
Groningen Machine for Chemical Simulations

GROMACS USER MANUAL

Version 2.0

D SV
YORIA

EXPLICIT LYRICS

P A R E N T A L

Phospholipase A2 ready to attack a lecithin mono layer

i

GROMACS USER MANUAL

Version 2.0

November 5, 1999

David van der Spoel

Aldert R. van Buuren
Emile Apol

Pieter J. Meulenho�
D. Peter Tieleman

Alfons L.T.M. Sijbers
Berk Hess

K. Anton Feenstra
Erik Lindahl

Rudi van Drunen
Herman J.C. Berendsen

BIOSON

(c) Copyright.
BIOSON Research Institute and
Laboratory of Biophysical Chemistry
University of Groningen
Nijenborgh 4
9747 AG Groningen
The Netherlands
Fax: +31 (0)50 63 4800

ii

Preface & Disclaimer.

This manual is not complete and has no pretention to be complete, due to lack of time of
the contributors. It is meant as a source of information and references for the GROMACS
user. It contains the background physics of MD simulations and is still being worked on
which in some cases means that the information is not correct.

When citing this document in any scienti�c publication please refer to it as:

van der Spoel, D., A. R. van Buuren, E. Apol, P. J. Meulenho�, D. P.
Tieleman, A. L. T. M. Sijbers, B. Hess, K. A. Feenstra, E. Lindahl, R. van
Drunen and H. J. C. Berendsen Gromacs User Manual version 2.0
Nijenborgh 4, 9747 AG Groningen, The Netherlands. Internet:
http://md.chem.rug.nl/~gmx 1999

or, if you use BibTeX, you can directly copy the following:

@Manual{gmx20,

title = "Gromacs {U}ser {M}anual version 2.0",

author = "David van der Spoel and Aldert R. van Buuren and Emile

Apol and Pieter J. Meulenhoff and D. Peter Tieleman and

Alfons L. T. M. Sij\-bers and Berk Hess and K. Anton

Feenstra and Erik Lindahl and Rudi van Drunen

and Herman J. C. Berendsen",

address = "Nij\-enborgh 4, 9747 AG Groningen, The Netherlands.

Internet: http://md.chem.rug.nl/\~{ }gmx",

year = "1999"

}

Please do also cite the original GROMACS paper [1].

Any comment is welcome, please send it by e-mail to gromacs@chem.rug.nl

Groningen, November 5, 1999

BIOSON Research Institute and Department of Biophysical Chemistry
University of Groningen
Nijenborgh 4
9747 AG Groningen
The Netherlands
Fax: 31-50-634800

iii

Online Manual

If you have access to a WWW browser such as NCSA mosaic or Netscape please look up
our HTML page:
http://md.chem.rug.nl/~gmx.

Violated Copyrights

The following commercial thingies may be mentioned here and there in the text (plus some
that we forgot here).

GROMOS is a trademark of Biomos B.V.
SPARC is a trademark of Sun Microsystems inc. and Texas Instruments inc.
CM5 is a trademark of Thinking Machines inc.
Quanta is a trademark of Molecular Simulations inc.
Cerius is a trademark of Molecular Simulations inc.
HyperChem is a trademark of AutoDesk inc.

The �gure on front page was made with Molscript [2].

iv

Contents

1 Introduction. 1

1.1 Computational Chemistry and Molecular Modeling 1

1.2 Molecular Dynamics Simulations . 2

1.3 Energy Minimization and Search Methods 5

2 De�nitions and Units. 9

2.1 Notation . 9

2.2 MD units . 9

2.3 Reduced units . 11

3 Algorithms 13

3.1 Introduction . 13

3.2 Periodic boundary conditions . 13

3.3 The group concept . 15

3.4 Molecular Dynamics . 15

3.4.1 Initial conditions . 17

3.4.2 Compute forces . 18

3.4.3 Update con�guration . 21

3.4.4 Constraint algorithms . 24

3.4.5 Output step . 28

3.5 Simulated Annealing . 29

3.6 Langevin Dynamics . 29

3.7 Energy Minimization . 29

3.7.1 Steepest Descent . 30

3.7.2 Conjugate Gradient . 30

3.8 Normal Mode Analysis . 30

vi CONTENTS

3.9 Free energy perturbation . 31

3.10 Essential Dynamics Sampling . 31

3.11 Parallelization . 32

3.11.1 Methods of parallelization . 32

3.11.2 MD on a ring of processors . 34

3.12 Parallel Molecular Dynamics . 37

3.12.1 Domain decomposition . 38

3.12.2 Domain decomposition for non-bonded forces 38

3.12.3 Parallel PPPM . 40

3.12.4 Parallel sorting . 41

4 Force �elds 43

4.1 Non-bonded interactions . 44

4.1.1 The Lennard-Jones interaction . 44

4.1.2 Buckingham potential . 45

4.1.3 Coulomb interaction . 46

4.1.4 Coulomb interaction with reaction �eld 46

4.1.5 Modi�ed non-bonded interactions . 47

4.1.6 Modi�ed short-range interactions with Ewald summation 49

4.2 Bonded interactions . 50

4.2.1 Bond stretching . 50

4.2.2 Morse potential bond stretching . 51

4.2.3 Bond angle vibration . 52

4.2.4 Improper dihedrals . 53

4.2.5 Proper dihedrals . 54

4.2.6 Special interactions . 56

4.2.7 Position restraints . 56

4.2.8 Angle restraints . 57

4.2.9 Distance restraints . 57

4.3 Free energy calculations . 61

4.3.1 Near linear thermodynamic integration 63

4.4 Methods . 65

4.4.1 Exclusions and 1-4 Interactions. 65

4.4.2 Charge Groups. 65

CONTENTS vii

4.4.3 Treatment of cut-o�s . 66

4.5 Dummy atoms. 67

4.6 Long Range Electrostatics . 69

4.6.1 Ewald summation . 69

4.6.2 PME . 70

4.6.3 PPPM . 71

4.6.4 Optimizing Fourier transforms . 72

4.7 All-hydrogen force�eld . 73

4.8 GROMOS-96 notes . 73

4.8.1 The GROMOS-96 force �eld . 73

4.8.2 GROMOS-96 �les . 73

5 Topologies 75

5.1 Introduction . 75

5.2 Particle type . 75

5.2.1 Atom types . 76

5.2.2 Dummy atoms . 77

5.3 Parameter �les . 78

5.3.1 Atoms . 78

5.3.2 Bonded parameters . 79

5.3.3 Non-bonded parameters . 80

5.3.4 Exclusions and 1-4 interaction . 81

5.3.5 Residue database . 81

5.3.6 Hydrogen database . 83

5.3.7 Termini database . 84

5.4 File formats . 86

5.4.1 Topology �le . 86

5.4.2 Molecule.itp �le . 92

5.4.3 Ifdef option . 93

5.4.4 Coordinate �le . 94

6 Special Topics 97

6.1 Calculating potentials of mean force: the pull code 97

6.1.1 Overview . 97

6.1.2 Usage . 98

viii CONTENTS

6.1.3 Output . 101

6.1.4 Limitations . 102

6.1.5 Implementation . 102

6.1.6 Future development . 102

6.2 Removing fastest degrees of freedom . 102

6.2.1 Hydrogen bond-angle vibrations . 103

6.2.2 Out-of-plane vibrations in aromatic groups 105

6.3 Running with PVM. 106

6.4 Running with MPI . 107

7 Run parameters and Programs 109

7.1 Online and html manuals . 109

7.2 File types . 109

7.3 Run Parameters . 109

7.3.1 General . 109

7.3.2 Preprocessing . 111

7.3.3 Run control . 111

7.3.4 Langevin dynamics . 112

7.3.5 Energy minimization . 112

7.3.6 Output control . 112

7.3.7 Neighbor searching . 113

7.3.8 Electrostatics and VdW . 114

7.3.9 Temperature coupling . 116

7.3.10 Pressure coupling . 117

7.3.11 Simulated annealing . 118

7.3.12 Velocity generation . 118

7.3.13 Solvent optimization . 118

7.3.14 Bonds . 119

7.3.15 NMR re�nement . 120

7.3.16 Free Energy Perturbation . 121

7.3.17 Non-equilibrium MD . 121

7.3.18 Electric �elds . 122

7.3.19 User de�ned thingies . 122

7.4 Program Options . 122

CONTENTS ix

7.5 Programs by topic . 123

8 Analysis. 127

8.1 Groups in Analysis. 127

8.2 Looking at your trajectory . 128

8.3 General properties . 129

8.4 Radial distribution functions . 129

8.5 Correlation functions . 131

8.5.1 Theory of correlation functions . 131

8.5.2 Using FFT for computation of the ACF 132

8.5.3 Special forms of the ACF . 132

8.5.4 Some Applications . 132

8.5.5 Mean Square Displacement . 133

8.6 Bonds, angles and dihedrals . 133

8.7 Radius of gyration and distances . 136

8.8 Root mean square deviations in structure 137

8.9 Covariance analysis . 138

8.10 Hydrogen bonds . 139

8.11 Protein related items . 141

8.12 Interface related items . 143

8.13 Chemical shifts . 144

A Technical Details. 145

A.1 Installation. 145

A.2 Single or Double precision . 145

A.3 Porting GROMACS. 146

A.3.1 Multi-processor Porting . 146

A.4 Environment Variables . 147

B Some implementation details. 149

B.1 Single Sum Virial in GROMACS. 149

B.1.1 Virial. 149

B.1.2 Virial from non-bonded forces. 150

B.1.3 The intramolecular shift (mol-shift). 150

B.1.4 Virial from Covalent Bonds. 151

x CONTENTS

B.1.5 Virial from Shake. 152

B.2 Optimizations . 152

B.2.1 Inner Loop for Water . 152

B.2.2 Shake for Water - SETTLE . 153

B.2.3 Fortran Code . 153

B.3 Computation of the 1.0/sqrt function. 154

B.3.1 Introduction. 154

B.3.2 General . 154

B.3.3 Applied to oating point numbers 155

B.3.4 Speci�cation of the lookup table . 156

B.3.5 Separate exponent and fraction computation 157

B.3.6 Implementation . 158

B.4 Tabulated functions . 159

B.4.1 Your own potential function . 160

C Long range corrections 161

C.1 Dispersion . 161

C.1.1 Energy . 161

C.1.2 Virial and pressure . 162

D Averages and uctuations 165

D.1 Formulae for averaging . 165

D.2 Implementation . 166

D.2.1 Part of a Simulation . 166

D.2.2 Combining two simulations . 167

D.2.3 Summing energy terms . 168

E Manual Pages 171

E.1 do dssp . 171

E.2 editconf . 172

E.3 eneconv . 173

E.4 g anaeig . 173

E.5 g analyze . 174

E.6 g angle . 175

E.7 g bond . 176

CONTENTS xi

E.8 g chi . 177

E.9 g cluster . 178

E.10 g com . 179

E.11 g confrms . 179

E.12 g covar . 180

E.13 g density . 180

E.14 g dielectric . 181

E.15 g dih . 182

E.16 g dipoles . 182

E.17 g disre . 184

E.18 g dist . 184

E.19 g enemat . 185

E.20 g energy . 185

E.21 g gyrate . 186

E.22 g h2order . 187

E.23 g hbond . 187

E.24 g helix . 189

E.25 g mdmat . 190

E.26 g mindist . 190

E.27 g msd . 191

E.28 g nmeig . 191

E.29 g nmens . 192

E.30 g order . 192

E.31 g potential . 193

E.32 g rama . 193

E.33 g rdens . 194

E.34 g rdf . 194

E.35 g rms . 195

E.36 g rmsdist . 196

E.37 g rmsf . 196

E.38 g rotacf . 197

E.39 g saltbr . 198

E.40 g sas . 198

E.41 g sgangle . 199

xii CONTENTS

E.42 g velacc . 199

E.43 genbox . 200

E.44 genconf . 201

E.45 gendr . 201

E.46 genion . 202

E.47 genpr . 202

E.48 gmxcheck . 203

E.49 gmxdump . 203

E.50 grompp . 204

E.51 highway . 205

E.52 make ndx . 205

E.53 mdrun . 206

E.54 mk angndx . 207

E.55 ngmx . 207

E.56 nmrun . 208

E.57 pdb2gmx . 208

E.58 protonate . 209

E.59 tpbconv . 210

E.60 trjcat . 210

E.61 trjconv . 211

E.62 wheel . 212

E.63 xpm2ps . 213

E.64 xrama . 213

Bibliography 215

Index 221

List of Figures

3.1 Periodic boundary conditions in two dimensions. 14

3.2 The global MD algorithm . 16

3.3 A Maxwellian distribution, generated from random numbers. 17

3.4 The computational box in two dimensions. 19

3.5 The Leap-Frog integration method. 21

3.6 The MD update algorithm . 25

3.7 The three position updates needed for one time step. 27

3.8 Free energy cycles. 32

3.9 The interaction matrix. 35

3.10 Interaction matrices for di�erent N . 35

3.11 The Parallel MD algorithm. 36

3.12 Data ow in a ring of processors. 37

3.13 Index in the coordinate array. 39

4.1 The Lennard-Jones interaction. 44

4.2 The Buckingham interaction. 45

4.3 The Coulomb interaction with and without reaction �eld. 46

4.4 The Coulomb Force, Shifted Force and Shift Function S(r),. 49

4.5 Bond stretching. 50

4.6 The Morse potential well, with bond length 0.15 nm. 52

4.7 Angle vibration. 52

4.8 Improper dihedral angles. 53

4.9 Improper dihedral potential. 54

4.10 Proper dihedral angle. 54

4.11 Ryckaert-Bellemans dihedral potential. 55

4.12 Position restraint potential. 57

4.13 Distance Restraint potential. 58

xiv LIST OF FIGURES

4.14 Atoms along an alkane chain. 65

4.15 Dummy atom construction. 67

6.1 Schematic picture of pulling a lipid out of a lipid bilayer with AFM pulling.
Vrup is the velocity at which the spring is retracted, Zlink is the atom to
which the spring is attached and Zspring is the location of the spring. 98

6.2 Overview of the di�erent reference group possibilities, applied to interface
systems. C is the reference group. The circles represent the center of mass
of 2 groups plus the reference group, and dc is the reference distance. 99

6.3 Dummy atom constructions for hydrogen atoms. 104

6.4 Dummy atom constructions for aromatic residues. 105

8.1 The window of ngmx showing a box of water. 128

8.2 De�nition of slices in g rdf. 130

8.3 gOO(r) for Oxygen-Oxygen of SPC-water. 130

8.4 Mean Square Displacement of SPC-water. 134

8.5 Dihedral conventions. 135

8.6 Options of g sgangle. 135

8.7 A minimum distance matrix for a peptide [3]. 137

8.8 Geometrical Hydrogen bond criterion. 139

8.9 Insertion of water into an H-bond. 140

8.10 Analysis of the secondary structure elements of a peptide in time. 141

8.11 De�nition of the dihedral angles � and of the protein backbone. 141

8.12 Ramachandran plot of a small protein. 142

8.13 Helical wheel projection of the N-terminal helix of HPr. 142

B.1 IEEE single precision oating point format 155

List of Tables

1.1 Typical vibrational frequencies. 3

2.1 Basic units used in GROMACS. 10

2.2 Derived units . 10

2.3 Some Physical Constants . 11

2.4 Reduced Lennard-Jones quantities . 11

3.1 The number of interactions between particles. 35

4.1 Constants for Ryckaert-Bellemans potential (kJ mol�1). 55

4.2 Parameters for the di�erent functional forms of the non-bonded interactions. 66

5.1 Particle types in GROMACS . 76

5.2 Static atom type properties in GROMACS 79

5.3 The topology (*.top) �le, part 1. 90

5.4 The topology (*.top) �le, part 2. 91

7.1 The GROMACS �le types. 110

B.1 List of C functions and their Fortran equivalent, plus the source �les. 154

B.2 User speci�ed potential function data. 160

xvi LIST OF TABLES

Chapter 1

Introduction.

1.1 Computational Chemistry and Molecular Modeling

GROMACS is an engine to perform molecular dynamics simulations and energy minimiza-
tion. These are two of the many techniques that belong to the realm of computational
chemistry and molecular modeling. Computational Chemistry is just a name to indicate
the use of computational techniques in chemistry, ranging from quantum mechanics of
molecules to dynamics of large complex molecular aggregates. Molecular modeling indi-
cates the general process of describing complex chemical systems in terms of a realistic
atomic model, with the aim to understand and predict macroscopic properties based on
detailed knowledge on an atomic scale. Often molecular modeling is used to design new
materials, for which the accurate prediction of physical properties of realistic systems is
required.

Macroscopic physical properties can be distinguished in (a) static equilibrium properties,
such as the binding constant of an inhibitor to an enzyme, the average potential energy of a
system, or the radial distribution function in a liquid, and (b) dynamic or non-equilibrium

properties, such as the viscosity of a liquid, di�usion processes in membranes, the dynamics
of phase changes, reaction kinetics, or the dynamics of defects in crystals. The choice of
technique depends on the question asked and on the feasibility of the method to yield
reliable results at the present state of the art. Ideally, the (relativistic) time-dependent
Schr�odinger equation describes the properties of molecular systems with high accuracy,
but anything more complex than the equilibrium state of a few atoms cannot be handled
at this ab initio level. Thus approximations are mandatory; the higher the complexity
of a system and the longer the time span of the processes of interest is, the more severe
approximations are required. At a certain point (reached very much earlier than one would
wish) the ab initio approach must be augmented or replaced by empirical parameterization
of the model used. Where simulations based on physical principles of atomic interactions
still fail due to the complexity of the system (as is unfortunately still the case for the
prediction of protein folding; but: there is hope!) molecular modeling is based entirely
on a similarity analysis of known structural and chemical data. The QSAR methods
(Quantitative Structure-Activity Relations) and many homology-based protein structure
predictions belong to the latter category.

