output is given back to the audience.

Figure 1: Interactive Installation as Information System.

Machine [15] states that the technology for controlling the
interactive installation artwork in general does not differ from the
technology used for controlling industrial machines; what differs
is that the artists require the technology to be more accessible, so
that they can experiment while creating the artwork.
We would like to extend this idea by adding the details around -
by describing the processes involved, the stakeholders and their
roles and the tools used.

Figure 2: Software Development.

4.1 Product
The final product in the creation of an interactive art installation
is the artwork as a whole. This includes its hardware and its
software and is physically placed as desired by the artist in its
context (e.g. public spaces, galleries, etc.).
In software engineering terms, however, the product is the
software that controls the interactive installation. The software
system takes care of the input (e.g. data from motion detectors,
light sensors, images from video cameras, content sent by the
audience, etc.), applies certain digital processing and gives the
output to the audience. Additional products, like documentation,
user manuals, web-site, supplementary software tools, etc. might
also be expected.

4.2 Roles (Stakeholders)
A project that aims to develop and interactive art installation is
often multidisciplinary, as it involves production of physical and
software components. The stakeholders of such installation
include the artist, the software designer and developer, the
hardware designer and developer, etc. but also the final
audience/spectators.

Figure 3: Interactive Installation Art Stakeholders.

The artist has the key role in the project. He/she comes with the
idea of the whole system. The artist might have a global view of
what message the artwork should send to the audience or what
reaction it should trigger. It is possible, however, that the artist
goal is to experiment with certain technology without defined in
advance goal or message for the audience. The artist might be
seen as a client to the software engineering team. He/she has to
agree on the software requirements, the final product quality
attributes, projects scheduler, etc.
Software and hardware engineers have the mission to convert the
artist’s desires and visions about the artwork into formal
requirements that are later implemented into the final product
within the time and the budget available. Depending on the
requirements and the technology involved software engineers
propose appropriate process model, software architecture and
tools for implementation.
The audience/spectators participate at the final stage, when the
whole system is ready, integrated and put in place. The audience
influences of the artwork by its presence or by its actions and in
this way the spectators are becoming part of art.

4.3 Tools
As mentioned in section 3(5), software engineering tools are
referencing to development environments – software that aids in
the design and the implementation of the final product or in the
management of the software project. Many different CASE tools
are available commercially or free of charge and practitioners
choose the most suitable ones for their task, thus different tools
might be used by people with different roles in a project.
In some cases the final product of a project might be a tool. For
example, the software development team might implement a
software system that the artist will use for experimenting with the
artwork design or for implementing and controlling the
interaction.

5. SOFTWARE ENGINEERING ISSUES IN
INTERACTIVE INSTALLATION ART
In this section we show a synthesis of 12 papers describing 23
interactive installations (see Table 2). These articles were found
within a larger study – a systematic literature review on the
intersection between software engineering and art. With some
exceptions (i.e. some articles were pointed to us by colleagues)
the articles were found by searching IEEE Xplorer, ACM Digital
Library, Google and the NTNU library meta-search engine with a
combination of the keywords “art installation”, “software
engineering”, “artist and software”. More information about the
complete survey process and initial results is available in [16].

5.1 Requirements
During the development of a software product, requirements
definition is a task of major importance. It starts at an early stage
of the project and might continue to evolve, update, increase or
change throughout the near end of the project. Highly appreciated
by software engineers are projects where the agreement on
software requirements is reached with the client at the initial stage
and they are locked against changes. Changes in requirements,
especially in later stages, might lead to drastic changes in the
software architecture design and implementation and thus might
cause increase in project cost and delays in the scheduler.

Table 1: Interactive Installations Found in our Literature Survey.

Installation Exhibited (where and when) Supported by Ref Artist Scientists
Locative sound-
scape

Park Emile Gamelin, Montreal Concordia University;
Hexagram: Institute for
Research/Creation in
Media Arts and
Technology; etc.

