Technical Opinion| fred Martin

Toy Projects Considered Harmful

It is valuable to improve upon the sample code we provide to
students. But the deeper challenge is to create a context in which
student programming matters.

ontinuing the string of
“Considered Harmful”
essays that have appeared
in Communications, 1 too
owe a debt of gratitude to Edsger
Dijkstra [2]. Chenglie Hu’s
“Technical Opinion” column,
“Dateless Objects Considered
Harmful,” pointed out that
when we introduce novice pro-
grammers to objects, then those
objects had better exhibit key
properties of “object-hood” [3].

The deeper issue, though, is
that we are happy to have stu-
dents spend semester after semes-
ter writing code that never sees
the light of day. Students know
their code matters only as much
as they might find our assign-
ments interesting, or as much as
it counts toward their grades.

In contrast to this, I recently
spent a week programming an
online customer database and
order-taking system for a small
business that my wife and I oper-
ate. It had been a while since I
spent any extended period of
time writing code, and even
longer since I wrote code that
was going live.

My entire coding experience
was shaped by this reality, and it
had repercussions in my design
process, choice of technology,
and project schedule.

The overarching significance
was emotional—I knew this code
would underpin our business. It
had to work, it had to work
properly, and it had to be built
quickly.

It struck me that many of my
students might never have had
this experience—the experience
of writing code that matters.

If you are an academic, try to
remember the last time you
wrote code that went live or
shipped. Code for classroom use,
or even research use, may not
count—it’s more like the projects
we assign to our students.

CODING FOR THE REAL WORLD
Why the Web is now better than a
book. When 1 first learned how
to program, I used books. Later,
as an undergraduate, I also
learned by talking with peers.
This was typical.

A few years ago, when I did a
couple of small Web projects

COMMUNICATIONS OF THE ACM July 2006/Vol. 49, No. 7

using PHP and MySQL, 1
bought a book. This time, I
barely cracked it open—but not
because I didn’t need any docu-
mentation or resources. Instead, I
Googled for help—and found
more than I expected.

Besides being instantly avail-
able and free, online program-
ming guides have a key feature
that books do not: user com-
ments. On each page document-
ing a function or feature, there is
a batch of user comments (for
example, see the home page for
MySQL documentation at
dev.mysql.com and the home
page for PHP documentation at
www.php.net). The user com-
ments are often quite relevant—
highlighting subtle interactions,
or showing how to use a feature
by example rather than by
description. It strikes me that
these combined technical manu-
als/user forums replace what in
the past would be accomplished
by talking to people around
the lab.

Learning from sample code—or
Jjust using it. Since the objective
of my project was to produce a

113

Technical Opinion

functional Web commerce sys-
tem, it made sense to be expedi-
ent and reuse or adapt whatever
code I could find.

For example, I had previously
adapted a Perl script, formmail.pl,
to our site. My current project
was being done in PHP, and I
postulated there must be a form-
mail.php script. I downloaded it
and perused it for my needs.

It is important to note that
this sort of code reuse, for com-
mercial purposes, is legitimate
only if authors allow it. Fortu-
nately, much code that is pub-
lished on the Web includes
generous licenses. For example,
the formmail.pl script “may be
used and modified free of charge
by anyone” as long as its copy-
right notice and authorship attri-
butions are preserved [5].

Our new warehouse company
provided a PHP script that pro-
duced the necessary XML file for
transferring daily shipment data.
This script was valuable, both
practically and for my own learn-
ing. It both demonstrated a
structure for a customer/order
database—which I adopted—and
it illustrated coding techniques of
which I had been previously
unaware.

Consider two notes on this.
First, writing code from scratch is
often the wrong way to go about
getting something done. If some-
one has already written, pub-
lished, and is giving away code, it
can be much quicker to use it
than to write your own (for
example, by using standard pro-

114

gramming libraries).

Second, it’s great to learn from
others’ code. Well-written code
can both illustrate good form
and provide a meaningful con-
text for demonstrating ideas. I
would often much rather see a
short example program than read
an abstract (though complete)
specification.