2 Introduction.

Macroscopic properties are always ensemble averages over a representative statistical en-
semble (either equilibrium or non-equilibrium) of molecular systems. For molecular mod-
eling this has two important consequences:

� The knowledge of a single structure, even if it is the structure of the global energy
minimum, is not su�cient. It is necessary to generate a representative ensemble at
a given temperature, in order to compute macroscopic properties. But this is not
enough to compute thermodynamic equilibrium properties that are based on free
energies, such as phase equilibria, binding constants, solubilities, relative stability of
molecular conformations, etc. The computation of free energies and thermodynamic
potentials requires special extensions of molecular simulation techniques.

� While molecular simulations in principle provide atomic details of the structures
and motions, such details are often not relevant for the macroscopic properties of
interest. This opens the way to simplify the description of interactions and average
over irrelevant details. The science of statistical mechanics provides the theoretical
framework for such simpli�cations. There is a hierarchy of methods ranging from
considering groups of atoms as one unit, describing motion in a reduced number of
collective coordinates, averaging over solvent molecules with potentials of mean force
combined with stochastic dynamics [4], to mesoscopic dynamics describing densities
rather than atoms and uxes as response to thermodynamic gradients rather than
velocities or accelerations as response to forces [5].

For the generation of a representative equilibrium ensemble two methods are available: (a)
Monte Carlo simulations and (b) Molecular Dynamics simulations. For the generation of
non-equilibrium ensembles and for the analysis of dynamic events, only the second method
is appropriate. While Monte Carlo simulations are more simple than MD (they do not
require the computation of forces), they do not yield signi�cantly better statistics than
MD in a given amount of computer time. Therefore MD is the more universal technique.
If a starting con�guration is very far from equilibrium, the forces may be excessively large
and the MD simulation may fail. In those cases a robust energy minimization is required.
Another reason to perform an energy minimization is the removal of all kinetic energy
from the system: if several 'snapshots' from dynamic simulations must be compared,
energy minimization reduces the thermal 'noise' in the structures and potential energies,
so that they can be compared better.

1.2 Molecular Dynamics Simulations

MD simulations solve Newton's equations of motion for a system of N interacting atoms:

mi

@2ri

@t2
= F i; i = 1 : : : N: (1.1)

The forces are the negative derivatives of a potential function V (r1; r2; : : : ; rN):

F i = �@V
@ri

(1.2)

1.2 Molecular Dynamics Simulations 3

type of wavenumber
type of bond vibration (cm�1)

C-H, O-H, N-H stretch 3000{3500
C=C, C=O, stretch 1700{2000
HOH bending 1600
C-C stretch 1400{1600
H2CX sciss, rock 1000{1500
CCC bending 800{1000
O-H� � �O libration 400{ 700
O-H� � �O stretch 50{ 200

Table 1.1: Typical vibrational frequencies (wavenumbers) in molecules and hydrogen-
bonded liquids. Compare kT=h = 200 cm�1 at 300 K.

The equations are solved simultaneously in small time steps. The system is followed for
some time, taking care that the temperature and pressure remain at the required values,
and the coordinates are written to an output �le at regular intervals. The coordinates as
a function of time represent a trajectory of the system. After initial changes, the system
will usually reach an equilibrium state. By averaging over an equilibrium trajectory many
macroscopic properties can be extracted from the output �le.

It is useful at this point to consider the limitations of MD simulations. The user should be
aware of those limitations and always perform checks on known experimental properties
to assess the accuracy of the simulation. We list the approximations below.

The simulations are classical

Using Newton's equation of motion automatically implies the use of classical me-

chanics to describe the motion of atoms. This is all right for most atoms at normal
temperatures, but there are exceptions. Hydrogen atoms are quite light and the
motion of protons is sometimes of essential quantum mechanical character. For
example, a proton may tunnel through a potential barrier in the course of a trans-
fer over a hydrogen bond. Such processes cannot be properly treated by classical
dynamics! Helium liquid at low temperature is another example where classical me-
chanics breaks down. While helium may not deeply concern us, the high frequency
vibrations of covalent bonds should make us worry! The statistical mechanics of a
classical harmonic oscillator di�ers appreciably from that of a real quantum oscilla-
tor, when the resonance frequency � approximates or exceeds kBT=h. Now at room
temperature the wavenumber � = 1=� = �=c at which h� = kBT is approximately
200 cm�1. Thus all frequencies higher than, say, 100 cm�1 are suspect of misbe-
havior in classical simulations. This means that practically all bond and bond-angle
vibrations are suspect, and even hydrogen-bonded motions as translational or libra-
tional H-bond vibrations are beyond the classical limit (see Table 1.1). What can
we do?

Well, apart from real quantum-dynamical simulations, we can do either of two things:
(a) If we perform MD simulations using harmonic oscillators for bonds, we should

4 Introduction.

make corrections to the total internal energy U = Ekin + Epot and speci�c heat CV

(and to entropy S and free energy A or G if those are calculated). The corrections to
the energy and speci�c heat of a one-dimensional oscillator with frequency � are: [6]

UQM = U cl + kT

�
1

2
x� 1 +

x

ex � 1

�
(1.3)

C
QM

V
= Ccl

V + k

x2ex

(ex � 1)2
� 1

!
; (1.4)

where x = h�=kT . The classical oscillator absorbs too much energy (kT), while
the high-frequency quantum oscillator is in its ground state at the zero-point energy
level of 1

2
h�.

(b) We can treat the bonds (and bond angles) as constraints in the equation of
motion. The rational behind this is that a quantum oscillator in its ground state
resembles a constrained bond more closely than a classical oscillator. A good prac-
tical reason for this choice is that the algorithm can use larger time steps when the
highest frequencies are removed. In practice the time step can be made four times
as large when bonds are constrained than when they are oscillators [7]. GROMACS
has this option for the bonds, and for the bond angles. The exibility of the latter
is rather essential to allow for the realistic motion and coverage of con�gurational
space [7].

Electrons are in the ground state

In MD we use a conservative force �eld that is a function of the positions of atoms
only. This means that the electronic motions are not considered: the electrons are
supposed to adjust their dynamics in�nitely fast when the atomic positions change
(the Born-Oppenheimer approximation), and remain in their ground state. This
is really all right, almost always. But of course, electron transfer processes and
electronically excited states can not be treated. Neither can chemical reactions be
treated properly, but there are other reasons to shy away from reactions for the time
being.

Force �elds are approximate

Force �elds provide the forces. They are not really a part of the simulation method
and their parameters can be user-modi�ed as the need arises or knowledge improves.
But the form of the forces that can be used in a particular program is subject
to limitations. The force �eld that is incorporated in GROMACS is described in
Chapter 4. In the present version the force �eld is pair-additive (apart from long-
range coulomb forces), it cannot incorporate polarizabilities, and it does not contain
�ne-tuning of bonded interactions. This urges the inclusion of some limitations in
this list below. For the rest it is quite useful and fairly reliable for bio macro-
molecules in aqueous solution!

The force �eld is pair-additive

This means that all non-bonded forces result from the sum of non-bonded pair in-
teractions. Non pair-additive interactions, the most important example of which is
interaction through atomic polarizability, are represented by e�ective pair potentials.

1.3 Energy Minimization and Search Methods 5

Only average non pair-additive contributions are incorporated. This also means that
the pair interactions are not pure, i.e., they are not valid for isolated pairs or for
situations that di�er appreciably from the test systems on which the models were
parameterized. In fact, the e�ective pair potentials are not that bad in practice. But
the omission of polarizability also means that electrons in atoms do not provide a
dielectric constant as they should. For example, real liquid alkanes have a dielectric
constant of slightly more than 2, which reduce the long-range electrostatic interac-
tion between (partial) charges. Thus the simulations will exaggerate the long-range
Coulomb terms. Luckily, the next item compensates this e�ect a bit.

Long-range interactions are cut-o�

In this version GROMACS always uses a cut-o� radius for the Lennard-Jones in-
teractions and sometimes also for Coulomb. Due to the minimum-image convention
(only one image of each particle in the periodic boundary conditions is considered
for a pair interaction), the cut-o� range can not exceed half the box size. That is
still pretty big for large systems, and trouble is only expected for systems contain-
ing charged particles. But then real bad things may happen, like accumulation of
charges at the cut-o� boundary or very wrong energies! For such systems you should
consider using one of the implemented long-range electrostatic algorithms.

Boundary conditions are unnatural

Since system size is small (even 10,000 particles is small), a cluster of particles will
have a lot of unwanted boundary with its environment (vacuum). This we must
avoid if we wish to simulate a bulk system. So we use periodic boundary conditions,
to avoid real phase boundaries. But liquids are not crystals, so something unnatural
remains. This item is mentioned in the last place because it is the least evil of all.
For large systems the errors are small, but for small systems with a lot of internal
spatial correlation, the periodic boundaries may enhance internal correlation. In that
case, beware and test the inuence of system size. This is especially important when
using lattice sums for long-range electrostatics, since these are known to sometimes
introduce extra ordering.

1.3 Energy Minimization and Search Methods

As mentioned in sec. 1.1, in many cases energy minimization is required. GROMACS

provides a simple form of local energy minimization, the steepest descent method.

The potential energy function of a (macro)molecular system is a very complex landscape
(or hyper surface) in a large number of dimensions. It has one deepest point, the global

minimum and a very large number of local minima, where all derivatives of the potential
energy function with respect to the coordinates are zero and all second derivatives are
nonnegative. The matrix of second derivatives, which is called the Hessian matrix, has
nonnegative eigenvalues; only the collective coordinates that correspond to translation and
rotation (for an isolated molecule) have zero eigenvalues. In between the local minima there
are saddle points, where the Hessian matrix has only one negative eigenvalue. These points
are the mountain passes through which the system can migrate from one local minimum

6 Introduction.

to another.

Knowledge of all local minima, including the global one, and of all saddle points would
enable us to describe the relevant structures and conformations and their free energies, as
well as the dynamics of structural transitions. Unfortunately, the dimensionality of the
con�gurational space and the number of local minima is so high that it is impossible to
sample the space at a su�cient number of points to obtain a complete survey. In particular,
no minimization method exists that guarantees the determination of the global minimum.
However, given a starting con�guration, it is possible to �nd the nearest local minimum.
Nearest in this context does not always imply nearest in a geometrical sense (i.e., the
least sum of square coordinate di�erences), but means the minimum that can be reached
by systematically moving down the steepest local gradient. Finding this nearest local
minimum is all that GROMACS can do for you, sorry! If you want to �nd other minima
and hope to discover the global minimum in the process, the best advice is to experiment
with temperature-coupled MD: run your system at a high temperature for a while and
then quench it slowly down to the required temperature; do this repeatedly! If something
as a melting or glass transition temperature exists, it is wise to stay for some time slightly
below that temperature and cool down slowly according to some clever scheme, a process
called simulated annealing. Since no physical truth is required, you can use your phantasy
to speed up this process. One trick that often works is to make hydrogen atoms heavier
(mass 10 or so): although that will slow down the otherwise very rapid motions of hydrogen
atoms, it will hardly inuence the slower motions in the system while enabling you to
increase the time step by a factor of 3 or 4. You can also modify the potential energy
function during the search procedure, e.g. by removing barriers (remove dihedral angle
functions or replace repulsive potentials by soft core potentials [8]), but always take care
to restore the correct functions slowly. The best search method that allows rather drastic
structural changes is to allow excursions into four-dimensional space [9], but this requires
some extra programming beyond the standard capabilities of GROMACS.

Three possible energy minimization methods are:

� Those that require only function evaluations. Examples are the simplex method and
its variants. A step is made on the basis of the results of previous evaluations. If
derivative information is available, such methods are inferior to those that use this
information.

� Those that use derivative information. Since the partial derivatives of the potential
energy with respect to all coordinates are known in MD programs (these are equal
to minus the forces) this class of methods is very suitable as modi�cation of MD
programs.

� Those that use second derivative information as well. These methods are superior
in their convergence properties near the minimum: a quadratic potential function is
minimized in one step! The problem is that for N particles a 3N � 3N matrix must
be computed, stored and inverted. Apart from the extra programming to obtain
second derivatives, for most systems of interest this is beyond the available capacity.
There are intermediate methods building up the Hessian matrix on the y, but they
also su�er from excessive storage requirements. So GROMACS will shy away from

1.3 Energy Minimization and Search Methods 7

this class of methods.

The steepest descent method, available in GROMACS, is of the second class. It simply
takes a step in the direction of the negative gradient (hence in the direction of the force),
without any consideration of the history built up in previous steps. The step size is
adjusted such that the search is fast but the motion is always downhill. This is a simple
and sturdy, but somewhat stupid, method: its convergence can be quite slow, especially in
the vicinity of the local minimum! The faster converging conjugate gradient method (see
e.g. [10]) uses gradient information from previous steps. In general, steepest descents will
bring you close to the nearest local minimum very quickly, while conjugate gradients brings
you very close to the local minimum, but performs worse far away from the minimum.

8 Introduction.

Chapter 2

De�nitions and Units.

2.1 Notation

The following conventions for mathematical typesetting are used throughout this docu-
ment:

Item Notation Example

Vector Bold italic ri

Vector Length Italic ri

We de�ne the lowercase subscripts i, j, k and l to denote particles: ri is the position vector

of particle i, and using this notation:

rij = rj � ri (2.1)

rij = jrijj (2.2)

The force on particle i is denoted by F i and

F ij = force on i exerted by j (2.3)

Please note that we changed notation as of ver. 2.0 to rij = rj � ri since this is the
notation commonly used. If you encounter an error, let us know.

2.2 MD units

GROMACS uses a consistent set of units that produce values in the vicinity of unity for
most relevant molecular quantities. Let us call them MD units. The basic units in this
system are nm, ps, K, electron charge (e) and atomic mass unit (u), see Table 2.1.

Consistent with these units are a set of derived units, given in Table 2.2.

The electric conversion factor f = 1
4�"o

= 138:935 485(9) kJ mol�1 nm e�2. It relates
the mechanical quantities to the electrical quantities as in

V = f
q2

r
or F = f

q2

r2
(2.4)

10 De�nitions and Units.

Quantity Symbol Unit

length r nm = 10�9 m
mass m u (atomic mass unit) = 1.6605402(10)�10�27 kg

(1/12 of the mass of a C atom)
1:6605402(10) � 10�27 kg

time t ps = 10�12 s
charge q e = electronic charge = 1:60217733(49) � 10�19 C
temperature T K

Table 2.1: Basic units used in GROMACS. Numbers in parentheses give accuracy.

Quantity Symbol Unit

energy E; V kJ mol�1

Force F kJ mol�1 nm�1

pressure p kJ mol�1 nm�3 = 1030=NAV Pa
1:660 54 � 106 Pa = 16:6054 Bar

velocity v nm ps�1 = 1000 m/s
dipole moment � e nm
electric potential � kJ mol�1 e�1 = 0:010 364 272(3) Volt
electric �eld E kJ mol�1 nm�1 e�1 = 1:036 427 2(3) � 107 V/m

Table 2.2: Derived units

Electric potentials � and electric �elds E are intermediate quantities in the calculation of
energies and forces. They do not occur inside GROMACS. If they are used in evaluations,
there is a choice of equations and related units. We recommend strongly to follow the
usual practice to include the factor f in expressions that evaluate � and E:

�(r) = f
X
j

qj

jr � rjj
(2.5)

E(r) = f
X
j

qj
(r � rj)
jr � rjj3

(2.6)

With these de�nitions q� is an energy and qE is a force. The units are those given in
Table 2.2: about 10 mV for potential. Thus the potential of an electronic charge at a
distance of 1 nm equals f � 140 units � 1:4 V. (exact value: 1.439965 V)

Note that these units are mutually consistent; changing any of the units is likely to produce
inconsistencies and is therefore strongly discouraged ! In particular: if �A are used instead
of nm, the unit of time changes to 0.1 ps. If the kcal/mol (= 4.184 kJ/mol) is used instead
of kJ/mol for energy, the unit of time becomes 0.488882 ps and the unit of temperature
changes to 4.184 K. But in both cases all electrical energies go wrong, because they will still
be computed in kJ/mol, expecting nm as the unit of length. Although careful rescaling of
charges may still yield consistency, it is clear that such confusions must be rigidly avoided.

In terms of the MD units the usual physical constants take on di�erent values, see Table 2.3.
All quantities are per mol rather than per molecule. There is no distinction between

2.3 Reduced units 11

Symbol Name Value

NAV Avogadro's number 6:022 136 7(36) � 1023 mol�1

R gas constant 8:314 510(70) � 10�3 kJ mol�1 K�1

kB Boltzmann's constant idem
h Planck's constant 0:399 031 32(24) kJ mol�1 ps
�h Dirac's constant 0:063 507 807(38) kJ mol�1 ps
c velocity of light 299 792:458 nm/ps

Table 2.3: Some Physical Constants

Quantity Symbol Relation to SI

Length r� r ��1

Mass m� m M�1

Time t� t ��1
p
�=M

Temperature T� kBT ��1

Energy E� E ��1

Force F� F � ��1

Pressure P� P �3��1

Velocity v� v
p
M=�

Density �� N �3 V �1

Table 2.4: Reduced Lennard-Jones quantities

Boltzmann's constant k and the gas constant R: their value is 0:008 314 51 kJ mol�1 K�1.

2.3 Reduced units

When simulating Lennard-Jones (LJ) systems it might be advantageous to use reduced
units (i.e., setting �ii = �ii = mi = kB = 1 for one type of atoms). This is possible. When
specifying the input in reduced units, the output will also be in reduced units. There is
one exception: the temperature, which is expressed in 0:008 314 51 reduced units. This
is a consequence of the use of Boltzmann's constant in the evaluation of temperature in
the code. Thus not T , but kBT is the reduced temperature. A GROMACS temperature
T = 1 means a reduced temperature of 0.008. . . units; if a reduced temperature of 1 is
required, the GROMACS temperature should be 120.2717.