[6] Amitava Biswas,
Jagmit Singh

15 seconds of
fame

Exhibited several times, first at
the 8th International Festival of
Computer Arts, 28 May–1 June
2002, Maribor, Slovenia

 [17] Franc Solina

Franc Solina and
four Master
Students in CS,
Slovenia

A-Volve Multiple exhibitions 1994-2007,
first at Ars Electronica '94

ICC-NTT Japan, and
NCSA, Urbana
IL, U.S.A.

[10] Christa Sommerer,
Laurent Mignonneau

Christa Sommerer,
Laurent
Mignonneau,
Tom Ray (A-Life
scientist)

Books of sand Several exhibitions, including
Daum Museum of Contemporary
Art. Missouri. USA and Museum
of Modern Art of Buenos Aires.
MAMbA (2002-2003)

UCLA Theater, Film and
TV Department
(residency program),
Univeristy of Tres de
Febrero and Linda
Lighton Foundation of
Kansas City

[18] Mariano Sardón Laurence Bender

Gender Specific Santa Monica Museum of Art,
and Bliss House, Pasadena,
California. November 11 - 18,
1989. (Simultaneous one-person
exhibitions) and Part of the LA
Freewaves video festival.

Sponsored by the
Foundation for Art
Resources.

[8] Jennifer Steinkamp

GENMA
(Genetic
Manipulator)

Ars Electronica Center (AEC) in
Linz, Austria, as part of a
permanent exhibition, 1996;
extended several times

ATR Media Integration
and Communications
Research Lab, Kyoto
Japan

[10] Christa Sommerer
Laurent Mignonneau

Laurent
Mignonneau

Iamascope Several times since 1998, including
Play Zone, Millenium Dome 2000,
Video Construct, Kyoto Two

 [11] Sidney Fells Sidney Fells

Interactive plant
growing

Permanent collection of the
Media Museum at the ZKM
Karlsruhe, Germany, 1997

 [10] Christa Sommerer,
Laurent Mignonneau

Christa Sommerer,
Laurent
Mignonneau

Intro Act Biennale de Lyon at the Musée
d’Art Contemporain in Lyon,
France, as part of the museum’s
collection, 1996/97

 [10] Christa Sommerer,
Laurent Mignonneau

Laurent
Mignonneau

Memichi Banff national park, Alberta,
Canada

 [6] A. Biswas

MIC Exploration
Space

ATR Media Integration and
Communication Systems
Laboratories in Kyoto, Japan,
1996.

 [10] Christa Sommerer,
Laurent Mignonneau

Christa Sommerer,
Laurent
Mignonneau

Nautilus VTT Information
Technology, Cube Oy,
Nokia Research Center,
Särkänniemi Adventure

[19] Hanna Strömberg
Antti Väätänen
Veli-Pekka Räty

Park, Tekes, the National
Technology Agency and
the University of Lapland,
Finland

Phototropy

Shiroishi, Japan 1998 Artifices, Saint-
Denis, France.

[10] Christa Sommerer,
Laurent Mignonneau

Laurent
Mignonneau

Priva-Lite Panel
Construction
“Digital Garden”

Outdoors, 1998 COSTART project and
Gallery of the Future,
Loughborough, UK

[15] Esther Rolinson Colin Machin

Remote furniture Exhibitions in Yokohama,
Queens mall, Aug 1999; Tokyo,
Ginza subway station, Aug 1999

 [20] Fujimura, Noriyuki -

Stiffs Art Center College of Design's
Williamson Gallery, 2000

ACME Gallery, Los
Angeles

[8] Jennifer Steinkamp in
collaboration with
Jimmy Johnson
(soundtrack)

SwarmArt Two installations for a Calgary
gallery, 2002-2005

 [21] Gerald Hushlak

Jeffrey E. Boyd,
Christian J. Jacob

SWELL Several exhibitions until 2005,
first ACME, Santa Monica,
California. (One-person
exhibition) November 10 -
December 8, 1995

The Museum of
Contemporary Art, Los
Angeles, California with
funds provided by the
Ruth and Jake Bloom
Young Artist Fund

[8] Jennifer Steinkamp in
collaboration with
Bryan Brown
(soundtrack)

Swimming across
the Pacific

 [22] Alzek Misheff, Fels
S.

