#javascript-processing-example-topic-fractals-mandelbrot.htm / htm
<!DOCTYPE html> <html><head> <script src="javascript-processing-example-processing.js"></script> <script src="javascript-processing-example-init.js"></script> <link rel="stylesheet" href="javascript-processing-example-style.css"> </head><body><h1><a href="http://ejohn.org/blog/processingjs/">Processing.js</a></h1> <h2>Mandelbrot</h2> <p>by Daniel Shiffman. Simple rendering of the Mandelbrot set.</p> <p><a href="http://processing.org/learning/topics/mandelbrot.html"><b>Original Processing.org Example:</b> Mandelbrot</a><br> <script type="application/processing"> // Establish a range of values on the complex plane // A different range will allow us to "zoom" in or out on the fractal // float xmin = -1.5; float ymin = -.1; float wh = 0.15; float xmin = -2.5; float ymin = -2; float wh = 4; void setup() { size(200, 200); noLoop(); } void draw() { loadPixels(); // Maximum number of iterations for each point on the complex plane int maxiterations = 200; // x goes from xmin to xmax float xmax = xmin + wh; // y goes from ymin to ymax float ymax = ymin + wh; // Calculate amount we increment x,y for each pixel float dx = (xmax - xmin) / (width); float dy = (ymax - ymin) / (height); // Start y float y = ymin; for(int j = 0; j < height; j++) { // Start x float x = xmin; for(int i = 0; i < width; i++) { // Now we test, as we iterate z = z^2 + cm does z tend towards infinity? float a = x; float b = y; int n = 0; while (n < maxiterations) { float aa = a * a; float bb = b * b; float twoab = 2.0 * a * b; a = aa - bb + x; b = twoab + y; // Infinty in our finite world is simple, let's just consider it 16 if(aa + bb > 16.0f) { break; // Bail } n++; } // We color each pixel based on how long it takes to get to infinity // If we never got there, let's pick the color black if (n == maxiterations) pixels[i+j*width] = 0; else pixels[i+j*width] = color(n*16 % 255); // Gosh, we could make fancy colors here if we wanted x += dx; } y += dy; } updatePixels(); } </script><canvas width="200" height="200"></canvas></p> <div style="overflow: hidden; height: 0px; width: 0px;"></div> <pre><b>// All Examples Written by <a href="http://reas.com/">Casey Reas</a> and <a href="http://benfry.com/">Ben Fry</a> // unless otherwise stated.</b> // Establish a range of values on the complex plane // A different range will allow us to "zoom" in or out on the fractal // float xmin = -1.5; float ymin = -.1; float wh = 0.15; float xmin = -2.5; float ymin = -2; float wh = 4; void setup() { size(200, 200); noLoop(); } void draw() { loadPixels(); // Maximum number of iterations for each point on the complex plane int maxiterations = 200; // x goes from xmin to xmax float xmax = xmin + wh; // y goes from ymin to ymax float ymax = ymin + wh; // Calculate amount we increment x,y for each pixel float dx = (xmax - xmin) / (width); float dy = (ymax - ymin) / (height); // Start y float y = ymin; for(int j = 0; j < height; j++) { // Start x float x = xmin; for(int i = 0; i < width; i++) { // Now we test, as we iterate z = z^2 + cm does z tend towards infinity? float a = x; float b = y; int n = 0; while (n < maxiterations) { float aa = a * a; float bb = b * b; float twoab = 2.0 * a * b; a = aa - bb + x; b = twoab + y; // Infinty in our finite world is simple, let's just consider it 16 if(aa + bb > 16.0f) { break; // Bail } n++; } // We color each pixel based on how long it takes to get to infinity // If we never got there, let's pick the color black if (n == maxiterations) pixels[i+j*width] = 0; else pixels[i+j*width] = color(n*16 % 255); // Gosh, we could make fancy colors here if we wanted x += dx; } y += dy; } updatePixels(); }</pre> </body></html>
(C) Æliens 20/2/2008
You may not copy or print any of this material without explicit permission of the author or the publisher. In case of other copyright issues, contact the author.