In Table 2.4 quantities are given for LJ potentials:

VLJ = 4�

"�
�

r

�12
�
�
�

r

�6#
(2.7)

12 De�nitions and Units.

Chapter 3

Algorithms

3.1 Introduction

In this chapter we �rst give describe two general concepts used in GROMACS: periodic
boundary conditions (sec. 3.2) and the group concept (sec. 3.3). The MD algorithm is
described in sec. 3.4: �rst a global form of the algorithm is given, which is re�ned in
subsequent subsections. The (simple) EM (Energy Minimization) algorithm is described
in sec. 3.7. Some other algorithms for special purpose dynamics are described after this.
In the �nal sec. 3.11 of this chapter a few principles are given on which parallelization of
GROMACS is based. The parallelization is hardly visible for the user and is therefore not
treated in detail.

A few issues are of general interest. In all cases the system must be de�ned, consisting
of molecules. Molecules again consist of particles with de�ned interaction functions. The
detailed description of the topology of the molecules and of the force �eld and the calcu-
lation of forces is given in chapter 4. In the present chapter we describe other aspects of
the algorithm, such as pair list generation, update of velocities and positions, coupling to
external temperature and pressure, conservation of constraints. The analysis of the data
generated by an MD simulation is treated in chapter 8.

3.2 Periodic boundary conditions

The classical way to minimize edge e�ects in a �nite system is to apply periodic boundary

conditions. The atoms of the system to be simulated are put into a space-�lling box,
which is surrounded by translated copies of itself (Fig. 3.1). Thus there are no boundaries
of the system; the artifact caused by unwanted boundaries in an isolated cluster is now
replaced by the artifact of periodic conditions. If a crystal is simulated, such boundary
conditions are desired (although motions are naturally restricted to periodic motions with
wavelengths �tting into the box). If one wishes to simulate non-periodic systems, as
liquids or solutions, the periodicity by itself causes errors. The errors can be evaluated
by comparing various system sizes; they are expected to be less severe than the errors
resulting from an unnatural boundary with vacuum.

14 Algorithms

i’

i’

i’

i’

i’ i’

i’

i’

i

j Rc

Figure 3.1: Periodic boundary conditions in two dimensions.

There are several possible shapes for space-�lling unit cells. Some, as the truncated oc-

tahedron [11] approach a spherical shape better than a cubic box and are therefore more
economical for studying an (approximately spherical) macromolecule in solution, since
less solvent molecules are required to �ll the box given a minimum distance between
macromolecular images. However, a periodic system based on the truncated octahedron is
equivalent to a periodic system based on a triclinic unit cell. The latter shape is the most
general space-�lling unit cell; it comprises all possible space-�lling shapes [12]. Therefore
GROMACS will in future versions be based on the triclinic unit and will not contain other
unit cell shapes. However, in the present version only rectangular boxes are allowed.

GROMACS uses periodic boundary conditions, combined with the minimum image con-

vention: only one - the nearest - image of each particle is considered for short-range
non-bonded interaction terms. For long-range electrostatic interactions this is not always
accurate enough, and GROMACS therefore also incorporates lattice sum methods like
Ewald Sum, PME and PPPM.

The box can be of arbitrary dimensions, but must be rectangular. An isolated cluster
of molecules can of course be simulated as well within these restrictions by de�ning the
periodic box size to be much larger than the cluster size.

The minimum image convention implies that the cut-o� radius used to truncate non-
bonded interactions must not exceed half the smallest box size:

Rc <
1

2
min(a; b; c); (3.1)

otherwise more than one image would be within the cut-o� distance of the force. When
a macromolecule, such as a protein, is studied in solution, this restriction does not suf-
�ce. In principle a single solvent molecule should not be able to `see' both sides of the
macromolecule. This means that an edge a of the box must exceed the length of the

3.3 The group concept 15

macromolecule in the direction of that edge plus two times the cut-o� radius Rc. It is
common to compromise in this respect, and make the solvent layer somewhat smaller in
order to reduce the computational cost.

Each unit cell (cubic, rectangular or triclinic, the latter not being implemented in GRO-
MACS) is surrounded by 26 translated images. Thus a particular image can always be
identi�ed by an index pointing to one of 27 translation vectors and constructed by applying
a translation with the indexed vector (see 3.4.2).

3.3 The group concept

In the GROMACS MD and analysis programs one uses groups of atoms to perform certain
actions on. The maximum number of groups is 256, but every atom can only belong to
four di�erent groups, one of each of the following kinds:

T-coupling group The temperature coupling parameters (reference temperature, time
constant, number of degrees of freedom, see 3.4.3) can be de�ned for each T-coupling
group separately. For example, in a solvated macromolecule the solvent (that tends
to produce more heating by force and integration errors) can be coupled with a
shorter time constant to a bath than a macromolecule, or a surface can be kept cooler
than an adsorbing molecule. Many di�erent T-coupling groups may be de�ned.

Freeze group Atoms that belong to a freeze group are kept stationary in the dynamics.
This is useful during equilibration, e.g. to avoid that badly placed solvent molecules
will give unreasonable kicks to protein atoms, although the same e�ect can also be
obtained by putting a restraining potential on the atoms that must be protected.
The freeze option can be used on one or two coordinates of an atom, thereby freezing
the atoms in a plane or on a line. Many freeze groups can be de�ned.

Accelerate group On each atom in an 'accelerate group' an acceleration a
g will be

imposed. This is equivalent to an external force. This feature makes it possible to
drive the system into a non-equilibrium state and enables to perform non-equilibrium
MD to obtain transport properties.

Energy monitor group Mutual interactions between all energy monitor groups are
compiled during the simulation. This is done for Lennard Jones and Coulomb terms
separately. In principle up to 256 groups could be de�ned, but that would lead to
256�256 items! Better use this concept sparingly.

The use of groups in analysis programs is described in chapter 8.

3.4 Molecular Dynamics

A global ow scheme for MD is given in Fig. 3.2. Each MD or EM run requires as input a
set of initial coordinates and - optionally - initial velocities of all particles involved. This
chapter does not describe how these are obtained; for the setup of an actual MD run check
the online manual at http://md.chem.rug.nl/~gmx.

16 Algorithms

THE GLOBAL MD ALGORITHM

1. Input initial conditions

Potential interaction V as a function of atom positions
Positions r of all atoms in the system
Velocities v of all atoms in the system

+

repeat 2,3,4 required number of steps:

2. Compute forces

The force on any atom

F i = � @V

@ri

is computed by calculating the force between non-bonded
atom pairs:
F i =

P
j F ij

plus the forces due to bonded interactions (which may depend
on 1, 2, 3, or 4 atoms), plus restraining and/or external forces.
The potential and kinetic energies and the pressure tensor are

computed.
+

3. Update con�guration

The movement of the atoms is simulated by numerically
solving Newton's equations of motion

d2ri
dt2

=
F i

mi
or

dri
dt

= vi;
dvi
dt

=
F i

mi

+
4. if required: Output step

write positions, velocities, energies, temperature, pressure, etc.

Figure 3.2: The global MD algorithm

3.4 Molecular Dynamics 17

0
Velocity

0.0

P
ro

ba
bi

lit
y

Figure 3.3: A Maxwellian distribution, generated from random numbers.

3.4.1 Initial conditions

Topology and force �eld

The system topology, including a description of the force �eld, must be loaded. These
items are described in chapter 4. All this information is static; it is never modi�ed during
the run.

Coordinates and velocities

Then, before a run starts, the box size and the coordinates and velocities of all particles
are required. The box size is determined by three vectors (nine numbers) b1; b2; b3, which
represent the three basis vectors of the periodic box. While in the present version of
GROMACS only rectangular boxes are allowed, three numbers su�ce, but the use of
three vectors already prepares for arbitrary triclinic boxes to be implemented in a later
version.

If the run starts at t = t0, the coordinates at t = t0 must be known. The leap-frog

algorithm, used to update the time step with �t (see 3.4.3), requires that the velocities
must be known at t = t0 � �t

2
. If velocities are not available, the program can generate

initial atomic velocities vi; i = 1 : : : 3N from a Maxwellian distribution (Fig. 3.3) at a given
absolute temperature T :

p(vi) =

r
mi

2�kT
exp(�miv

2
i

2kT
) (3.2)

where k is Boltzmann's constant (see chapter 2). To accomplish this, normally distributed
random numbers are generated by adding twelve random numbers Rk in the range 0 �
Rk < 1 and subtracting 6.0 from their sum. The result is then multiplied by the standard
deviation of the velocity distribution

p
kT=mi. Since the resulting total energy will not

correspond exactly to the required temperature T , a correction is made: �rst the center-
of-mass motion is removed and then all velocities are scaled such that the total energy

18 Algorithms

corresponds exactly to T (see eqn. 3.10).

Center-of-mass motion

The center-of-mass velocity is normally set to zero at every step. Normally there is no
net external force acting on the system and the center-of-mass velocity should remain
constant. In practice, however, the update algorithm develops a very slow change in the
center-of-mass velocity, and thus in the total kinetic energy of the system, specially when
temperature coupling is used. If such changes are not quenched, an appreciable center-of-
mass motion develops eventually in long runs, and the temperature will be signi�cantly
misinterpreted. The same may happen due to overall rotational motion, but only when an
isolated cluster is simulated. In periodic systems with �lled boxes, the overall rotational
motion is coupled to other degrees of freedom and does not give any problems.

3.4.2 Compute forces

As mentioned in chapter 4, internal forces are either generated from �xed (static) lists,
or from dynamics lists. The latter concern non-bonded interactions between any pair of
particles.

Pair lists generation

The non-bonded pair forces need to be calculated only for those pairs i; j for which the
distance rij between i and the nearest image of j is less than a given cut-o� radius rc. Some
of the particle pairs that ful�ll this criterion are excluded, when their interaction is already
fully accounted for by bonded interactions. GROMACS employs a pair list that contains
those particle pairs for which non-bonded forces must be calculated. The pair list contains
the particle numbers and an index for the image displacement vectors that must be applied
to obtain the nearest image, for all particle pairs that have a nearest-image distance less
than rshort. The list is updated every nstlist steps, where nstlist is typically 10 or
20. There is an option to calculate the total non-bonded force on each particle due to
all particle in a shell around the list-cuto�, i.e, at a distance between rshort and rlong.
This force is calculated during the pair list update and retained during nstlist steps.

The vector rij = rj � ri connecting nearest images is found by constructing

xij = xij � a � round(xij=a) (3.3)

yij = yij � b � round(yij=b) (3.4)

zij = zij � c � round(zij=c) (3.5)

where the length of the box edges are denoted by a; b; c, and the function round(x) delivers
the integer number that is nearest to x. The translation vector index is determined by the
27 combinations of the -1, 0, or +1 values of the three round function results (assuming
that all primary particles are in the central box).

The particles will move during the simulation, and may move outside the primary box.
Before a new pair list is made up, all particles will be reset to the primary box, which lies

3.4 Molecular Dynamics 19

0 1 2 3 4 5
X

0

1

2

3

4

5

Y

i

j

k

Figure 3.4: The computational box in two dimensions, divided into NS grid cells with
three particles, i, j and k. Each NS grid cell is of size � rc=2.

in the positive quadrant with respect to an origin at r0, by applying

xi = xi � a � round([xi � x0 � a=2]=a) (3.6)

yi = yi � b � round([yi � y0 � b=2]=b) (3.7)

zi = zi � c � round([zi � z0 � c=2]=c) (3.8)

Image calculation on a grid.

GROMACS uses an interaction list for non-bonded interactions, usually called the neighbor
list. This list is made every nstlist MD steps, where nstlist is typically 10 MD steps.
To make the neighbor list all particles that are close (i.e. within the cut-o�) to a given
particle must be found. This searching, usually called neighbor searching (NS), involves
periodic boundary conditions and determining the image (see sec. 3.2). When the cut-o�
is large compared to the box edge l (> 0.4l) searching is done using an O(N2) algorithm
that computes all distances and compares them to the cut-o� rc. When the cut-o� is
smaller than 0.4l in all directions (x,y and z) searching is done using a grid, the NS
grid. All particles are put on the NS grid, with the smallest spacing � rc=2 in each of
the directions 1. We have depicted the computational box, divided into NS grid cells in
Fig. 3.4. In each spatial dimension, a particle i has three images. For each direction the
image may be -1,0 or 1, corresponding to a translation over -1, 0 or +1 box vector. We do
not search the surrounding NS grid cells for neighbors of i and then calculate the image, but
rather construct the images �rst and then search neighbors corresponding to that image
of i. Since we demand that the number of NS grid cells � 5 in each direction the same
neighbor will not be found twice. For every particle, exactly 125 (53) neighboring cells are
searched. Therefore, the algorithm scales linear with the number of particles. Although

1In fact the cut-o� is divided into sub-blocks, the number of which can be chosen by the user. The

default for this number (�grid) is 2, such that the NS grid spacing must be � rc=2. For simplicity we will

just use this particular choice in the remainder of the text. However, it can be easily understood that if

�grid = 3, we need at least 2�grid = 7 grid-cells, each of which has size � rc=3

20 Algorithms

the prefactor is large (125) the scaling behavior makes the algorithm far superior over the
standard O(N2) algorithm when the number of particles exceeds a few hundred.

In the example of Fig. 3.4 the image tx = 0 of particle i will �nd j as a neighbor, while
image tx = 1 of particle i will �nd k as a neighbor.

Charge groups

Where applicable, neighbor searching is carried out on the basis of charge groups. A charge
group is a small set of nearby atoms that have net charge zero. Charge groups are de�ned
in the molecular topology. If the nearest image distance between the geometrical centers

of the atoms of two charge groups is less than the cuto� radius, all atom pairs between the
charge groups are included in the pair list. This procedure avoids the creation of charges
due to the use of a cut-o� (when one charge of a dipole is within range and the other
not), which can have disastrous consequences for the behavior of the Coulomb interaction
function at distances near the cut-o� radius. If molecular groups have full charges (ions),
charge groups do not avoid adverse cut-o� e�ects, and you should consider using one of
the lattice sum methods supplied by GROMACS [13].

If appropriately constructed shift functions are used for the electrostatic forces, no charge
groups are needed. Such shift functions are implemented in GROMACS (see chapter 4)
but must be used with care: in principle they should be combined with a lattice sum for
long-range electrostatics.

The actual neighbor search is performed on a grid. The details of the algorithm are not
relevant for the user and are not given here.

Potential energy

When forces are computed, the potential energy of each interaction term is computed as
well. The total potential energy is summed for various contributions, such as Lennard
Jones, Coulomb, and bonded terms. It is also possible to compute these contributions for
groups of atoms that are separately de�ned (see sec. 3.3).

Kinetic energy and temperature

The temperature is given by the total kinetic energy of the N -particle system:

Ekin =
1

2

NX
i=1

miv
2
i (3.9)

From this the absolute temperature T can be computed using:

1

2
NdfkT = Ekin (3.10)

where k is Boltzmann's constant and Ndf is the number of degrees of freedom which can
be computed from:

Ndf = 3N �Nc � 3 (3.11)

3.4 Molecular Dynamics 21

1 20 t

x v x

Figure 3.5: The Leap-Frog integration method. The algorithm is called Leap-Frog (Haasje
Over), because r and v are leaping like frogs over each others back.

Here Nc is the number of constraints imposed on the system. The additional 3 degrees of
freedom must be removed because the three center-of-mass velocities are constants of the
motion, which are usually set to zero. This correction is small; in the current version of
GROMACS it is ignored.

The kinetic energy can also be written as a tensor, which is necessary for pressure calcu-
lation in a triclinic system, or systems where shear forces are imposed:

Ekin =
1

2

NX
i

mivi
 vi (3.12)

Pressure and virial

The pressure tensor P is calculated from the di�erence between kinetic energy Ekin and
the virial �

P =
2

3V
(Ekin ��) (3.13)

where V is the volume of the computational box. The scalar pressure P , which can be
used for pressure coupling in the case of isotropic systems, is computed as:

P = trace(P)=3 (3.14)

The virial � tensor is de�ned as

� = �1

2

X
i<j

rij
 F ij (3.15)

In sec. B.1 the implementation in GROMACS of the virial computation is described.

3.4.3 Update con�guration

The GROMACS MD program utilizes the so-called leap-frog algorithm [14] for the inte-
gration of the equations of motion. The leap-frog algorithm uses positions r at time t
and velocities v at time t � �t

2
; it updates positions and velocities using the forces F (t)

determined by the positions at time t:

v(t+
�t

2
) = v(t� �t

2
) +

F (t)

m
�t (3.16)

r(t+�t) = r(t) + v(t+
�t

2
)�t (3.17)

22 Algorithms

The algorithm is visualized in Fig. 3.5. It is equivalent to the Verlet [15] algorithm:

r(t+�t) = 2r(t)� r(t��t) +
F (t)

m
�t2 +O(�t4) (3.18)

The algorithm is of third order in r and is time-reversible. See ref. [16] for the merits of
this algorithm and comparison with other time integration algorithms.

The equations of motion are modi�ed for temperature coupling and pressure coupling, and
extended to include the conservation of constraints, all of which are described below.

Temperature coupling

For several reasons (drift during equilibration, drift as a result of force truncation and
integration errors, heating due to external or frictional forces), it is necessary to control
the temperature of the system. GROMACS uses the weak coupling scheme [17] that mimics
weak coupling with �rst-order kinetics to an external heat bath with given temperature
T0. See ref [18] for a comparison of this temperature control method with the Nos�e-Hoover
scheme [19, 20]. The e�ect of the algorithm is that a deviation of the system temperature
from T0 is slowly corrected according to

dT

dt
=
T0 � T

�
(3.19)

which means that a temperature deviation decays exponentially with a time constant � .
This method of coupling has the advantage that the strength of the coupling can be varied
and adapted to the user requirement: for equilibration purposes the coupling time can be
taken quite short (e.g. 0.01 ps), but for reliable equilibrium runs it can be taken much
longer (e.g. 0.5 ps) in which case it hardly inuences the conservative dynamics.