Fels S., Kinoshita
Y., etc.

The TV Room Santa Monica Museum of Art,
1998

ACME., Los Angeles [8] Jennifer Steinkamp in
collaboration with
Andrew Bucksbarg
(soundtrack)

Trans Plant

Permanent collection of the
Tokyo Metropolitan Museum of
Photography, Tokyo, Japan,
1995-1998

Advanced
Telecommunications
Research (ATR)
Laboratories, Japan.

[10] Christa Sommerer,
Laurent Mignonneau

Christa Sommerer
Laurent
Mignonneau

Trigger Pace University Digital Gallery,
New York, NY, October 18 -
November 8, 2005

 [23] Jody Zellen scientists from Pace
University’s Center
for Advanced
Media (CAM)

Untitled Several exhibitions between 1993
and 2006, first at FOOD HOUSE,
Santa Monica, California, 1993

 [8] Jennifer Steinkamp

As in many other fields, requirements definition is one of the
most difficult tasks for the software developers in the interactive
installation projects - "It is the most important part of the process
because without a precise understanding of the system
requirements it is possible to build a well functioning system that
does not perform the tasks requested by the user" [23]. However,
requirements are often found difficult to capture. Machine [15]
underlines that requirements definition is the hardest part and
states that “we find the greatest challenges in even identifying
what the artist requires”. The author emphasizes that the
requirements by the artist might change repeatedly until he/she is
satisfied. Similarly, Marchese reports changes in requirements

during the implementation of Trigger - "the system design was
updated to reflect experiments with different types of sensors”
[23]. Biswas and Singh [6] share their experience from two
installation projects, stating that often “the emergent system
specifications cannot be defined in sufficiently tangible terms till
the very end of the project”, especially because they might be
very vague at the beginning. The reason for that might be due to
the different working style of the artist – more exploratory rather
than rationally planned and with explicit goals, as it generally is
in business domain.

As earlier stated, the installations that we examine are most often
highly interactive. What differs from the common interaction in
software systems is the final goal. In information systems the goal
is to increase the effectiveness and the efficiency in the correct
completion of a concrete task (or set of tasks). On the other hand,
"humor and play are important aspects of the art" [8].
Additionally, often “the system usage context is entirely absent or
it is not well understood” [6]. Hannington and Reed [9] state that
the difficulties in “capturing human activities in a manner that is
sufficiently informal for non-programmers to understand, yet
sufficiently precise for developers to use as a specification” are
stronger in multimedia domain than in other domains. Interactive
installations are often used by a large number and variety of
spectators – adults and kids, people with different education and
knowledge, men and women form different nationalities. Thus,
“requirement elicitation should encompass sufficiently large
variety of usage situations.” [6]
It is important that both software developers and artists are aware
of these properties of the requirements. Requirements might be
difficult to capture, vague at the beginning and frequently
changeable. Having this in mind will allow choosing the most
appropriate software development methods, designing the most
suitable architecture of the product, good risk assessment and
proper planning of budget and schedule.
The literature review shows also that the software developers
have to be an active side in the requirements definition when
working with artists. In many cases artists have clear ideas of
what they want the final effect of the artwork on the audience to
be. They might have also decided on what technology they want
to explore. However, they might not be aware of the full potential
of this technology and how it might influence on what the system
will do. They expect suggestions and proposals from the
technologists on what the technology allows. These ideas would
not be directly applied, but would provoke/inspire the artist’s
creativity and will be put together with his/her ideas and goals for
the final artifact – the artwork.