How would student program-
ming projects change if assign-
ments were structured like “find
some code on the Web that’s
close to what I'm asking and
extend it to accomplish the
assignment” versus “implement
this functionality”?

On rapid prototyping. My proj-
ect was an exercise in rapid pro-
totyping. I had budgeted a week.
I planned to do the design while
writing the code. The software
tools I used—which typically are
not favored in academic set-
tings—were key to this approach.

Interactive environments. The
project used HTML, PHP, and
MySQL, all of which are highly
interactive. With HTML and
PHP, there is no compile step:
you reload your code in your
browser to see what it does.

My own coding style is to write
a few lines of code and test them.
I mean this quite literally; I would
write 3 to 10 lines before rerun-
ning the code. At first, this was to
test my understanding of what
was going on. Is this stuff working
as I think it is?

But later, 3 to 10 lines repre-
sented the size of a small opera-
tional chunk of progress. I saw

July 2006/Vol. 49, No. 7 COMMUNICATIONS OF THE ACM

no need to proceed to writing
the next bit of code until the
just-written bit was tested and
operational.

Is this normal? For me, I can’t
imagine working any other way.
But observing most of my stu-
dents, this is deviant! Most stu-
dents sit down and write one or
several pages of code, then get it
to compile, and then say, “it’s
done, but I still have to test it.”
Of course, they’re nowhere near
being done.

A GUI that helps you learn. 1
used a MySQL database, which
includes both a command shell
and a graphical front end (php-
MyAdmin). Both let you design,
build, and modify your database
interactively. However, php-
MyAdmin is more than your typ-
ical GUI, because it tells you
what it’s doing. Each time you
use it, it generates a database
query, and then displays it.

I generally do not like GUIs,
and I now realize it’s because
they usually do the opposite:
they accomplish some task by
configuring something behind
my back. Here, the expert
knowledge built into the GUI
teaches me while I am also get-
ting something useful done.

On untyped languages. 1 know
this is a sensitive issue, but I
don’t see how one cannot be
“moved” by the experience of
typing in PHP code and having
it just work. Is that variable hold-
ing an integer? OK, sure. Is it a
string? Sure. Is it holding a con-
nection object? Of course. Is it

holding a MySQL query result?
Yes. What is that exactly? I don't
care—I just know how to use it!

Yes—for big projects, one
needs structured design princi-
ples and tools that help you vali-
date your work.

But it is a powerful experience
to write code that does complex

based on computer gaming. First
students design a game; then
they implement it [1]. In our
robotics course, students design a
robot to perform a specified task;
the task is clearly defined, but
the solution space is wide and
varied. In a course module devel-
oped in collaboration with a

search to find problems. I want
them to see that it’s really helpful
to have just a tiny bit of code
running so that a particular con-
cept or interaction can be under-
stood.

In more traditional problem-
solving assignments, I urge stu-
dents to use rapid prototyping

| encourage students to be creative in reframing their problem based
on their developing insights along the way.

things with a minimum of effort.
We shouldn’t protect our stu-
dents from this feeling of power
and expressiveness—instead, we
should encourage them to be
exhilarated by it.

MAKING IT REAL IN THE CLASSROOM
The challenge, then, is having
“making it real in the classroom”
not be a contradiction in terms.
I have found approaches that
make classroom projects feel
more real to students, including
the following:

Students developing their own
designs. There is always a balance
between providing assignments
that are focused on particular
curricular topics and ones that
are more open-ended. Our goal
as teachers, though, is always to
have our students become
invested in the work.

Assignments that support stu-
dent design can be particularly
successful. In my department, a
colleague developed a two-semes-
ter software engineering course

social scientist, students create
working concept prototypes
around the theme of sustainable
development [4]. Ultimately,
when students finish a class
thinking, “I built something—
this is mine,” we have succeeded.

A benefit of design-based proj-
ects is that students are welcome
to take advantage of whatever
resources they can marshal,
including using code located on
the Internet. (As noncommercial
users, even more code will be
available to them.) By definition,
their design is unique, and they
will get further by leveraging
published code and other work.