The heat ow into or out of the system is e�ected by scaling the velocities of each particle
every step with a time-dependent factor �, given by

� =

"
1 +

�t

�T

(
T0

T (t� �t
2
)
� 1

)#1=2
(3.20)

The parameter �T is close to, but not exactly equal to the time constant � of the temper-
ature coupling (eqn. 3.19):

� = 2CV �T=Ndfk (3.21)

where CV is the total heat capacity of the system, k is Boltzmann's constant, and Ndf

is the total number of degrees of freedom. The reason that � 6= �T is that the kinetic
energy change caused by scaling the velocities is partly redistributed between kinetic and
potential energy and hence the change in temperature is less than the scaling energy. In
practice, the ratio �=�T ranges from 1 (gas) to 2 (harmonic solid) to 3 (water). When
we use the term 'temperature coupling time constant', we mean the parameter �T . Note
that in practice the scaling factor � is limited to the range of 0.8 <= � <= 1.25, to avoid
scaling by very large numbers which may crash the simulation. In normal use, � will
always be much closer to 1.0.

3.4 Molecular Dynamics 23

Strictly, for computing the scaling factor the temperature T is needed at time t, but this
is not available in the algorithm. In practice, the temperature at the previous time step
is used (as indicated in eqn. 3.20), which is perfectly all right since the coupling time
constant is much longer than one time step. The algorithm is stable up to �T � �t.

Pressure coupling

In the same spirit as the temperature coupling, the system can also be coupled to a
'pressure bath'. This is accomplished [17] by scaling coordinates and box size every step
with a parameter �, which has the e�ect of a �rst-order kinetic relaxation of the pressure
towards a given reference pressure P0:

dP

dt
=
P0 � P

�p
(3.22)

The scaling factor is given by

� =

"
1 +

�t

�p
�fP (t)� P0g

#1=3
(3.23)

Here � is the isothermal compressibility of the system. In general this is not known. It
su�ces to take a rough estimate because the value of � only inuences the non-critical
time constant of the pressure relaxation without a�ecting the average pressure itself. For
water at 1 atm and 300 K � = 4:5� 10�10 Pa�1 = 4:5 � 10�5 Bar�1, which is 7:5� 10�4

MD units (see chapter 2). Most other liquids have similar values.

In the present version of GROMACS the pressure coupling can be done anisotropically:
the x; y; z dimensions are scaled separately, based on the diagonal elements of the pressure
tensor. This allows e.g. to couple one dimension to an external pressure, while keeping a
�xed surface area in the other two dimensions (useful in membrane simulations). The sys-
tem axes remain orthogonal (the scaling method allows in principle also dynamic changes
in box angles, but this is not implemented yet).

Since the pressure uctuates heavily, it is recommended to take �p not too small; a value
between 0.4 and 1 ps will often be satisfactory. When using lattice sum methods it is
easy to get pressure oscillations, but this can be overcome by either slower scaling or by
averaging the calculated pressure over several steps.

Surface tension coupling

When a periodic system consists of more than one phase, separated by surfaces which are
parallel to the xy-plane, the surface tension and the z-component of the pressure can be
coupled to a pressure bath. The average surface tension (t) can be calculated from the
di�erence between the normal and the lateral pressure:

(t) =
1

n

Z
Lz

0

�
Pz(z; t) �

Px(z; t) + Py(z; t)

2

�
dz (3.24)

=
Lz

n

�
Pz(t)�

Px(t) + Py(t)

2

�
(3.25)

24 Algorithms

where Lz is the height of the box and n is the number of surfaces. The pressure in the
z-direction is corrected by scaling the height of the box with �z:

�Pz =
�t

�p
fPz0 � Pz(t)g (3.26)

�z = 1 + �z�Pz (3.27)

This is similar to normal pressure coupling, except that the power of one third is missing.
The pressure correction in the z-direction is then used to get the correct convergence for
the surface tension to the reference value 0. The correction factor for the box-length in
the x/y-direction is:

�xy =

"
1 +

�t

�p
�xy

�
n0

�zLz
�
�
Pz(t) + �Pz �

Px(t) + Py(t)

2

��# 1

2

(3.28)

The value of �z is more critical than with normal pressure coupling. Normally an incorrect
compressibility will just scale �p, but with surface tension coupling it a�ects the conver-
gence of the surface tension. When �z is set to zero (constant box height), �Pz is also set
to zero, which is necessary for obtaining the correct surface tension.

The complete update algorithm

The complete algorithm for the update of velocities and coordinates is given in Fig. 3.6.
The SHAKE algorithm of step 4 is explained below.

GROMACS has a provision to "freeze" (prevent motion of) selected particles, which must
be de�ned as a 'freeze group'. This is implemented using a freeze factor fg, which is a
vector, and di�ers for each freezegroup (see sec. 3.3). This vector contains only zero (freeze)
or one (don't freeze). When we take this freeze factor and the external acceleration ah
into account the update algorithm for the velocities becomes:

v(t+
�t

2
) = fg � � �

�
v(t� �t

2
) +

F (t)

m
�t+ ah�t

�
(3.29)

where g and h are group indices which di�er per atom.

3.4.4 Constraint algorithms

SHAKE

Constraints can be imposed in GROMACS using the traditional SHAKE method [21].
The SHAKE routine changes a set of unconstrained coordinates r

0

to a set of coordinates
r
00 that ful�ll a list of distance constraints, using a set r as reference:

SHAKE(r
0 ! r

00; r)

This action is consistent with solving a set of Lagrange multipliers in the constrained
equations of motion. SHAKE needs a tolerance TOL; it will continue until all constraints

3.4 Molecular Dynamics 25

THE UPDATE ALGORITHM

Given:
Positions r of all atoms at time t

Velocities v of all atoms at time t� �t
2

Accelerations F =m on all atoms at time t.
(Forces are computed disregarding any constraints)

Total kinetic energy and virial
+

1. Compute the scaling factors � and �
according to eqns. 3.20 and 3.23

+
2. Update and scale velocities: v0 = �(v + a�t)

+
3. Compute new unconstrained coordinates: r0 = r + v0�t

+
4. Apply constraint algorithm to coordinates:

constrain(r
0 ! r

00; r)
+

5. Correct velocities for constraints: v = (r00 � r)=�t
+

6. Scale coordinates and box: r = �r00; b = �b

Figure 3.6: The MD update algorithm

26 Algorithms

are satis�ed within a relative tolerance TOL. An error message is given if SHAKE cannot
reset the coordinates because the deviation is too large, or if a given number of iterations
is surpassed.

Assume the equations of motion must ful�ll K holonomic constraints, expressed as

�k(r1 : : : rN) = 0; k = 1 : : : K (3.30)

(e.g. (r1 � r2)2 � b2 = 0). Then the forces are de�ned as

� @

@ri

V +

KX
k=1

�k�k

!
(3.31)

where �k are Lagrange multipliers which must be solved to ful�ll the constraint equations.
The second part of this sum determines the constraint forces Gi, de�ned by

Gi = �
KX
k=1

�k
@�k

@ri
(3.32)

The displacement due to the constraint forces in the leap frog or Verlet algorithm is
equal to (Gi=mi)(�t)

2. Solving the Lagrange multipliers (and hence the displacements)
requires the solution of a set of coupled equations of the second degree. These are solved
iteratively by SHAKE. For the special case of rigid water molecules, that often make up
more than 80% of the simulation system we have implemented the SETTLE algorithm [22]
(sec. B.2.2).

The LINCS algorithm

LINCS is an algorithm that resets bonds to their correct lengths after an unconstrained
update [23]. The method is non-iterative, as it always uses two steps. Although LINCS
is based on matrices, no matrix-matrix multiplications are needed. The method is more
stable and faster than SHAKE, but it can only be used with bond constraints and isolated
angle constraints, such as the proton angle in OH. Because of its stability LINCS is
especially useful for Langevin Dynamics. LINCS has two parameters, which are explained
in the subsection parameters.

The LINCS formulas

We consider a system of N particles, with positions given by a 3N vector r(t). For
Molecular Dynamics the equations of motion are given by Newton's law

d2r

dt2
=M

�1
F (3.33)

where F is the 3N force vector andM is a 3N�3N diagonal matrix, containing the masses
of the particles. The system is constrained by K time-independent constraint equations

gi(r) = jri1 � ri2 j � di = 0 i = 1; : : : ;K (3.34)

3.4 Molecular Dynamics 27

unconstrained
update

correction for
rotational

lengthening

projecting out
forces working

along the bonds

θ

d

l d

pd

Figure 3.7: The three position updates needed for one time step. The dashed line is the
old bond of length d, the solid lines are the new bonds. l = d cos � and p = (2d2 � l2)

1

2 .

In a numerical integration scheme LINCS is applied after an unconstrained update, just
like SHAKE. The algorithm works in two steps (see �gure Fig. 3.7). In the �rst step
the projections of the new bonds on the old bonds are set to zero. In the second step a
correction is applied for the lengthening of the bonds due to rotation. The numerics for
the �rst step and the second step are very similar. A complete derivation of the algorithm
can be found in [23]. Only a short description of the �rst step is given here.

A new notation is introduced for the gradient matrix of the constraint equations which
appears on the right hand side of the equation

Bhi =
@gh

@ri
(3.35)

Notice that B is a K � 3N matrix, it contains the directions of the constraints. The
following equation shows how the new constrained coordinates rn+1 are related to the
unconstrained coordinates runcn+1

rn+1 = (I � T nBn)r
unc
n+1 + T nd =

r
unc
n+1 �M�1

Bn(BnM
�1
B

T

n)
�1(Bnr

unc
n+1 � d)

(3.36)

where T =M
�1
B

T (BM�1
B

T)�1. The derivation of this equation from eqns. 3.33 and
3.34 can be found in [23].

This �rst step does not set the real bond lengths to the prescribed lengths, but the pro-
jection of the new bonds onto the old directions of the bonds. To correct for the rotation
of bond i, the projection of the bond on the old direction is set to

pi =
q
2d2

i
� l2

i
(3.37)

where li is the bond length after the �rst projection. The corrected positions are

r
�
n+1 = (I � T nBn)rn+1 + T np (3.38)

This correction for rotational e�ects is actually an iterative process, but during MD only
one iteration is applied. The relative constraint deviation after this procedure will be

28 Algorithms

less than 0.0001 for every constraint. In energy minimization this might not be accurate
enough, so the number of iterations is equal to the order of the expansion (see below).

Half of the CPU time goes to inverting the constraint coupling matrix BnM
�1
B

T

n , which
has to be done every time step. ThisK�K matrix has 1=mi1+1=mi2 on the diagonal. The
o�-diagonal elements are only non-zero when two bonds are connected, then the element
is cos�=mc, wheremc is the mass of the atom connecting the two bonds and � is the angle
between the bonds.

The matrix T is inverted through a power expansion. A K �K matrix S is introduced
which is the inverse square root of the diagonal of BnM

�1
B

T

n . This matrix is used to
convert the diagonal elements of the coupling matrix to one

(BnM
�1
B

T

n)
�1 = SS

�1(BnM
�1
B

T

n)
�1
S
�1
S

= S(SBnM
�1
B

T
nS)

�1
S = S(I �An)

�1
S

(3.39)

The matrix An is symmetric and sparse and has zeros on the diagonal. Thus a simple
trick can be used to calculate the inverse

(I �An)
�1 = I +An +A

2
n +A

3
n + : : : (3.40)

This inversion method is only valid if the absolute values of all the eigenvalues of An

are smaller than one. In molecules with only bond constraints the connectivity is so low
that this will always be true, even if ring structures are present. Problems can arise in
angle-constrained molecules. By constraining angles with additional distance constraints
multiple small ring structures are introduced. This gives a high connectivity, leading to
large eigenvalues. Therefore LINCS should NOT be used with coupled angle-constraints.

The LINCS Parameters

The accuracy of LINCS depends on the number of matrices used in the expansion eqn. 3.40.
For MD calculations a fourth order expansion is enough. For Position Langevin Dynamics
with large time steps an eighth order expansion may be necessary. The order is a parameter
in the input �le for mdrun. The implementation of LINCS is done in such a way that the
algorithm will never crash. Even when it is impossible to to reset the constraints LINCS
will generate a conformation which ful�lls the constraints as well as possible. However,
LINCS will generate a warning when in one step a bond rotates over more than a prede�ned
angle. This angle is set by the user in the input �le for mdrun.

3.4.5 Output step

The important output of the MD run is the trajectory �le name.trj which contains particle
coordinates and -optionally- velocities at regular intervals. Since the trajectory �les are
lengthy, one should not save every step! To retain all information it su�ces to write a
frame every 15 steps, since at least 30 steps are made per period of the highest frequency
in the system, and Shannon's sampling theorem states that two samples per period of
the highest frequency in a band-limited signal contain all available information. But

3.5 Simulated Annealing 29

that still gives very long �les! So, if the highest frequencies are not of interest, 10 or
20 samples per ps may su�ce. Be aware of the distortion of high-frequency motions by
the stroboscopic e�ect, called aliasing: higher frequencies are mirrored with respect to the
sampling frequency and appear as lower frequencies.

3.5 Simulated Annealing

The well known simulated annealing (SA) protocol is implemented in a simple way into
GROMACS. A modi�cation of the temperature coupling scheme is used as a very ba-
sic implementation of the SA algorithm. The method works as follows: the reference
temperature for coupling T0 (eqn. 3.19) is not constant but can be varied linearly:

T0(step) = T0 � (�0 +�� � step) (3.41)

if �0 = 1 and �� is 0 this is the plain MD algorithm. Note that for standard SA ��
must be negative. When T0(step) < 0 it is set to 0, as negative temperatures do not have
a physical meaning. This \feature" allows for an annealing strategy in which at �rst the
temperature is scaled down linearly until 0 K, and when more steps are taken the simu-
lation proceeds at 0 K. Since the weak coupling scheme does not couple instantaneously,
the actual temperature will always be slightly higher than 0 K.

3.6 Langevin Dynamics

The Position Langevin Dynamics algorithm is implemented in GROMACS is (note: NOT
Velocity Langevin Dynamics). This applies to over-damped systems, i.e. systems in which
the inertia e�ects are negligible. The equations are

dr

dt
=
F (r)

+

�
r (3.42)

where is the friction coe�cient [amu/ps] and
�
r (t) is a noise process with h�ri (t)

�
rj (0)i =

2�(t)�ijkbT=. In GROMACS the equations are integrated with an explicit scheme

rn+1 = rn +
�t

F (rn) +

s
2kbT

�t

r
G (3.43)

where rG is Gaussian distributed noise with � = 0, � = 1. Because the system is assumed
to be over damped, large time-steps can be used. LINCS should be used for the constraints
since SHAKE will not converge for large atomic displacements. LD is an option of the
mdrun program.

3.7 Energy Minimization

Energy minimization in GROMACS can be done using a steepest descent or conjugate
gradient method. EM is just an option of the mdrun program.

30 Algorithms

3.7.1 Steepest Descent

Although steepest descent is certainly not the most e�cient algorithm for searching, it is
robust and easy to implement.

We de�ne the vector r as the vector of all 3N coordinates. Initially a maximum displace-
ment h0 (e.g. 0.01 nm) must be given.

First the forces F and potential energy are calculated. New positions are calculated by

rn+1 = rn +
F n

max(jF nj)
hn (3.44)

where hn is the maximum displacement and F n is the force, or the negative gradient of
the potential V . The notation max(jF nj) means the largest of the absolute values of the
force components. The forces and energy are again computed for the new positions
If (Vn+1 < Vn) the new positions are accepted and hn+1 = 1:2hn.
If (Vn+1 � Vn) the new positions are rejected and hn = 0:2hn.

The algorithm stops when either a user speci�ed number of force evaluations has been
performed (e.g. 100), or when the maximum of the absolute values of the force (gradient)
components is smaller than a speci�ed value �. Since force truncation produces some
noise in the energy evaluation, the stopping criterion should not be made too tight to
avoid endless iterations. A reasonable value for � can be estimated from the root mean
square force f a harmonic oscillator would exhibit at a temperature T This value is

f = 2��
p
2mkT (3.45)

where � is the oscillator frequency, m the (reduced) mass, and k Boltzmann's constant.
For a weak oscillator with a wave number of 100 cm�1 and a mass of 10 atomic units, at a
temperature of 1 K, f = 7:7 kJ mol�1 nm�1. A value for � between 1 and 10 is acceptable.

3.7.2 Conjugate Gradient

Cojugate gradient is slower than steepest descent in the early stages of the minimization,
but becomes more e�cient closer to the energy minimum. The parameters and stop
criterion are the same as for steepest descent. Cojugate gradient can not be used with
constraints or freeze groups.

3.8 Normal Mode Analysis

Normal mode analysis [24{26] can be performed using GROMACS, by diagonalization of
the mass-weighted Hessian:

M�1=2HM�1=2Q = !2Q (3.46)

where M contains the atomic masses, Q contains eigenvectors, and ! contains the corre-
sponding eigenvalues (frequencies).

3.9 Free energy perturbation 31

First, the Hessian matrix, which is a 3N � 3N matrix where N is the number of atoms,
has to be calculated:

Hij =
@2V

@xi@xj
(3.47)

where xi and xj denote the atomic x,y or z coordinates. In practice, these equations have
not been developed analytically, but the force is used

Fi =
@V

@xi
(3.48)

from which the Hessian is computed numerically. It should be noted that for a usual
Normal Mode calculation, it is necessary to completely minimize the energy prior to com-
putation of the Hessian. This should be done with conjugate gradient in double precision.
A number of GROMACS programs are involved in these calculations. First nmrun, which
computes the Hessian, and secondly g nmeig which does the diagonalization and sorting
of normal modes according to frequencies. Both these programs should be run in dou-
ble precision. An overview of normal mode analysis and the related principal component
analysis (see sec. 8.9) can be found in [27].

3.9 Free energy perturbation

Free energy perturbation calculations can be performed in GROMACS using slow-growth
methods. An example problem might be: calculate the di�erence in free energy of binding
of an inhibitor I to an enzyme E and to a mutated enzyme E'. It is not feasible with
computer simulations to perform a docking calculation for such a large complex, or even
releasing the inhibitor from the enzyme in a reasonable amount of computer time with
reasonable accuracy. However, if we consider the free energy cycle in (Fig. 3.8A) we can
write

�G1 ��G2 = �G3 ��G4 (3.49)

If we are interested in the left-hand term we can equally well compute the right-hand term.