5.2 Software Architecture and Design
The software architecture depends on the functionalities which
should be provided by the system, on the technology chosen, on
designers’ preferred styles, etc. Thus, the software architecture
will most probably differ from one project to another.
For several of the interactive installations the software
architecture is reported. Marchese [23] describes a simple
architecture with 3 components - microcontroller-sensor system,
application software, and an interface software between sensors
and the application with "high level interrelationships among
components without specifying the processing details". Boyd et
al. [21] report a pipeline architecture where “the output of a
module can provide input to one or more other modules in a
pipeline”. Several standard software (i.e. previously available
software not developed by the authors) were combined, including
the software for simulating a swarm and a video interaction server
widely used for surveillance tasks. The pipeline is made
dynamically configurable through a graphical interface.
The software behind the interactive installation “Swimming
across the Pacific” [22] has also a modular architecture. The use
of object-oriented software engineering methods is reported in
[19]. Machin in [15] describes an especially designed simulator
and a specific language that allows the artist to easily experiment

with the installation design and several supplementary tasks (e.g.
calculation of the overall cost which depends on the changes of
the materials used and their quantity). Similarly, Biswas and
Singh [6] have developed a Mobile Experience Engine (MME)
which helps in the simulation of the final artwork. Their system
contains two parts – a visualizer that generates low-fidelity
prototype and a code generator that generates high-fidelity
prototype with optimized implementation for several interaction
devices. The authors find that most suitable is to “wisely splitting
the application architecture into two parts, one dealing with
interactivity, the other tackling core functionality”. Finally,
Edmonds et al. state that “In art and technology environments, we
need environments for building environments” [11].
The observation on the published work on interactive installation
art shows that whenever possible the development teams tend to
us software that is already available (reuse). This decreases the
overall effort for implementation and the final price of the
software. However, in most of the cases the standard components
have to be integrated into the full system and custom parts have to
be implemented.
Although artists often have much more profound technological
knowledge then expected from clients in software engineering
projects, they often would like to have the freedom of
experimenting with all technological possibilities by themselves
even in cases when their experience is not enough. Adding an
extra layer between the artist and the underlying programming
fosters the artwork creation without limiting the artist’s creativity.

5.3 Evaluation, Validation and Testing
Software products are usually checked for their correctness during
execution (i.e. testing), for satisfying the requirements
specifications (i.e. validation) and on how well the end-product
satisfies the user expectations (i.e. evaluation).
The testing might be done automatically by using other software
that executes [pieces of] the system with various parameters and
controls the correctness of the outputs. It might be also done
manually by the developers and/or users, which is commonly
done in small projects. For example, [23] reports such manual
approach for the integration testing of the interactive installation
Trigger - “The developers systematically walked through the
space triggering all video and sound sequences”, thus
simultaneously testing the hardware (e.g. sensors) and the
software of the artwork. This, together with the validation was
done on-site when the installation was mounted in the gallery
several days before opening - “Multiple walkthroughs of the
installation by the artist before the opening constituted the final
acceptance test of the system”.
Strömberg et al. in [19] report the use of heuristic expert
evaluation for the technical aspects of the system. Multiple
(iterative) evaluations were performed in different phases of the
design and implementation with participants that were considered
potential final users. The evaluation was done by observation,
interviews and open-ended questionnaires and in earlier stages the
feedback was used for design improvements. Fells et al. [22]
evaluated their artwork with the visitors of Siggraph 2004
exhibition, collecting opinions, positive and negative experience,
comments and suggestions.
The evaluation against the final user utilization might be essential
for creating the user-system interaction as it is planned and