Encouraging rapid prototyping.
Even if students are using tradi-
tional software tools, I encourage
them to develop their code itera-
tively. In the classroom, I demon-
strate ideas by writing 10 lines of
C code, compiling it, and run-
ning it. Students help debug
when something unexpected
happens. I demonstrate debug-
ging techniques like binary

COMMUNICATIONS OF THE ACM July 2006/Vol. 49, No. 7

techniques to help them under-
stand the ideas they are working
with. In the design-based proj-
ects, rapid prototyping is even
more important. Here, students
are framing a problem and then
designing its solution. The inter-
action between framing and solv-
ing is crucial. I encourage
students to be creative in refram-
ing their problem based on their
developing insights along the way.
When students realize they can't
do what they initially set out to
do, I ask them to target a more
refined, limited goal.

A public performance. Nothing
motivates work like a deadline,
especially one that involves other
people showing up to see what
you did. Public events can take a
variety of forms; I've organized
elimination-style robot competi-
tions and mini-symposia where
each student/team gets a short
presentation slot. My current
favorite is the open-house-style
event, where students set up their
projects, including poster boards,

115

Technical Opinion

and demonstrate them to visi-
tors. This is best when student
work involves some sort of arti-
fact or program that can be
shown doing something—mak-
ing the event more than a poster
session.

Providing a safe venue for risk.
If students are developing a proj-
ect that will be used by others
who are depending on its timely,
successful completion, there are
real repercussions for failure,
which ultimately will be borne
by the supervising faculty. ’'m
really only willing to do this for
projects that are part of my
research plan (others may be
more adventuresome).

The public presentation is a
nice middle ground, for both
students and faculty. Here, the
main risk is social embarrass-
ment—Ilosing face in front of
your peers because you obviously
did not make a sufficient effort.
This becomes a motivator for
both students and faculty, as our
joint learning venture is actually
what is on display.

Really making it real. The best
way, of course, is to bring stu-
dent projects out of the class-
room—that is, to have students
develop something of value to
people and organizations in the
community.

The problem is difficult: the
faculty’s effort in developing a
network of potential “cus-
tomers”; eliciting “problem speci-
fications”; framing these into
something achievable in a semes-
ter or less; helping students
deliver tested and reasonably
debugged solutions; and mainte-
nance after the fact.

116

My institution has small and
large initiatives brewing. Small
projects include having our stu-
dents do writing projects for
local nonprofit organizations,
creating advertising and logos for
restaurants and other small busi-
nesses, and developing novel
assistive technology projects.
Larger programs include a ser-
vice-learning project across the
Engineering school’s curriculum
and a institution-wide frame-
work for community-university
partnerships being led by one of
our accomplished, senior faculty
members.

With support from our insti-
tutions, junior and senior faculty
members alike can make the nec-
essary investment and create con-

texts for meaningful student
work.

REFERENCES

1. Claypool, K. and Claypool, M. Teaching soft-
ware engineering through game design. In
Proceedings of the Tenth Annual Conference on
Invention and Technology in Computer Science
Education (ITiCSE) (Monte da Caparica, Por-
tugal, June 2005).

2. Dijkstra, E.-W.G. Go To statement consid-
ered harmful. Commun. ACM 11, 3 (Mar.
1968).

3. Hu, C. Dataless objects considered harmful.
Commun. ACM 48, 2 (Feb. 2005).

4. Martin, F. and Kuhn, S. Computing in con-
text: Integrating an embedded computing
project into a course on ethical and societal
issues. In Proceedings of the 37th SIGCSE
(Houston, TX, 2006).

5. Wright, M. formmail.pl version

scriptarchive.com.

1.92;

FRED MARTIN (fredm@cs.uml.edu)

is an assistant professor in the Department
of Computer Science at the University of
Massachusetts Lowell.

© 2006 ACM 0001-0782/06/0700 $5.00

July 2006/Vol. 49, No. 7 COMMUNICATIONS OF THE ACM