If we want to compute the di�erence in free energy of binding of two inhibitors I and I'

to an enzyme E (Fig. 3.8B) we can again use eqn. 3.49 to compute the desired property.

3.10 Essential Dynamics Sampling

The results from an Essential Dynamics (ED) analysis [28] of a protein can be used to
guide MD simulations. The idea is that from an initial MD simulation (or from other
sources) a de�nition of the collective uctuations with largest amplitude is obtained. The
position along one or more of these collective modes can be constrained in a (second) MD
simulation in a number of ways for several purposes. For example, the position along a
certain mode may be kept �xed to monitor the average force (free-energy gradient) on that
coordinate in that position. Another application is to enhance sampling e�ciency with
respect to usual MD [29, 30]. In this case, the system is encouraged to sample its available

32 Algorithms

I

E’E

I

E E’

G1∆ ∆G2

∆G4

∆G3

A

G1∆ ∆G2

∆G3

I I’

E

I

E

I’

∆G4

B

Figure 3.8: Free energy cycles. A: to calculate �G12 or the free energy di�erence between
the binding of inhibitor I to enzymes E respectively E'. B: to calculate �G12 which is the
free energy di�erence for binding of inhibitors I respectively I' to enzyme E.

con�guration space more systematically than in a di�usion-like path that proteins usually
take.

All available constraint types are described in the appropriate chapter of the WHAT IF
[31] manual.

3.11 Parallelization

The purpose of this section is to discuss the parallelization of the principle MD algorithm
and not to describe the algorithms that are in practical use for molecular systems with
their complex variety of atoms and terms in the force �eld descriptions. We shall therefore
consider as an example a simple system consisting only of a single type of atoms with a
simple form of the interaction potential. The emphasis will be on the special problems
that arise when the algorithm is implemented on a parallel computer.

The simple model problem already contains the bottleneck of all MD simulations: the com-
putationally intensive evaluation of the non-bonded forces between pairs of atoms, based
on the distance between particles. Complex molecular systems will in addition involve
many di�erent kinds of bonded forces between designated atoms. Such interactions add
to the complexity of the algorithm but do not modify the basic considerations concerning
parallelization.

3.11.1 Methods of parallelization

There are a number of methods to parallelize the MD algorithm, each of them with their
own advantages and disadvantages. The method to choose depends on the hardware and
compilers available. We list them here:

3.11 Parallelization 33

1 Message Passing.

In this method, which is more or less the traditional way of parallel programming,
all the parallelism is explicitly programmed by the user. The disadvantage is that it
takes extra code and e�ort, the advantage is that the programmer keeps full control
over the data ow and can do optimizations a compiler could not come up with.

The implementation is typically done by calling a set of library routines to send and
receive data to and from other processors. Almost all hardware vendors support this
way of parallelism in their C and Fortran compilers.

2 Data Parallel.

This method lets the user de�ne arrays on which to operate in parallel. Program-
ming this way is much like vectorizing: recurrence is not parallelized (e.g. for(i=1;
(i<MAX); i++) a[i] = a[i-1] + 1; does not vectorise and not parallelize, be-
cause for every i the result from the previous step is needed).

The advantage of data parallelism is that it is easier for the user; the compiler takes
care of the parallelism. The disadvantage is that it is supported by a small (though
growing) number of hardware vendors, and that it is much harder to maintain a
program that has to run on both parallel and sequential machines, because the only
standard language that supports it is Fortran-90 which is not available on many
platforms.

Both methods allow for the MD algorithm to be implemented without much trouble.
Message passing MD algorithms have been published since the mid 80's ([32], [33]) and
development is still continuing. Data parallel programming is newer, but starting from a
well vectorized program it is not hard to do.

Our implementation of MD is a message passing one, the reason for which is partly his-
torical: the project to develop a parallel MD program started when Fortran-90 was still in
the making, and no compilers were expected to be available. At current, we still believe
that message passing is the way to go, after having done some experiments with data
parallel programming on a Connection Machine (CM-5), because of portability to other
hardware, the poor performance of the code produced by the compilers and because this
way of programming has the same drawback as vectorization: the part of the program
that is not vectorized or parallelized determines the runtime of the program (Amdahl's
law).

The approach we took to parallelism was a minimalist one: use as little non-standard
elements in the software as possible, and use the simplest processor topology that does the
job. We therefore decided to use a standard language (ANSI-C) with as little non-standard
routines as possible. We only use 5 communication routines that are non-standard. It is
therefore very easy to port our code to other machines.

For an O(N2) problem like MD, one of the best schemes for the interprocessor connections
is a ring, so our software demands that a ring is present in the interprocessor connections.
A ring can almost always be mapped onto another network like a hypercube, a bus interface
(Ethernet e.g. using Parallel Virtual Machines PVM [34]) or a tree (CM-5). Some hardware
vendors have very luxurious connection schemes that connect every processor to every

34 Algorithms

other processor, but we do not really need it and so do not use it even though it might
come in handy at times.

When using a message passing scheme one has to divide the particles over processors,
which can be done in two ways:

� Space Decomposition.

An element of space is allocated to each processor, when dividing a cubic box with
edge b over P processors this can be done by giving each processor a slab of length
b=P . This method has the advantage that each processor has about the same number
of interactions to calculate (at least when the simulated system has a homogeneous
density, like a liquid or a gas). The disadvantage is that a lot of bookkeeping is nec-
essary for particles that move over processor boundaries. When using more complex
systems like macromolecules there are also 3- and 4-atom interactions that would
complicate the bookkeeping so much that this method is not used in our program.

� Particle Decomposition.

Every processor is allocated a number of particles. When dividing N particles over
P processors each processor will get N=P particles. The implementation of this
method is described in the next section.

3.11.2 MD on a ring of processors

When a neighbor list is not used the MD problem is in principle an O(N2) problem as
each particle can interact with every other. This can be simpli�ed using Newton's third
law

Fij = � Fji (3.50)

This implies that there is half a matrix of interactions (without diagonal, a particle does
not interact with itself) to consider (Fig. 3.9). When we reect the upper right triangle
of interactions to the lower left triangle of the matrix, we still cover all possible interac-
tions, but now every row in the matrix has almost the same number of points or possible
interactions. We can now assign a (preferably equal) number of rows to each processor to
compute the forces and at the same time a number of particles to do the update on, the
home particles. The number of interactions per particle is dependent on the total number

N of particles (see Fig. 3.10) and on the particle number i. The exact formulae are given
in Table 3.1.

A ow chart of the algorithm is given in Fig. 3.11. It is the same as the sequential
algorithm, except for two communication steps. After the particles have been reset in
the box, each processor sends its coordinates left and then starts computation of the
forces. After this step each processor holds the partial forces for the available particles,
e.g. processor 0 holds forces acting on home particles from processor 0, 1, 2 and 3. These
forces must be accumulated and sent back (right) to the home processor. Finally the
update of the velocity and coordinates is done on the home processor.

The communicate r routine is given below in the full C-code:

3.11 Parallelization 35

0
1
2
3
4
5
6
7
8

0
1
2
3
4
5
6
7
8

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
j j

i i

Figure 3.9: The interaction matrix (left) and the same using action = �reaction (right).

i mod 2 = 0 i mod 2 = 0 i mod 2 = 1 i mod 2 = 1
i < N/2 i � N/2 i < N/2 i � N/2

N mod 2 = 1 N=2 N=2 N=2 N=2
N mod 4 = 2 N=2 N=2 N=2�1 N=2�1
N mod 4 = 0 N=2 N=2�1 N=2�1 N=2

Table 3.1: The number of interactions between particles. The number of j particles per i
particle is a function of the total number of particles N and particle number i. Note that
here the = operator is used for integer division, i.e. truncating the reminder.

j

i

j

i

j

i0
1
2
3
4
5

0 1 2 3 4 5
0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6

0 1 2 3 4 5 6

N mod 4 = 2 N mod 2 = 1 N mod 4 = 0

Figure 3.10: Interaction matrices for di�erent N . The number of j-particles an i-particle
interacts with depends on the total number of particles and on the particle number.

36 Algorithms

read_data

Done

NO

output_step

update_r_and_v

more steps ?
YES

compute_forces

*

*

reset_r_in_box

communicate_r

communicate_and_sum_f

Figure 3.11: The Parallel MD algorithm. If the steps marked * are left out we have the
sequential algorithm again.

3.12 Parallel Molecular Dynamics 37

0
1

2

3
4

5

6

7
Forces

Coordinates

Figure 3.12: Data ow in a ring of processors.

void communicate_r(int nprocs,int pid,rvec vecs[],int start[],int homenr[])

/*

* nprocs = number of processors

* pid = processor id (0..nprocs-1)

* vecs = vectors

* start = starting index in vecs for each processor

* homenr = number of home particles for each processor

*/

{

int i; /* processor counter */

int shift; /* the amount of processors to communicate with */

int cur; /* current processor to send data from */

int next; /* next processor on a ring (using modulo) */

cur = pid;

shift = nprocs/2;

for (i=0; (i<shift); i++) {

next=(cur+1) % nprocs;

send (left, vecs[start[cur]], homenr[cur]);

receive(right, vecs[start[next]], homenr[next]);

cur=next;

}

}

The data ow around the ring is visualised in Fig. 3.12. Note that because of the ring
topology each processor automatically gets the proper particles to interact with.

3.12 Parallel Molecular Dynamics

In this chapter we describe some details of the parallel MD algorithm used in GROMACS.
This also includes some other information on neighbor searching and a side excursion to
parallel sorting. Please note the following which we use throughout this chapter:
de�nition: N : Number of particles, M number of processors.
GROMACS employs two di�erent grids: the neighbor searching grid (NS grid) and the

38 Algorithms

charge/potential grid (FFT grid), as will be described below. To maximize the confusion,
these two grids are mapped onto a grid of processors when GROMACS runs on a parallel
computer.

3.12.1 Domain decomposition

Modern day parallel computers, such as an IBM SP/2 or a Cray T3E consist of relatively
small numbers of relatively fast scalar processors (typically 8 to 256). The communication
channels that are available in hardware on these machine are not directly visible for the
programmer, a software layer (like MPI or PVM) hides this, and makes communication
from all processors to all others possible. In contrast, in the GROMACS hardware [1]
only communication in a ring was available, i.e. each processor could communicate with
its direct neighbors only.

It seems logical to map the computational box of an MD simulation system to a 3D grid
of processors (e.g. 4x4x4 for a 64 processor system). This ensures that most interactions
that are local in space can be computed with information from neighboring processors
only. However, this means that there have to be communication channels in 3 dimensions
too, which is not necessarily the case. Although this may be overcome in software, such
a mapping is complicated for the MD software as well, without clear bene�ts in terms of
performance for most parallel computers.

Therefore we opt for a simple one-dimensional division scheme for the computational box.
Each processor gets a slab of this box in the X-dimension. For the communication between
processors this has two main advantages:

1. Simplicity of coding. Communication can only be to two neighbors (called left and
right in GROMACS).

2. Communication can usually be done in large chunks, which makes it more e�cient
on most hardware platforms.

Most interactions in molecular dynamics have in principle a short ranged character. Bonds,
angles and dihedrals are guaranteed to have the corresponding particles close in space.

3.12.2 Domain decomposition for non-bonded forces

For large parallel computers, domain decomposition is preferable over particle decomposi-
tion, since it is easier to do load balancing. Without load balancing the scaling of the code
is rather poor... For this purpose, the computational box is divided in M slabs, where M
is equal to the number of processors. There are multiple ways of dividing the box over
processors, but since the GROMACS code assumes a ring topology for the processors, it is
logical to cut the system in slabs in just one dimension, the X dimension. The algorithm
for neighbor searching then becomes:

1. Make a list of charge group indices sorted on (increasing) X coordinate (Fig. 3.13).
Note that care must be taken to parallelize the sorting algorithm as well. See
sec. 3.12.4.

3.12 Parallel Molecular Dynamics 39

X
Y
Z

0 1 2 N-1

0 1 2 3 4 5
CPU number

atom number

index

coord.

Figure 3.13: Index in the coordinate array. The division in slabs is indicated by dashed
lines.

2. Divide this list into slabs, such that each slab has the same number of charge groups

3. Put the particles corresponding to the local slab on a 3D NS grid as described above
(sec. 3.4.2)

4. Communicate the NS grid to neighboring processors (not necessarily to all proces-
sors). The amount of neighboring NS grid cells (Ngx) to communicate is determined
by the cut-o� length rc according to

Ngx =
rcM

lx
(3.51)

where lx is the box length in the slabbing direction.

5. On each processor compute the neighbor list for all charge groups in its slab using
the normal grid neighbor-searching.

For homogeneous system, this is close to an optimal load balancing, without actually
doing load balancing. For inhomogeneous system, such as membranes, or interfaces, the
dimension for slabbing must be chosen such that it is perpendicular to the interface; in this
fashion each processor has \a little bit of everything". The GROMACS utility program
editconf has an option to rotate a whole computational box.

The following observations are important here:

� Particles may di�use from one slab to the other, therefore each processor must hold
coordinates for all particles all the time, and distribute forces back to all processors
as well.

� Velocities are kept on the \home processor" for each particle, where the integration
of Newton's equations is done.

� Fixed interaction lists (bonds, angles etc.) are kept each on a single processor.
Since all processors have all coordinates, it does not matter where interactions are
calculated. The division is actually done by the GROMACS preprocessor grompp
and care is taken that, as far as possible, every processor gets the same number of
bonded interactions.

40 Algorithms

In all, this makes for a mixed particle decomposition/domain decomposition scheme for
parallelization of the MD code. The communication costs are four times higher than for
the simple particle decomposition method described in sec. 3.11 (the whole coordinate
and force array are communicated across the whole ring, rather than half the array over
half the ring). However, for large numbers of processors the improved load balancing
compensates this easily.

3.12.3 Parallel PPPM

A further reason for domain decomposition is the PPPM algorithm. This algorithm works
with a 3D Fast Fourier Transform. It employs a discrete grid of dimensions (nx,ny,nz),
the FFT grid. The algorithm consist of �ve steps, each of which have to be parallelized:

1. Spreading charges on the FFT grid to obtain the charge distribution �(r). This bit
involves the following sub-steps:

a. put particle in the box

b. �nd the FFT grid cell in which the particle resides

c. add the charge of the particle times the appropriate weight factor (see sec. 4.6.3)
to each of the 27 grid points (3 x 3 x 3).

In the parallel case, the FFT grid must be �lled on each processor with its share of
the particles, and subsequently the FFT grids of all processors must be summed to
�nd the total charge distribution. It may be clear that this induces a large amount of
unnecessary work, unless we use domain decomposition. If each processor only has
particles in a certain region of space, it only has to calculate the charge distribution
for that region of space. Since GROMACS works with slabs, this means that each
processor �lls the FFT grid cells corresponding to it's slab in space and addition of
FFT grids need only be done for neighboring slabs.
To be more precise, the slab x for processor i is de�ned as:

i
lx

M
� x < (i+ 1)

lx

M
(3.52)

Particle with this x coordinate range will add to the charge distribution on the
following range of of FFT grid slabs in the x direction:

trunc

�
i
lxnx

M

�
� 1 � ix � trunc

�
(i+ 1)

lxnx

M

�
+ 2 (3.53)

where trunc indicates the truncation of a real number to the largest integer smaller
than or equal to that real number.

2. Doing the Fourier transform of the charge distribution �(r) in parallel to obtain
�̂(k). This is done using the FFTW library (http://lcs.theory.mit.edu/~fftw)
which employs the MPI library for message passing programs (note that there are
also shared memory versions of the FFTW code).
This FFT algorithm actually use slabs as well (good thinking!). Each processor does

3.12 Parallel Molecular Dynamics 41

2D FFTS on its slab, and then the whole FFT grid is transposed in place (i.e. without
using extra memory). This means that after the FFT the X and Y components are
swapped. To complete the FFT, this swapping should be undone in principle (by
transposing back). Happily the FFTW code has an option to omit this, which we
use in the next step.

3. Convolute �̂(k) with the Fourier transform of the charge spread function ĝ(k) (which
we have tabulated before) to obtain the potential �̂(k). As an optimization, we store
the ĝ(k) in transposed form as well, matching the transposed form of �̂(k) which we
get from the FFTW routine. After this step we have the potential �̂(k) in Fourier
space, but still on the transposed FFT grid.

4. Do an inverse transform of �̂(k) to obtain �(r). Since the algorithm must do a
transpose of the data this step actually yields the wanted result: the un-transposed
potential in real space.

5. Interpolate the potential �(r) in real space at the particle positions to obtain forces
and energy. For this bit the same considerations towards parallelism hold as for the
charge spreading. However in this case more neighboring grid cells are needed, such
that we need the following set of FFT grid slabs in the x direction:

trunc

�
i
lxnx

M

�
� 3 � ix � trunc

�
(i+ 1)

lxnx

M

�
+ 4 (3.54)

The algorithm as sketched above requires communication for spreading the charges, for the
FFTW forward and backward, and for interpolating the forces. The GROMACS bits of
the program use only left and right communication, i.e. using two communication channels.
The FFTW routines actually use other forms of communication as well, and these routines
are coded with MPI routines for message passing. This implies that GROMACS can
only perform the PPPM algorithm on parallel computers computers that support MPI.
However, most shared memory computers, such as the SGI Origin also support MPI using
the shared memory for communication.

3.12.4 Parallel sorting

For the domain decomposition bit of GROMACS it is necessary to sort the coordinates (or
rather the index to coordinates) every time a neighbor list is made. If we use brute force,
and sort all coordinates on each processor (which is technically possible since we have all
the coordinates), then this sorting procedure will take a constant time (proportional to
N2 logN , independent of the number of processors. We can however do a little better, if
we assume that particles di�use only slowly. A parallel sorting algorithm can be conceived
as follows:
At the �rst step of the simulation

1. Do a full sort of all indices using e.g. the quick-sort algorithm that is built-in in the
standard C-library

2. Divide the sorted array into slabs (as described above see Fig. 3.13).

42 Algorithms

At subsequent steps of the simulation:

1. Send the indices for each processor to the preceding processor (if not processor 0)
and to the next processor (if not M -1). The communication associated with this
operation is proportional to 2N/M .