expected by the artist. For example, Steinkamp [8] reports that
"children immediately understand that they are expected to play
in the projection". On the other hand, adults were examining and
analyzing the system instead of actively interacting with it. This
was not exactly the desired by the artist behavior/effect, but it was
noticed only when observing the audience during the exhibition.
While Hannington and Reed [9] affirm that “most multimedia
process models advocate use of strict evaluation and revision
within the iterative cycles of development” this might not be
possible in all cases due to budget or other limitations.
Furthermore, clear distinction should be done between testing and
evaluation, as “testing ensures correct technical operation of the
system, but it does not ensure its appropriateness or its
effectiveness in delivering the expectations” [6]. Nevertheless, in
some cases the testing of certain system parameters might be done
in real-world situation – for example the robustness of the
innovative face-detection software behind the “15 seconds of
fame” [17] was tested during the exhibition and based on
participants evaluation the authors judged the algorithm as
reliable and effective.
Summing up, the development team in interactive installation art
project should consider evaluating the artwork and especially the
interaction as early as possible with final users, as the effect might
not be as expected by the artist. Different users should be
considered - culture, gender, age, etc. Some of the quality
attributes, like reliability, robustness, etc. might be tested in real
environment during exhibition.

5.4 Process Models and Project Management
The software development model is a formalization of the
activities and the modes in which the software development is
organized. Generally this is part of the policy which the software
development company has incorporated and is valid for all the
projects within the company. Many interactive installations are
developed during artists-in-residence programs and the software
development process might be influenced by the hosting
institution practices.
Agile method of software development (i.e. Adaptive Software
Development) was chosen at the beginning of the project
described in [23] and was evaluated as a good choice by the
software engineers. The developers predicted the possibility of
vague requirements which would change frequently. The chosen
method was suitable also because it dealt well with the strict
schedulers of both artist and technologists and with budget
limitations.

Biswas and Singh [6] discuss several possible software
development methods and their advantages and disadvantages for
interactive art projects. For example they state that “Creative
artist’s work processes do not necessarily follow “analyze-model-
design-build” trajectories like engineers. They [artists] iteratively
and intuitively generate creative ideas and evolve their design
based on their perception and experience”. More suitable from the
traditional software engineering approaches is found to be the
“evolutionary prototyping” in which “artists will generate creative
ideas, technologists will receive briefing from artists, build
prototypes, elicit modifications/corrections and further
requirements from the artists and this cycle will be repeated till
the artist is progressively satisfied”. However, this was far from
the perfect model, as “system developed by evolutionary

prototyping may suffer from lack of coherency in its architecture
due to inadequate planning”. The authors build upon this model
and enhance it with low-fidelity and high-fidelity prototype
generation. Biswas and Singh also suggest the need of further
investigation of other methods, like user assisted prototyping,
participatory prototyping and prototyping combined with usability
studies.

While in the previously discussed cases the development of the
artwork was rather isolated from the final users, in other projects
different approach has been chosen. Human-centered design has
been used in [19]. The authors report that the users were not only
participating in the final evaluation, but were “essential part of the
design process from the early stages”. This process is iterative and
the necessary changes were made according the feedback from
the users. The application functionalities were designed by the
artists in the form of scenarios and storyboards that were used by
the software designers for deriving an object-oriented
architecture.

Considering the whole project management several issues should
be mentioned. In interactive installation art often the creation of
the artwork is sponsored by a public entity which does not
influence on the artist’s creativity. However, the budgets are tight
and often relatively small. In many cases the work is created
during artists-in-residence programs and it is possible that some
members of the team have additional work duties. Commonly,
there is an opening day for the artwork, thus the final deadline for
the full system might not be flexible. Apart from budgeting and
scheduling probably most important issue in the project
management is the risk assessment. According to [23] "Any
component of the system or member of the project could pose a
risk". Artists often explore and incorporate in their interactive art
installations one or more new/emergent technologies (e.g. sensors,
location awareness, mobile and wireless, etc.). Together with
mostly limited budget, this leads to the high probability that the
technologists will not be well acquainted with the necessary skills
and need time to learn. The newest technology might also be
problematic in terms of instability, lack of documentation and
support materials and communities.