2. Sort the combined indices of the three (or two) processors. Note that the CPU time
associated with sorting is now (3N/M)2 log (3N/M).

3. On each processor, the indices belonging to it's slab can be determined from the
order of the array (Fig. 3.13).

Chapter 4

Force �elds

A force �eld is built up from two distinct components:

� The set of equations (called the potential functions) used to generate the potential
energies and their derivatives, the forces.

� The parameters used in this set of equations

Within one set of equations various sets of parameters can be used. Care must be taken
that the combination of equations and parameters form a consistent set. It is in gen-
eral dangerous to make ad hoc changes in a subset of parameters, because the various
contributions to the total force are usually interdependent.

In GROMACS 2.0 the force �eld is based on GROMOS-87 [35], with a small modi�cation
concerning the interaction between water-oxygens and carbon atoms [36, 37], as well as
10 extra atom types [36{40]. However, the user is free to make her own modi�cations
(beware!). This will be explained in details in chapter 5, which deals with the Topology.
To accommodate the potential functions used in some popular force �elds, GROMACS
o�ers a choice of functions, both for non-bonded interaction and for dihedral interactions.
They are described in the appropriate subsections.

The potential functions can be subdivided into three parts

1. Non-bonded: Lennard-Jones or Buckingham, and Coulomb or modi�ed Coulomb.
The non-bonded interactions are computed on the basis of a neighbor list (a list of
non-bonded atoms within a certain radius), in which exclusions are already removed.

2. Bonded: covalent bond-stretching, angle-bending, improper dihedrals, and proper
dihedrals. These are computed on the basis of �xed lists.

3. Special: position restraints and distance restraints, based on �xed lists.

44 Force �elds

0.4 0.5 0.6 0.7 0.8
r (nm)

–0.2

0.0

0.2

0.4

V
 (

kJ
 m

ol
e–1

)

Figure 4.1: The Lennard-Jones interaction.

4.1 Non-bonded interactions

Non-bonded interactions in GROMACS are pair-additive and centro-symmetric:

V (r1; : : : rN) =
X
i<j

Vij(rij); (4.1)

F i = �
X
j

dVij(rij)

drij

rij

rij
= �F j (4.2)

The non-bonded interactions contain a repulsion term, a dispersion term, and a Coulomb
term. The repulsion and dispersion term are combined in either the Lennard-Jones (or
6-12 interaction), or the Buckingham (or exp-6 potential). In addition, (partially) charged
atoms act through the Coulomb term.

4.1.1 The Lennard-Jones interaction

The Lennard Jones potential VLJ between two atoms equals

VLJ(rij) =
C
(12)
ij

r12
ij

�
C
(6)
ij

r6
ij

(4.3)

see also Fig. 4.1 The parameters C
(12)
ij

and C
(6)
ij

depend on pairs of atom types; consequently
they are taken from a matrix of LJ-parameters.

The force derived from this potential is:

F i(rij) =

0
@12 C(12)

ij

r12
ij

� 6
C
(6)
ij

r6
ij

1
A rij

rij
(4.4)

4.1 Non-bonded interactions 45

0.2 0.3 0.4 0.5 0.6 0.7 0.8
r (nm)

–0.5

0.0

0.5

1.0

1.5

V
 (

kJ
 m

ol
e–1

)

Figure 4.2: The Buckingham interaction.

The LJ potential may also be written in the following form :

VLJ(rij) = 4�ij

0
@

�ij

rij

!12

�

�ij

rij

!6
1
A (4.5)

In constructing the parameter matrix for the non-bonded LJ-parameters, two types of
combination rules can be used within GROMACS:

C
(6)
ij

=
�
C
(6)
ii

� C(6)
jj

�1=2
C
(12)
ij

=
�
C
(12)
ii

� C(12)
jj

�1=2 (4.6)

or, alternatively,

�ij = 1
2
(�ii + �jj)

�ij = (�ii�jj)
1=2 (4.7)

4.1.2 Buckingham potential

The Buckingham potential has a more exible and realistic repulsion term than the
Lennard Jones interaction, but is also more expensive to compute. The potential form is:

Vbh(rij) = Aij exp(�Bijrij)�
Cij

r6
ij

(4.8)

see also Fig. 4.2, the force derived from this is:

F i(rij) =

"
�AijBijrij exp(�Bijrij)� 6

Cij

r6
ij

#
rij

rij
(4.9)

46 Force �elds

0.0 0.2 0.4 0.6 0.8 1.0
r (nm)

0

500

1000

1500

V
 (

kJ
 m

ol
−

1)

Coulomb
With RF
RF − C

Figure 4.3: The Coulomb interaction (for particles with equal signed charge) with and
without reaction �eld. In the latter case "rf was 78, and rc was 0.9 nm. The dot-dashed
line is the same as the dashed line, except for a constant.

4.1.3 Coulomb interaction

The Coulomb interaction between two charge particles is given by:

Vc(rij) = f
qiqj

"rrij
(4.10)

see also Fig. 4.3, where f = 1
4�"0

= 138:935 485 (see chapter 2)

The force derived from this potential is:

F i(rij) = f
qiqj

"rr
2
ij

rij

rij
(4.11)

In GROMACS the relative dielectric constant "r may be set in the in the input for grompp.

4.1.4 Coulomb interaction with reaction �eld

The coulomb interaction can be modi�ed for homogeneous systems, by assuming a con-
stant dielectric environment beyond the cut-o� rc with a dielectric constant of "rf . The
interaction then reads:

Vcrf = f
qiqj

rij

"
1 +

"rf � 1

2"rf + 1

r3
ij

r3c

#
� f

qiqj

rc

3"rf
2"rf + 1

(4.12)

in which the constant expression on the right makes the potential zero at the cut-o� rc.
We can rewrite this for simplicity as

Vcrf = fqiqj

"
1

rij
+ krf r

2
ij � crf

#
(4.13)

4.1 Non-bonded interactions 47

with

krf =
1

r3c

"rf � 1

(2"rf + 1)
(4.14)

crf =
1

rc
+ krf r

2
c =

1

rc

3"rf
(2"rf + 1)

(4.15)

for large "rf the krf goes to 0.5 r�3c , while for "rf = 1 the correction vanishes. This
makes it possible to use the same expression with and without reaction �eld, albeit at
some computational cost. In Fig. 4.3 the modi�ed interaction is plotted, and it is clear
that the derivative with respect to rij (= -force) goes to zero at the cut-o� distance. The
force derived from this potential reads:

F i(rij) = fqiqj

"
1

r2
ij

� 2krfrij

#
rij

rij
(4.16)

Tironi et al. have introduced a generalized reaction �eld in which the dielectric continuum
beyond the cut-o� rc also has an ionic strength I [41]. In this case we can rewrite the
constants krf and crf using the inverse Debye screening length �:

� =
2I F 2

"0"rfRT
=

F 2

"0"rfRT

KX
i=1

cizi (4.17)

krf =
1

r3c

("rf � 1)(1 + �rc) + "rf (�rc)
2

(2"rf + 1)(1 + �rc) + "rf (�rc)2
(4.18)

crf =
1

rc

3"rf (1 + �rc) + 2"rf (�rc)
2

(2"rf + 1)(1 + �rc) + "rf (�rc)2
(4.19)

where F is Faraday's constant, R is the ideal gas constant, T the absolute temperature,
ci the molar concentration for species i and zi the charge number of species i where we
have K di�erent species. In the limit of zero ionic strength (� = 0) eqns. 4.18 and 4.19
reduce to the simple forms of eqns. 4.14 and 4.15 respectively.

4.1.5 Modi�ed non-bonded interactions

In the GROMACS force �eld the non-bonded potentials can be modi�ed by a shift func-
tion. The purpose of this is to replace the truncated forces by forces that are continuous
and have continuous derivatives at the cut-o� radius. With such forces the time-step in-
tegration produces much smaller errors and there are no such complications as creating
charges from dipoles by the truncation procedure. In fact, by using shifted forces there is
no need for charge groups in the construction of neighbor lists. However, the shift func-
tion produces a considerable modi�cation of the Coulomb potential. Unless the 'missing'
long-range potential is properly calculated and added (through the use of PPPM, Ewald,
or PME), the e�ect of such modi�cations must be carefully evaluated. The modi�cation
of the Lennard-Jones dispersion and repulsion is only minor, but it does remove the noise
caused by cut-o� e�ects.

There is no fundamental di�erence between a switch function (which multiplies the poten-
tial with a function) and a shift function (which adds a function to the force or potential).

48 Force �elds

The switch function is a special case of the shift function, which we apply to the force

function F (r), related to the electrostatic or Van der Waals force acting on particle i by
particle j as

F i = cF (rij)
rij

rij
(4.20)

For pure Coulomb or Lennard-Jones interactions F (r) = F�(r) = r�(�+1). The shifted
force Fs(r) can generally be written as:

Fs(r) = F�(r) r < r1

Fs(r) = F�(r) + S(r) r1 � r < rc

Fs(r) = 0 rc � r

(4.21)

When r1 = 0 this is a traditional shift function, otherwise it acts as a switch function.
The corresponding shifted coulomb potential then reads:

Vs(rij) = f�s(rij)qiqj (4.22)

where �(r) is the potential function

�s(r) =

Z 1

r

Fs(x) dx (4.23)

The GROMACS shift function should be smooth at the boundaries, therefore the following
boundary conditions are imposed on the shift function:

S(r1) = 0
S0(r1) = 0
S(rc) = �F�(rc)
S0(rc) = �F 0�(rc)

(4.24)

A 3rd degree polynomial of the form

S(r) = A(r � r1)
2 +B(r � r1)

3 (4.25)

ful�lls these requirements. The constants A and B are given by the boundary condition
at rc:

A = �(�+ 4)rc � (�+ 1)r1

r�+2c (rc � r1)2

B =
(�+ 3)rc � (�+ 1)r1

r�+2c (rc � r1)3

(4.26)

Thus the total force function is

Fs(r) =
1

r�+1
+A(r � r1)

2 +B(r � r1)
3 (4.27)

and the potential function reads

�(r) =
1

r�
� A

3
(r � r1)

3 � B

4
(r � r1)

4 � C (4.28)

4.1 Non-bonded interactions 49

0.0 1.0 2.0 3.0 4.0 5.0
r

−0.5

0.0

0.5

1.0

1.5
f(

r)

Normal Force
Shifted Force
Shift Function

Figure 4.4: The Coulomb Force, Shifted Force and Shift Function S(r), using r1 = 2 and
rc = 4.

where

C =
1

r�c
� A

3
(rc � r1)

3 � B

4
(rc � r1)

4 (4.29)

When r1 = 0, the modi�ed Coulomb force function is

Fs(r) =
1

r2
� 5r2

r4c
+
4r3

r5c
(4.30)

identical to the parabolic force function recommended to be used as a short-range function
in conjunction with a Poisson solver for the long-range part [13]. The modi�ed Coulomb
potential function is

�(r) =
1

r
� 5

3rc
+
5r3

3r4c
� r4

r5c
(4.31)

see also Fig. 4.4.

4.1.6 Modi�ed short-range interactions with Ewald summation

When Ewald summation or particle-mesh Ewald is used to calculate the long-range inter-
actions, the short-range coulomb potential must also be modi�ed, similar to the switch
function above. In this case the short range potential is given by

V (r) = f
erfc(�rij)

rij
qiqj ; (4.32)

where � is a parameter that determines the relative weight between the direct space sum
and the reciprocal space sum and erfc(x) is the complementary error function. For further
details on long-range electrostatics, see sec. 4.6.

50 Force �elds

b0

0.08 0.09 0.10 0.11
r (nm)

0

50

100

150

200

V
 (

kJ
 m

ol
e–1

)
Figure 4.5: Principle of bond stretching (left), and the bond stretching potential (right).

4.2 Bonded interactions

Bonded interactions are based on a �xed list of atoms. They are not exclusively pair
interactions, but include 3- and 4-body interactions as well. There are bond stretching

(2-body), bond angle (3-body), and dihedral angle (4-body) interactions. A special type of
dihedral interaction (called improper dihedral) is used to force atoms to remain in a plane
or to prevent transition to a con�guration of opposite chirality (a mirror image).

4.2.1 Bond stretching

Harmonic potential

The bond stretching between two covalently bonded atoms i and j is represented by a
harmonic potential

Vb (rij) =
1

2
kbij(rij � bij)

2 (4.33)

see also Fig. 4.5, with the force

F i(rij) = kbij(rij � bij)
rij

rij
(4.34)

Fourth power potential

In the GROMOS-96 force �eld [42] the covalent bond potential is written for reasons of
computational e�ciency as:

Vb (rij) =
1

4
kbij

�
r2ij � b2ij

�2
(4.35)

the corresponding force is:

F i(rij) = kbij(r
2
ij � b2ij) rij (4.36)

4.2 Bonded interactions 51

The force constants for this form of the potential is related to the usual harmonic force
constant kb;harm (sec. 4.2.1) as

2kbb2ij = kb;harm (4.37)

The force constants are mostly derived from the harmonic ones used in GROMOS-87 [35].
Although this form is computationally more e�cient (because no square root has to be
evaluated), it is conceptually more complex. One particular disadvantage is that since the
form is not harmonic, the average energy of a single bond is not equal to 1

2
kT as it is for

the normal harmonic potential.

4.2.2 Morse potential bond stretching

For some systems that require an anharmonic bond stretching potential, the Morse po-
tential [43] between two atoms i and j is available in GROMACS. This potential di�ers
from the harmonic potential in having an asymmetric potential well and a zero force at
in�nite distance The functional form is:

Vmorse(rij) = Dij [1� exp(��ij(rij � bij))]
2; (4.38)

see also Fig. 4.6, and the corresponding force is:

Fmorse(rij) = 2Dij�ijrij exp(��ij(rij � bij))�
[1� exp(��ij(rij � bij))]

rij
rij
;

(4.39)

where Dij is the depth of the well in kJ/mol, �ij de�nes the steepness of the well (in
nm�1), and bij is the equilibrium distance in nm. The steepness parameter �ij can be
expressed in terms of the reduced mass of the atoms i and j, the fundamental vibration
frequency !ij and the well depth Dij :

�ij = !ij

s
�ij

2Dij

(4.40)

and because ! =
q
k=�, one can rewrite �ij in terms of the harmonic force constant kij

�ij =

s
kij

2Dij

(4.41)

For small deviations (rij � bij), one can expand the exp-term to �rst-order in the Taylor
expansion:

exp(�x) � 1� x (4.42)

Substituting this in the functional from;

Vmorse(rij) = Dij [1� exp(��ij(rij � bij))]
2

= Dij [1� (1�
r

kij

2Dij
(rij � bij))]

2

= 1
2
kij(rij � bij))

2;

(4.43)

one recovers the harmonic bond stretching potential.

52 Force �elds

0.1 0.2 0.3 0.4 0.5 0.6
rij (nm)

0

100

200

300

400

V
ij (

kJ
 /

m
ol

)

Figure 4.6: The Morse potential well, with bond length 0.15 nm.

θ0

100.0 110.0 120.0 130.0 140.0
θ

0.0

10.0

20.0

30.0

40.0

50.0

V
a

(k
J

m
ol

e–1
)

Figure 4.7: Principle of angle vibration (left) and the bond angle potential (right).

4.2.3 Bond angle vibration

Harmonic potential

The bond angle vibration between a triplet of atoms i - j - k is also represented by a
harmonic potential on the angle �ijk

Va(�ijk) =
1

2
k�ijk(�ijk � �0ijk)

2 (4.44)

As the bond-angle vibration is represented by a harmonic potential the form is the same
as the bond stretching (Fig. 4.5).

4.2 Bonded interactions 53

k

li

j

i

kj

l

k

i

j

l

Figure 4.8: Principle of improper dihedral angles. Out of plane bending for rings (left),
substituents of rings (middle), out of tetrahedral (right). The improper dihedral angle �
is de�ned as the angle between planes (i,j,k) and (j,k,l) in all cases.

The force equations are given by the chain rule:

F i = � dVa(�ijk)

dri

F k = � dVa(�ijk)

drk
F j = � F i � F k

where �ijk = arccos
(rij � rkj)
rijrkj

(4.45)

The numbering i; j; k is in sequence of covalently bonded atoms, with j denoting the middle
atom (see Fig. 4.7).

Cosine based potential

In the GROMOS-96 force �eld a simpli�ed function is used to represent angle vibrations:

Va(�ijk) =
1

2
k�ijk

�
cos(�ijk)� cos(�0ijk)

�2
(4.46)

where
cos(�ijk) =

rij � rkj
rijrkj

(4.47)

The corresponding force can be derived by partial di�erentiation with respect to the atomic
positions. The force constants in this function are related to the force constants in the
harmonic form k�;harm (sec. 4.2.3) by:

k� sin2(�0ijk) = k�;harm (4.48)

4.2.4 Improper dihedrals

Improper Dihedrals are meant to keep planar groups planar (e.g. aromatic rings) or to
prevent molecules from ipping over to their mirror images, see Fig. 4.8.

Vid(�ijkl) = k�(�ijkl � �0)
2 (4.49)

This is also a harmonic potential, it is plotted in Fig. 4.9. Note that, since it is harmonic,
periodicity is not taken into account, so it is best to de�ne improper dihedrals to have a
�0 as far away from �180� as you can manage.

54 Force �elds

–20.0 –10.0 0.0 10.0 20.0
ξ

0.0

10.0

20.0

30.0

V
i (

kJ
 m

ol
e–1

)

Figure 4.9: Improper dihedral potential.

j

k

l

i

0.0 90.0 180.0 270.0 360.0
φ

0.0

20.0

40.0

60.0

80.0

V
d

(k
J

m
ol

e–1
)

Figure 4.10: Principle of proper dihedral angle (left, in trans form) and the dihedral angle
potential (right).

4.2.5 Proper dihedrals

For the normal dihedral interaction there is a choice of either the GROMOS periodic
function or a function based on expansion in powers of cos� (the so-called Ryckaert-
Bellemans potential). This choice has consequences for the inclusion of special interactions
between the �rst and the fourth atom of the dihedral quadruple. With the periodic
GROMOS potential a special 1-4 LJ-interaction must be included; with the Ryckaert-
Bellemans potential the 1-4 interactions must be excluded from the non-bonded list.

Proper dihedrals: periodic type

Proper dihedral angles are de�ned according to the IUPAC/IUB convention, where � is the
angle between the ijk and the jkl planes, with zero corresponding to the cis con�guration
(i and l on the same side).

4.2 Bonded interactions 55

C0 9.28 C2 -13.12 C4 26.24
C1 12.16 C3 -3.06 C5 -31.5

Table 4.1: Constants for Ryckaert-Bellemans potential (kJ mol�1).

0.0 90.0 180.0 270.0 360.0
φ

0.0

10.0

20.0

30.0

40.0

50.0

V
d

(k
J

m
ol

e–1
)

Figure 4.11: Ryckaert-Bellemans dihedral potential.

Vd(�ijkl) = k�(1 + cos(n�� �0)) (4.50)

Proper dihedrals: Ryckaert-Bellemans function

For alkanes, the following proper dihedral potential is often used (see Fig. 4.11)

Vrb(�ijkl) =
5X

n=0

Cn(cos())
n; (4.51)

where = �� 180�.
Note: A conversion from one convention to another can be achieved by multiplying every
coe�cient Cn by (�1)n.
An example of constants for C is given in Table 4.1.

(Note: The use of this potential implies exclusions of LJ-interactions between the �rst
and the last atom of the dihedral, and is de�ned according to the 'polymer convention'
(trans = 0).)

The RB dihedral function can also be used to include the OPLS dihedral potential [44].
The OPLS potential function is given as the �rst four terms of a Fourier series:

Vrb(�ijkl) = V0 +
1

2
(V1(1 + cos()) + V2(1� cos(2)) + V3(1 + cos(3))); (4.52)

with = � (protein convention). Because of the equalities cos(2�) = 2(cos(�))2 � 1 and
cos(3�) = 4(cos(�))3 � 3 cos(�), one can translate the OPLS parameters to Ryckaert-

56 Force �elds

Bellemans parameters as follows:

C0 = V0 + V2 +
1
2
(V1 + V3)

C1 = 1
2
(3V3 � V1)

C2 = �V2
C3 = �2V3
C4 = 0
C5 = 0

(4.53)

with OPLS parameters in protein convention and RB parameters in polymer convention.
Note: Mind the conversion from kcal mol�1 for OPLS and RB parameters in literature
to kJ mol�1 in GROMACS.

4.2.6 Special interactions

Special potentials are used for imposing restraints on the motion of the system, either to
avoid disastrous deviations, or to include knowledge from experimental data. In either
case they are not really part of the force �eld and the reliability of the parameters is not
important. The potential forms, as implemented in GROMACS, are mentioned just for
the sake of completeness.

4.2.7 Position restraints

These are used to restrain particles to �xed reference positions Ri. They can be used
during equilibration in order to avoid too drastic rearrangements of critical parts (e.g. to
restrain motion in a protein that is subjected to large solvent forces when the solvent is
not yet equilibrated). Another application is the restraining of particles in a shell around
a region that is simulated in detail, while the shell is only approximated because it lacks
proper interaction from missing particles outside the shell. Restraining will then maintain
the integrity of the inner part. For spherical shells it is a wise procedure to make the
force constant depend on the radius, increasing from zero at the inner boundary to a large
value at the outer boundary. This application has not been implemented in GROMACS
however.

The following form is used:

Vpr(ri) =
1

2
kprjri �Rij2 (4.54)

The potential is plotted in Fig. 4.12.

The potential form can be rewritten without loss of generality as:

Vpr(ri) =
1

2

h
kxpr(xi �Xi)

2 x̂+ kypr(yi � Yi)
2 ŷ + kzpr(zi � Zi)

2 ẑ
i

(4.55)

Now the forces are:
F x
i

= �kxpr (xi �Xi)

F
y

i
= �kypr (yi � Yi)

F z
i

= �kzpr (zi � Zi)
(4.56)

4.2 Bonded interactions 57

0.00 0.02 0.04 0.06 0.08 0.10
r-R (nm)

0.0

2.0

4.0

6.0

8.0

10.0

V
po

sr
e

(k
J

m
ol

e–1
)

Figure 4.12: Position restraint potential.

Using three di�erent force constants the position restraints can be turned on or o� in each
spatial dimension; this means that atoms can be harmonically restrained to a plane or a
line. Position restraints are applied to a special �xed list of atoms. Such a list is usually
generated by the pdb2gmx program.

4.2.8 Angle restraints

These are used to restrain the angle between two pairs of particles or between one pair of
particles and the Z-axis. The functional form is similar to that of a proper dihedral. For
two pairs of atoms:

Var(ri; rj ; rk; rl) = kar(1� cos(n(� � �0))); where � = arccos

rj � ri
krj � rik

� rl � rk
krl � rkk

!

(4.57)
For one pair of atoms and the Z-axis:

Var(ri; rj) = kar(1� cos(n(� � �0))); where � = arccos

0
B@ rj � ri
krj � rik

�

0
B@ 0

0
1

1
CA
1
CA (4.58)

A multiplicity (n) of 2 is useful when you do not want to distinguish between parallel and
anti-parallel vectors.

4.2.9 Distance restraints

Distance restraints add a penalty to the potential when the distance between speci�ed
pairs of atoms exceeds a threshold value. They are normally used to impose experimental
restraints, as from experiments in nuclear magnetic resonance (NMR), on the motion of
the system. Thus MD can be used for structure re�nement using NMR data. The potential

58 Force �elds

0 0.1 0.2 0.3 0.4 0.5
r (nm)

0

5

10

15

V
di

sr
e

(k
J

m
ol

−
1)

r0 r1 r2

Figure 4.13: Distance Restraint potential.

form is quadratic below a speci�ed lower bound and between two speci�ed upper bounds
and linear beyond the largest bound (see Fig. 4.13).

Vdr(rij) =

8>>>>>><
>>>>>>:

1
2
kdr(rij � r0)

2 for rij < r0

0 for r0 � rij < r1

1
2
kdr(rij � r1)

2 for r1 � rij < r2

1
2
kdr(r2 � r1)(2rij � r2 � r1) for r2 � rij

(4.59)

The forces are

F i =

8>>>>>>><
>>>>>>>:

�kdr(rij � r0)
rij
rij

for rij < r0

0 for r0 � rij < r1

�kdr(rij � r1)
rij
rij

for r1 � rij < r2

�kdr(r2 � r1)
rij
rij

for r2 � rij

(4.60)

Time averaging

Distance restraints based on instantaneous distances can greatly reduce the uctuations in
a molecule. This problem can be overcome by restraining to a time averaged distance [45].
The forces with time averaging are:

F i =

8>>>>>>><
>>>>>>>:

�kdr(�rij � r0)
rij
rij

for �rij < r0

0 for r0 � �rij < r1

�kdr(�rij � r1)
rij
rij

for r1 � �rij < r2

�kdr(r2 � r1)
rij
rij

for r2 � �rij

(4.61)

4.2 Bonded interactions 59

where �rij is given by:

�rij = < r�3
ij

>�1=3 (4.62)

Because of the time averaging we can no longer speak of a distance restraint potential.

This way an atom can satisfy two incompatible distance restraints on average by moving
between two positions. An example would be an amino-acid side-chain which is rotating
around its � dihedral angle, thereby coming close to various other groups. Such a mobile
side chain may give rise to multiple NOEs, which can not be ful�lled in a single structure.

The computation of the time averaged distance in the mdrun program is done in the
following fashion:

r�3ij(0) = rij(0)
�3

r�3ij(t) = r�3ij(t��t) exp
�
��t

�

�
+ rij(t)

�3
h
1� exp

�
��t

�

�i (4.63)

When a pair is within the bounds it can still feel a force, because the time averaged
distance can still be beyond a bound. To prevent the protons from being pulled too close
together a mixed approach can be used. In this approach the penalty is zero when the
instantaneous distance is within the bounds, otherwise the violation is the square root of
the product of the instantaneous violation and the time averaged violation.

Averaging over multiple pairs

Sometimes it is unclear from experimental data which atom pair gives rise to a single
NOE, in other occasions it can be obvious that more than one pair contributes due to
the symmetry of the system, e.g. a methyl group with three protons. For such a group
it is not possible to distinguish between the protons, therefore they should all be taken
into account when calculating the distance between this methyl group and another proton
(or group of protons). Due to the physical nature of magnetic resonance, the intensity of
the NOE signal is proportional to the distance between atoms to the power of -6. Thus,
when combining atom pairs, a �xed list of N restraints may be taken together, where the
apparent \distance" is given by:

rN (t) =

"
NX
n=1

�rn(t)
�6

#�1=6
(4.64)

where we use rij or eqn. 4.62 for the �rn. The rN of the instantaneous and time-averaged
distances can be combined to do a mixed restraining as indicated above. As more pairs of
protons contribute to the same NOE signal, the intensity will increase, and the summed
\distance" will be shorter than any of its components due to the reciprocal summation.

There are two options for distributing the forces over the atom pairs. In the conservative
option the force is de�ned as the derivate of the restraint potential with respect to the
coordinates. This results in a conservative potential when no time averaging is used. The
force distribution over the pairs is proportional to r�6. This means that a close pair feels
a much larger force than a distant pair, which might lead to a 'too rigid' molecule. The
other option is an equal force distribution. In this case each pair feels 1=N of the derivative

60 Force �elds

of the restraint potential with respect to rN . The advantage of this method is that more
conformations might be sampled, but the non-conservative nature of the forces can lead
to local heating of the protons.

It is also possible to use ensemble averaging using multiple (protein) molecules. In this
case the bounds should be lowered as in:

r1 = r1 �M�1=6

r2 = r2 �M�1=6 (4.65)

where M is the number of molecules. The GROMACS preprocessor grompp can do this
automatically when the appropriate option is given. The resulting \distance" is then used
to calculate the scalar force according to:

F i = 0 rN < r1

= � kdr(rN � r1)
rij
rij

r1 � rN < r2

= � kdr(r2 � r1)
rij
rij

rN � r2

(4.66)

where i and j denote the atoms of all the pairs that contribute to the NOE signal.

Using distance restraints

A list of distance restrains based on NOE data can be added to a molecule de�nition in
your topology �le, like in the following example:

[distance_restraints]

; ai aj type index type' low up1 up2 fac

10 16 1 0 1 0.0 0.3 0.4 1.0

10 28 1 1 1 0.0 0.3 0.4 1.0

10 46 1 1 1 0.0 0.3 0.4 1.0

16 22 1 2 1 0.0 0.3 0.4 2.5

16 34 1 3 1 0.0 0.5 0.6 1.0

In this example a number of features can be found. In columns ai and aj you �nd the
atom numbers of the particles to be restrained. The type column should always be 1. As
explained in sec. 4.2.9, multiple distances can contribute to a single NOE signal. In the
topology this can be set using the index column. In our example, the restraints 10-28 and
10-46 both have index 1, therefore they are treated simultaneously. An extra requirement
for treating restraints together, is that the restraints should be on successive lines, without
any other intervening restraint. The type' column will usually be 1, but can be set to 2
to obtain a distance restraint which will never be time and ensemble averaged, this can
be useful for restraining hydrogen bonds. The columns low, up1 and up2 hold the values
of r0, r1 and r2 from eqn. 4.59. In some cases it can be useful to have di�erent force
constants for some restraints, this is controlled by the column fac. The force constant in
the parameter �le is multiplied by the value in the column fac for each restraint.

Some parameters for NMR re�nement can be speci�ed in the grompp.mdp �le:

4.3 Free energy calculations 61

disre: type of distance restraining. The disre variable sets the type of distance re-
straining. no/simple turns the distance restraining o�/on. When multiple proteins
or peptides are used in the simulation ensemble averaging can be turned on by setting
disre = ensemble.

disre weighting: force-weighting in restraints with multiple pairs. The distance
restraint force can be distributed equally over all the pairs involved in the restraint by
setting disre weighting = equal. The option disre weighting = conservative

gives conservative forces when disre tau = 0.

disre mixed: how to calculate the violations. disre mixed = no gives normal time
averaged violations. When disre mixed = yes the square root of the product of
the time averaged and the instantaneous violations is used.

disre fc: force constant kdr for distance restraints. kdr (eqn. 4.59) can be set as
variable disre fc = 1000 for a force constant of 1000 kJ mol�1 nm�2. This value
is multiplied by the value in the fac column in the distance restraint entries in the
topology �le.

disre tau: time constant for restraints. � (eqn. 4.63) can be set as variable
disre tau = 10 for a time constant of 10 ps. Time averaging can be turned o�
by setting disre tau to 0.

nstdisreout: pair distance output frequency. Determines how often the time aver-
aged and instantaneous distances of all atom pairs involved in distance restraints are
written to the energy �le.

4.3 Free energy calculations

Free energy perturbation calculations can be performed in GROMACS using either the
\slow-growth" method, or using umbrella sampling. This requires modi�cation of the
Hamiltonian H, which can be derived using the partition function Z. If we write the
Gibbs free energy G using Z:

Z =

Z Z
exp (��H(p; q))) dpdq (4.67)

G = �kBT lnZ (4.68)

where �=1=(kBT) with kB Boltzmann's constant and T the temperature. p are the gen-
eralized momenta and q are the generalized coordinates. We can split the Hamiltonian in
the potential V and kinetic K parts:

H = V (q) +K(p) (4.69)

K(p) =
NX
i

p
2
i

2mi

(4.70)

62 Force �elds

where N is the number of particles in the system and mi are the masses of the particles.

G = �1=� ln [
R
exp(��V (q))dq

R
exp(��K(p))dp]

or
G = hK(p)i � 1=� ln

R
exp(��V (q))dq

(4.71)

Here are the modi�ed equations used to calculate the free energy

Harmonic potentials

The example given here is for the bond potential which is harmonic in GROMACS. How-
ever, these equations apply to the angle potential and the improper dihedral potential as
well.

Vb =
1

2
((1 � �)kAb + �kBb)(b� (1� �)bA0 � �bB0)

2 (4.72)

@Vb

@�
=

1

2
(kBb � kAb)

h
b� (1� �)bA0 + �bB0)

2 + (bA0 � bB0)(b� (1� �)bA0 � �bB0)
i
(4.73)

Proper dihedrals

For the proper dihedrals, the equations are somewhat more complicated:

Vd = ((1 � �)kAd + �kBd)(1 + cos(n��� ((1 � �)�A0 + ��B0)) (4.74)

@Vd

@�
= (kBd � kAd)

�
1 + cos(n��� [(1� �)�A0 + ��B0])�

((1 � �)kAd + �kBd)(�
A

0 � �B0) sin(n��� [(1 � �)�A0 + ��B0]

�
(4.75)

Note: that the multiplicity n� can not be parameterized because the function should
remain periodic on the interval 0::2�.

Coulomb interaction

The Coulomb interaction between two particles of which the charge varies with � is:

Vc =
f

"rfrij

h
((1� �)qAi + �qBi) � ((1 � �)qAj + �qBi)

i
(4.76)

@Vc

@�
=

f

"rfrij

h
(qBj � qAj)((1 � �)qAi + �qBi) + (qBi � qAi)((1 � �)qAj + �qBj)

i
(4.77)

where f = 1
4�"0

= 138:935 485 (see chapter 2)

4.3 Free energy calculations 63

Coulomb interaction with Reaction Field

The coulomb interaction including a reaction �eld, between two particles of which the
charge varies with � is:

Vc = f

"
1

rij
+ krf r

2
ij � crf

h
((1 � �)qAi + �qBi) � ((1� �)qAj + �qBi)

i
(4.78)

@Vc

@�
= f

"
1

rij
+ krf r

2
ij � crf

#
�

h
(qBj � qAj)((1 � �)qAi + �qBi) + (qBi � qAi)((1 � �)qAj + �qBj)

i
(4.79)

Note that the constants krf and crf are de�ned using the dielectric constant "rf of the
medium (see sec. 4.1.4).

Lennard-Jones interaction

For the Lennard Jones interaction between two particles of which the atom type varies
with � we can write:

VLJ =
((1� �)CA

12 + �CB
12)

r12
ij

� (1� �)CA
6 + �CB

6

r6
ij

(4.80)

@VLJ

@�
=

CB
12 � CA

12

r12
ij

� CB
6 � CA

6

r6
ij

(4.81)

It should be noted that it is also possible to express a pathway from state A to state B
using � and � (see eqn. 4.5). It may seem to make sense physically, to vary the force�eld
parameters � and � rather than the derived parameters C12 and C6. However, the di�erence
between the pathways in parameter space is not large, and the free energy itself does not
depend on the pathway, therefore we use the simple formulation presented above.

4.3.1 Near linear thermodynamic integration

In GROMACS the near linear thermodynamic integration (NLTI) method of Resat and
Mezei has been implemented [46]. This method avoids singularities at the end points of
the TI calculation (� = 0, or 1) for the case of creation or annihilation of particles. State
B should the correspond to no particle. The modi�ed equations for the Lennard-Jones
contribution are:

VLJ =
((1� �)4CA

12 + �4CB
12)

r12
ij

� (1� �)3CA
6 + �3CB

6

r6
ij

(4.82)

@VLJ

@�
= 4

�3CB
12 � (1� �)3CA

12

r12
ij

� 3
�2CB

6 � (1� �)2CA
6

r6
ij

(4.83)

It can be seen immediately that when CB
12 = CB

6 = 0 (no particle) and � = 1, both VLJ
and @VLJ

@�
are zero. (This means they need not be evaluated either). For the coulomb

64 Force �elds

contribution we have:

Vc =
f

"rfrij

h
((1� �)2qAi + �2qBi) ((1� �)2qAj + �2qBi)

i
(4.84)

@Vc

@�
= 2

f

"rfrij
[(�qBj � (1� �)qAj)((1 � �)2qAi + �2qBi) + (4.85)

(�qBi � (1� �)qAi)((1 � �)2qAj + �2qBj)]

Resat and Mezei have tested which exponents to � resp. (1 � �) are best and found that
4 for the repulsion, 3 for the dispersion and 2 for the Coulomb interaction to give good
results [46].