5.5 Development Environments and Tools
The development tools used by software developers are not
discusses in the reviewed articles. Our guess is that standard
CASE tools were utilized (the ones which the technologists are
most used to) with no particular advantages or disadvantages for
the software development in interactive installation art. Although
artists sometimes prefer “access to deeper levels of the
computer’s programming system” [11] the tools that are suitable
for software engineers does not seem to be proper for them.
Interestingly, they use tools like Macromedia Flash as CASE
tools – for implementing their programs (e.g. [23]), but also for
supportive tools, such as for creating the storyboard in [19]. In
several cases (e.g. [6, 11, 15]) technologists provide additional
software layer for the artists – tools that will give them the
freedom to experiment without limiting their creativity. Such
tools are found to be well accepted and positively evaluated by
artists. In Table 2 we provide a list of the software tools
mentioned in the discussed articles, together with additional
information and links.

Table 2: Software tools

Software 5 Description Ref URL
3D Studio
Max

3D modeling and
animation package

[19] www.autodesk.c
om/3dsmax/

Breve
swarm
simulation

A package for building
3D simulations of multi-
agent systems and
artificial life

[21] www.spiderland
.org/breve/

GigaStudio
160

Software for music and
sound effects

[19] www.tascamgig
a.com/

Macromedia
Director

Multimedia authoring tool [18] www.adobe.com/
products/director/

Macromedia
Flash

Professional software for
creating rich, interactive
content for digital, web,
and mobile platforms.

[23]
[19]

www.macromed
ia.com/software
/flash/

MAX/MSP A graphical environment
for music, audio, and
multimedia

[23]
[11]

www.cycling74.
com/

Maya 3D animation package [8] usa.autodesk.co
m/adsk/servlet/i
ndex?siteID=12
3112&id=76350
18

Mobile
Bristol
toolkit

A tool to create and share
mobile, location–based
media

[6] www.mobilebri
stol.com/

Mobile
Experience
Engine

A software development
platform for creating
advanced context-aware
applications and media-
rich experiences for
mobile devices

[6] www.open-
mee.org/

OpenGL Industry standard and API
for high performance
graphics

[22] www.opengl.or
g/

Particle
dynamics

A software tool set for
simulating natural
phenomena.

[8]

Pfinder Advanced camera/gesture
tracking software,
developed by MIT

[10] vismod.media.m
it.edu/vismod/d
emos/pfinder/

Sculpture
simulator

A sculpture simulator
with its own
programming language

[15]

SoftVNS
video
toolkit

A real time video
processing and tracking
software for MAX/MSP

[11] homepage.mac.
com/davidrokeb
y/softVNS.html

5 The Commercial products are marked in Italic. The products in
Bold are free or open source products. For the rest this
information is not available.

6. DISCUSSION AND CONCLUSIONS
Interactive installation art is an active field with many artworks
created and exhibited, both in Norway and worldwide. Interactive
installations are frequently heavily dependent on software and
often software engineers are part of the team in projects for
creating interactive installation. During our involvement in
several such projects we have asked the question: How much does
the Artist need to know about Software Engineering in order to
interact with Software Engineers and programmers?

In this article we outline the key software engineering concepts in
relation to the development of interactive installation art. This
will give an easy start for artists and will facilitate the creation of
common language and understanding within the team. We also
summarize the software engineering issues and solutions reported
in published articles describing interactive installations. This
collection of experiences from interactive installation art projects
might guide the software engineers and programmers in their
future practices and direct their attention to difficult issues in this
specific domain. We also provide a list of utilized tools.

It is extremely important that both software developers and artists
are aware that in interactive installation art requirements are
difficult to capture, vague at the beginning and frequently
changeable. Software engineers have to be an active side in the
requirements definition. The choice of appropriate software
development method and the design of suitable software
architecture might capture this specific of the domain and might
help for the proper planning of the budget and schedules. Careful
risk assessment should be performed, so that to guarantee a
successful ending of the project.
Interaction is a key issue in interactive installation art. Sometimes
the environmental parameters trigger the interactivity, sometimes
only the audience presence is enough to cause changes in the
artwork, but in most of the cases the interaction is directly linked
to the audience actions. But how to understand the audience and
how to predict their behavior to the extent to reach the Artist’s
desired effect? In section 5 we have shown that different process
models might be used to face this issue, like human-centered
design. Prototyping is found suitable in order to ensure correct
understanding between artist and software developers (i.e.
correctness in requirements specification). Prototypes might also
foster the evolvement of the artist’s creative ideas. Additionally
the evaluation of the artwork interactivity might be done in
different stages of the project by the expected audience. However,
a large variety of spectators (i.e. gender, age, nationality,
education, physical capabilities, etc.) might be anticipated.

It should be kept in mind that different stakeholders in interactive
installation projects might need and prefer the use different set of
tools for their tasks. Software developers are acquainted with
CASE tools appropriate for the software design and
implementation. These tools, however, might not be appropriate
for artists. Artists often use tools like Flash or Max/MSP as CASE
tools. They might prefer to create storyboards instead of UML
diagrams. In their work artists often adopt more experimental
style and might require an additional software layer (e.g. a tool)
that will allow them to experiment with the chosen technology
without limiting their creativity.

Additional important software engineering issues, like
maintenance and open source software, are not mentioned in any

of the reviewed articles. We ask if it depends from the fact that
they are not important in interactive installation art or there is
some other reason why they are omitted. Our experience implies
that they should be important. Artists often continue work on their
interactive installations; they evolve and are exhibited in
consecutive occasions. Then why software maintenance is not
discussed? Our assumption is that this might be related to limited
budgets of projects in interactive art installations. As we mention
in section 3 up to 2/3 of the software cost might fall on software
maintenance.

Furthermore, the reuse of software components is a common
target-domain specific issue in software engineering, which might
be worth exploring in art. In addition, the open source
phenomenon seems a promising area. Open source software is not
only a free of charge basis for software projects. It also provides a
community support and further development which artists might
explore. Further investigation on these questions is needed.

Interdisciplinary research should provide benefits to all
disciplines involved. In our case the primary goal is that of
providing guidelines for artists that need software engineering
knowledge. On the other direction there are at least the following
beneficial issues:

1. Education and recruitment of students – students are motivated
when working on their art-related projects [24]. They can touch
with their hands their work and show it to family and friends.

2. Culture and social - computer scientists and software engineers
need to reflect about the nature of our discipline and on our
profession The dialogue with artists and the concrete projects and
problems are a stimulus to such reflection.

3. Innovation – Artists work in a different way and generate
requirements that may result in innovative products and methods
(e.g. [25]).

7. REFERENCES
[1] Digital Art Museum, "History",

http://www.dam.org/history/index.htm, last visited 26/06/07.
[2] Naur, P. and B. Randell, "Software Engineering: Report of a

conference sponsored by the NATO Science Committee", in
Software Engineering, Garmisch, Germany, 1968, p. 231.

[3] Lysaa, P. A., Y. Sandboe, and B. Kvinnsland, "Intravision art
presentation", Intravision Presentation, March, 2006,
available online at
www.intravision.no/downloads/iv_art_2006.pdf (13/06/07).

[4] Manovich, L., The Language of New Media (Leonardo
Books): The MIT Press, 2002.

[5] Tribe, M., R. Jana, and U. Grosenick, New Media Art
(Taschen Basic Art): Taschen America, LLC, 2006.

[6] Biswas, A. and J. Singh, "Software Engineering Challenges
in New Media Applications", in Software Engineering
Applications (~SEA 2006~), Dallas, TX, USA, 2006.

[7] Manovich, L., "New Media from Borges to HTML", in The
New Media Reader, N. Wardrip-Fruin and N. Montfort, Eds.:
The MIT Press, 2002, pp. 13-28.

[8] Steinkamp, J., "My Only Sunshine: Installation Art
Experiments with Light, Space, Sound and Motion",
Leonardo, vol. 34 (2), pp. 109-112, 2001.

[9] Hannington, A. and K. Reed, "Towards a taxonomy for
guiding multimedia application development", in Ninth Asia-

Pacific Software Engineering Conference (APSEC'02), Gold
Coast, Queensland, AUSTRALIA, 2002, pp. 97-106.

[10] Sommerer, C. and L. Mignonneau, "Art as a Living System:
Interactive Computer Artworks", Leonardo, vol. 32 (3), pp.
165-173, 1999.

[11] Edmonds, E., G. Turner, and L. Candy, "Approaches to
interactive art systems", in Proceedings of the 2nd
international conference on Computer graphics and
interactive techniques in Australasia and South East Asia
Singapore: ACM Press, 2004.

[12] Bourque, P., R. Dupuis, A. Abran, and J. W. Moore, "Guide
to the Software Engineering Body of Knowledge", 2004 ed,
P. Bourque, R. Dupuis, A. Abran, and J. W. Moore, Eds.:
IEEE Press, 2004, p. 204.

[13] Conradi, R., "Software engineering mini glossary",
http://www.idi.ntnu.no/grupper/su/publ/ese/se-defs.html, last
visited 19/06/07.

[14] Oates, B. J., "New frontiers for information systems research:
computer art as an information system", European Journal of
Information Systems, vol. 15 (6), pp. 617-626, Dec 2006.

[15] Machin, C. H. C., "Digital artworks: bridging the technology
gap", in Proceedings of The 20th Eurographics UK
Conference, 2002 2002, pp. 16-23.

[16] Trifonova, A., S. U. Ahmed, and L. Jaccheri, "SArt: Towards
Innovation at the intersection of Software engineering and
art", in Proceedings of The 16th International Conference on
Information Systems Development Galway, Ireland: Springer,
2007.

[17] Solina, F., "15 seconds of fame", Leonardo, vol. 37 (2), pp.
105-110, 2004.

[18] Sardon, M., "Books of sand", in Proceedings of the 14th
annual ACM international conference on Multimedia Santa
Barbara, CA, USA: ACM Press, 2006.

[19] Strömberg, H., A. Väätänen, and V.-P. Räty, "A group game
played in interactive virtual space: design and evaluation", in
Proceedings of the conference on Designing interactive
systems: processes, practices, methods, and techniques
London, England: ACM Press, 2002.

[20] Fujimura, N., "Remote furniture: interactive art installation
for public space", in ACM SIGGRAPH 2004 Emerging
technologies Los Angeles, California: ACM Press, 2004.

[21] Boyd, J. E., G. Hushlak, and C. J. Jacob, "SwarmArt:
interactive art from swarm intelligence", in Proceedings of
the 12th annual ACM international conference on
Multimedia New York, NY, USA: ACM Press, 2004.

[22] Fels, S., Y. Kinoshita, C. Tzu-pei Grace, Y. Takama, S.
Yohanan, A. Gadd, S. Takahashi, and K. Funahashi,
"Swimming across the Pacific: a VR swimming interface",
Computer Graphics and Applications, IEEE, vol. 25 (1), pp.
24-31, 2005.

[23] Marchese, F. T., "The Making of Trigger and the Agile
Engineering of Artist-Scientist Collaboration", in
Proceedings of the conference on Information Visualization
(IV), 2006.

[24] Jaccheri, M. L. and G. Sindre, "Software Engineering
Students meet Interdisciplinary Project work and Art", in
11th International Conference on Information Visualisation
(IV) Zurich, Switzerland, 2007.

[25] Harris, C., "Art and innovation: the Xerox PARC Artist-in-
Residence program", C. Harris, Ed.: MIT Press, 1999, p. 293.