Although this method is an improvement over linear scaling, for small � there still can be
large forces and/or energies, and therefore careful equilibration should be done.

Kinetic Energy

When the mass of a particle changes there is also a contribution of the kinetic energy
to the free energy (note that we can not write the momentum p as mv since that would
result in the sign of @Ek

@�
being incorrect [47]):

Ek =
1

2

p
2

(1� �)mA + �mB
(4.86)

@Ek

@�
= �1

2

p
2(mB �mA)

((1� �)mA + �mB)2
(4.87)

after taking the derivative, we can insert p = mv, such that:

@Ek

@�
= � 1

2
v
2(mB �mA) (4.88)

Constraints

The constraints are formally part of the Hamiltonian, and therefore they give a contribu-
tion to the free energy. In GROMACS this can be calculated using the LINCS algorithm
only. If we have a number of constraint equations gk:

gk = rk � dk (4.89)

where rk is the distance vector between two particles and dk is the constraint distance
between the two particles we can write this using a � dependent distance as

gk = rk �
�
(1� �)dAk + �dBk

�
(4.90)

the contribution C� to the Hamiltonian using Lagrange multipliers �:

C� =
X
k

�kgk (4.91)

@C�

@�
=

X
k

�k

�
dBk � dAk

�
(4.92)

4.4 Methods 65

i+1 i+3

i i+2 i+4

Figure 4.14: Atoms along an alkane chain.

4.4 Methods

4.4.1 Exclusions and 1-4 Interactions.

Atoms within a molecule that are close by in the chain, i.e. atoms that are covalently
bonded, or linked by one respectively two atoms are so-called �rst neighbors, second neigh-

bors and third neighbors, (see Fig. 4.14). Since the interactions of atom i with i+1

and the interaction of atom i with atom i+2 are mainly quantum mechanical, they can not
be modeled by a Lennard-Jones potential. Instead it is assumed that these interactions
are adequately modeled by a harmonic bond term or constraint (i,i+1) and a harmonic
angle term (i,i+2). The �rst and second neighbors (atoms i+1and i+2) are therefore
excluded from the Lennard-Jones interaction list of atom i; atoms i+1 and i+2 are called
exclusions of atom i.

For third neighbors the normal Lennard-Jones repulsion is sometimes still too strong,
which means that when applied to a molecule the molecule would deform or break due to
the internal strain. This is especially the case for Carbon-Carbon interactions in a cis-
conformation (e.g. cis-butane). Therefore for some of these interactions the Lennard-Jones
repulsion has been reduced in the GROMOS force �eld, which is implemented by keeping
a separate list of 1-4 and normal Lennard-Jones parameters. In other force �elds, such as
OPLS [44], the standard Lennard-Jones parameters are reduced by a factor of two, but
in that case also the dispersion (r�6) and the coulomb interaction are scaled. GROMACS
can use either of these methods.

4.4.2 Charge Groups.

In principle the force calculation in MD is an O(N2) problem. Therefore we apply a cut-o�
for non-bonded force (NBF) calculations: only the particles within a certain distance of
each other are interacting. This reduces the cost to O(N) (typically 100N to 200N) of
the NBF. It also introduces an error, which is, in most cases, acceptable, except when
applying the cut-o� implies the creation of charges, in which case you should consider
using the lattice sum methods provided by GROMACS.

Consider a water molecule interacting with another atom. When we would apply the cut-
o� on an atom-atom basis we might include the atom-Oxygen interaction (with a charge
of -0.82) without the compensating charge of the Hydrogens and so induce a large dipole
moment over the system. Therefore we have to keep groups of atoms with total charge 0
together, the so-called charge groups.

66 Force �elds

4.4.3 Treatment of cut-o�s

GROMACS is quite exible in treating cut-o�s, which implies that there are quite a
number of parameters to set. The parameters are set in the input �le for grompp. One
should distinguish two parts of the parameters: �rstly the parameters that describe the
function (Coulomb / VDW, Table 4.2) and secondly the parameters that describe neighbor
searching.

In summary, for both Coulomb and VdW there are a type selector (vdwtype resp.
coulombtype) and two parameters, for a total of six parameters. See sec. 7.3.1 for a
complete description of these parameters.

The neighbor searching (NS) maybe done using a single-range, or a twin-range approach.
Since the former is merely a special case of the latter we will discuss the more general twin-
range. In this case NS is described by two radii rlist and max(rcoulomb,rvdw). Usually
one builds the neighbor list every 10 time steps or every 20 fs (parameter nstlist).
In the neighbor list all interaction pairs that fall within rlist are stored. Further-
more, the interactions between pairs that do not fall within rlist but do fall within
and max(rcoulomb,rvdw) are computed during NS, and the forces and energy are stored
separately, and added to short-range forces at every time step between successive NS.
If rlist = max(rcoulomb,rvdw) no forces are evaluated during neighbor list generation.
The virial is calculated from the sum of the short- and long-range forces. This means that
the virial can be slightly asymmetrical at non-NS steps. In single precision the virial is
almost always asymmetrical, because the o�-diagonal elements are about as large as each
element in the sum. In most cases this is not really a problem, since the uctuations in
de virial can be 2 orders of magnitude larger than the average.

Except for the plain cut-o�, all of the interaction functions in Table 4.2 require that
neighbor searching is done with a larger radius than the rc speci�ed for the functional
form, because of the use of charge groups. The extra radius is typically of the order
of 0.25 nm (roughly the largest distance between two atoms in a charge group plus the
distance a charge group can di�use within neighbor list updates).

Type Parameters

Coulomb Plain cut-o� rc, "r
Reaction �eld rc, "rf
Shift function r1, rc, "r
Switch function r1, rc, "r

VdW Plain cut-o� rc
Shift function r1, rc
Switch function r1, rc

Table 4.2: Parameters for the di�erent functional forms of the non-bonded interactions.

4.5 Dummy atoms. 67

����
����
����

����
����
����

����
����
����
����

���
���
���

���
���
���

| |

3fd

| || |
1-a

a

b

a

1-a

a

����
����
����

����
����
����

����
����
����

����
����
����

2 3fad 3out 4fd

cb

3

����
����
����

����
����
����

θ

d

���
���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

����
����
����

����
����
��������

����
����

����
����
����

���
���
���

���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

���
���
���
���

Figure 4.15: The six di�erent types of dummy atom construction in GROMACS, the
constructing atoms are shown as black circles, the dummy atoms in grey.

4.5 Dummy atoms.

Dummy atoms can be used in GROMACS in a number of ways. We write the position of
the dummy particle rd as a function of the positions of other particles ri: rd = f(r1::rn).
The dummy, which may carry charge, or can be involved in other interactions can now be
used in the force calculation. The force acting on the dummy particle must be redistributed
over the atoms in a consistent way. A good way to do this can be found in ref. [48]. We
can write the potential energy as

V = V (rd; r1::rn) = V �(r1::rn) (4.93)

The force on the particle i is then

F i = �@V
�

@ri
= �@V

@ri
� @rd

@ri

@V

@rd
= F

direct

i + F 0
i (4.94)

the �rst term of which is the normal force. The second term is the force on particle i due
to the dummy particle, which can be written in tensor notation:

F
0
i =

2
6666664

@xd

@xi

@yd

@xi

@zd

@xi
@xd

@yi

@yd

@yi

@zd

@yi
@xd

@zi

@yd

@zi

@zd

@zi

3
7777775
F d (4.95)

where F d is the force on the dummy particle and xd, yd and zd are the coordinates of the
dummy particle. In this way the total force and the total torque are conserved [48].

There are six ways to construct dummies from surrounding atoms inGROMACS, which we
categorize based on the number of constructing atoms. Note that all dummies types men-
tioned can be constructed from types 3fd (normalized, in-plane) and 3out (non-normalized,
out of plane). However, the amount of computation involved increases sharply along this
list, so it is strongly recommended to always use the �rst dummy type that will be su�cient
for a certain purpose. An overview of the dummy constructions is given in Fig. 4.15.

2. As a linear combination of two atoms (Fig. 4.15 2):

rd = ri + arij (4.96)

68 Force �elds

in this case the dummy is on the line through atoms i and j. The force on particles
i and j due to the force on the dummy can be computed as:

F
0
i = (1� a)F d

F
0
j = aF d

(4.97)

3. As a linear combination of three atoms (Fig. 4.15 3):

rd = ri + arij + brik (4.98)

in this case the dummy is in the plane of the other three particles. The force on
particles i, j and k due to the force on the dummy can be computed as:

F
0
i = (1� a� b)F d

F
0
j = aF d

F
0
k = bF d

(4.99)

3fd. In the plane of three atoms, with a �xed distance (Fig. 4.15 3fd):

rd = ri + b
rij + arjk

jrij + arjkj
(4.100)

in this case the dummy is in the plane of the other three particles at a distance of
jbj from i. The force on particles i, j and k due to the force on the dummy can be
computed as:

F
0
i = F d � (F d � p)

F
0
j = (1� a)(F d � p)

F
0
k = a(F d � p)

where

 =
b

jrij + arjkj

p =
rid � F d

rid � rid
rid

(4.101)

3fad. In the plane of three atoms, with a �xed angle and distance (Fig. 4.15 3fad):

rd = ri + d cos �
rij

jrij j
+ d sin �

r?

jr?j
where r? = rjk �

rij � rjk
rij � rij

rij (4.102)

in this case the dummy is in the plane of the other three particles at a distance of
jdj from i at an angle of � with rij. Atom k de�nes the plane and the direction of
the angle. Note that in this case b and � must be speci�ed in stead of a and b (see
also sec. 5.2.2). The force on particles i, j and k due to the force on the dummy can
be computed as (with r? as de�ned in eqn. 4.102):

F
0
i = F d � d cos �

jrij j
F 1 +

d sin �

jr?j

rij � rjk
rij � rij

F 2 + F 3

!

F
0
j =

d cos �

jrij j
F 1 � d sin �

jr?j

F 2 +

rij � rjk
rij � rij

F 2 + F 3

!

F
0
k =

d sin �

jr?j
F 2

where F 1 = F d �
rij � F d

rij � rij
rij , F 2 = F 1 �

r? � F d

r? � r?
r? and F 3 =

rij � F d

rij � rij
r?

(4.103)

4.6 Long Range Electrostatics 69

3out. As a non-linear combination of three atoms, out of plane (Fig. 4.15 3out):

rd = ri + arij + brik + c(rij � rik) (4.104)

this enables the construction of dummies out of the plane of the other atoms. The
force on particles i; j and k due to the force on the dummy can be computed as:

F
0
j =

2
64

a �c zik c yik

c zik a �c xik
�c yik c xik a

3
75F d

F
0
k =

2
64

b c zij �c yij
�c zij b c xij

c yij �c xij b

3
75F d

F
0
i = F d � F 0

j � F 0
k

(4.105)

4fd. From four atoms, with a �xed distance (Fig. 4.15 4fd):

rd = ri + c
rij + arjk + brjl

jrij + arjk + brjlj
(4.106)

in this case the dummy is at a distance of jcj from i. The force on particles i, j, k
and l due to the force on the dummy can be computed as:

F
0
i = F d � (F d � p)

F
0
j = (1� a� b)(F d � p)

F
0
k

= a(F d � p)
F
0
l = b(F d � p)

where

 =
c

jrij + arjk + brjlj

p =
rid � F d

rid � rid
rid

(4.107)

4.6 Long Range Electrostatics

4.6.1 Ewald summation

The total electrostatic energy of N particles and the periodic images are given by

V =
f

2

X
nx

X
ny

X
nz�

NX
i

NX
j

qiqj

rij;n
: (4.108)

(nx; ny; nz) = n is the box index vector, and the star indicates that terms with i = j

should be omitted when (nx; ny; nz) = (0; 0; 0). The distance rij;n is the real distance
between the charges and not the minimum-image. This sum is conditionally convergent,
but very slow.

Ewald summation was �rst introduced as a method to calculate long-range interactions
of the periodic images in crystals [49]. The idea is to convert the single slowly converging

70 Force �elds

sum eqn. 4.108 into two fast converging terms and a constant term:

V = Vdir + Vrec + V0 (4.109)

Vdir =
f

2

NX
i;j

X
nx

X
ny

X
nz�

qiqj
erfc(�rij;n)

rij;n
(4.110)

Vrec =
f

2�V

NX
i;j

qiqj
X
mx

X
my

X
mz�

exp
�
�(�m=�)2 + 2�im � (ri � rj)

�
m2

(4.111)

V0 = � f�p
�

NX
i

q2i ; (4.112)

where � is a parameter that determines the relative weight of the direct and reciprocal
sums and m = (mx;my;mz). In this way we can use a short cut-o� (of the order of
1 nm) in the direct space sum and a short cut-o� in the reciprocal space sum (e.g. 10 wave
vectors in each direction). Unfortunately, the computational cost of the reciprocal part of
the sum increases as N2 (or N3=2 with a slightly better algorithm) and it is therefore not
realistic to use for any large systems.

Using Ewald

Don't use Ewald unless you are absolutely sure this is what you want - for almost all cases
the PME method below will perform much better. If you still want to employ classical
Ewald summation enter this in your .mdp �le, if the side of your box is about 3 nm:

eeltype = Ewald

rvdw = 0.9

rlist = 0.9

rcoulomb = 0.9

fourierspacing = 0.6

ewald_rtol = 1e-5

The fourierspacing parameter times the box dimensions determines the highest mag-
nitude of wave vectors mx;my;mz to use in each direction. With a 3 nm cubic box this
example would use 11 wave vectors (from �5 to 5) in each direction. The ewald rtol

parameter is the relative strength of the electrostatic interaction at the cut-o�. Decreasing
this gives you a more accurate direct sum, but a less accurate reciprocal sum.

4.6.2 PME

Particle-mesh Ewald is a method proposed by Tom Darden [50, 51] to improve the perfor-
mance of the reciprocal sum. Instead of directly summing wave vectors, the charges are
assigned to a grid using cardinal B-spline interpolation. This grid is then Fourier trans-
formed with a 3D FFT algorithm and the reciprocal energy term obtained by a single sum
over the grid in k-space.

4.6 Long Range Electrostatics 71

The potential at the grid points is calculated by inverse transformation, and by using the
interpolation factors we get the forces on each atom.

The PME algorithm scales as N log(N), and is substantially faster than ordinary Ewald
summation on medium to large systems. On very small systems it might still be better to
use Ewald to avoid the overhead in setting up grids and transforms.

Using PME

To use Particle-mesh Ewald summation in GROMACS, specify the following lines in your
.mdp �le:

eeltype = PME

rvdw = 0.9

rlist = 0.9

rcoulomb = 0.9

fourierspacing = 0.12

pme_order = 4

ewald_rtol = 1e-5

In this case the fourierspacing parameter determines the maximum spacing for the FFT
grid and pme order controls the interpolation order. Using 4th order (cubic) interpolation
and this spacing should give electrostatic energies accurate to about 5 � 10�3. Since the
Lennard-Jones energies are not this accurate it might even be possible to increase this
spacing slightly.

Pressure scaling works with PME, but be aware of the fact that anisotropic scaling can
introduce arti�cial ordering in some systems.

4.6.3 PPPM

The Particle-Particle Particle-Mesh methods of Hockney & Eastwood can also be applied
in GROMACS for the treatment of long range electrostatic interactions [50, 52, 53]. With
this algorithm the charges of all particles are spread over a grid of dimensions (nx,ny,nz)
using a weighting function called the triangle-shaped charged distribution:

W (r) = W (x) W (y) W (z)

W (�) =

8>>><
>>>:

3
4
�
�
�

h

�2
j�j � h

2

1
2

�
3
2
� j�j

h

�2
h

2
< j�j < 3h

2

0 3h
2
� j�j

(4.113)

where � (is x, y or z) is the distance to a grid point in the corresponding dimension. Only
the 27 closest grid points need to be taken into account for each charge.

Then, this charge distribution is Fourier transformed using a 3D inverse FFT routine. In
Fourier space a convolution with function Ĝ is performed:

Ĝ(k) =
ĝ(k)

�0k2
(4.114)

72 Force �elds

where ĝ is the Fourier transform of the charge spread function g(r). This yield the long
range potential �̂(k) on the mesh, which can be transformed using a forward FFT routine
into the real space potential. Finally the potential and forces are retrieved using interpo-
lation [53]. It is not easy to calculate the full long-range virial tensor with PPPM, but it
is possible to obtain the trace. This means that the sum of the pressure components is
correct (and therefore the isotropic pressure) but not necessarily the individual pressure
components!

Using PPPM

To use the PPPM algorithm in GROMACS, specify the following lines in your .mdp �le:

eeltype = PPPM

rlist = 1.0

rcoulomb = 0.85

rcoulomb_switch = 0.0

rvdw = 1.0

fourierspacing = 0.075

For details on the switch parameters see the section on modi�ed long-range interactions in
this manual. When using PPPM we recommend to take at most 0.075 nm per gridpoint
(e.g. 20 gridpoints for 1.5 nm). PPPM does not provide the same accuracy as PME but
is faster in most cases. PPPM can not be used with pressure coupling.

4.6.4 Optimizing Fourier transforms

To get the best possible performance you should try to avoid large prime numbers for grid
dimensions. The FFT code used in GROMACS is optimized for grid sizes of the form
2a3b5c7d11e13f , where e+ f is 0 or 1 and the other exponents arbitrary. (See further the
documentation of the FFT algorithms at http://www.fftw.org.)

It is also possible to optimize the transforms for the current problem by performing some
calculations at the start of the run. This is not done per default since it takes a couple of
minutes, but for large runs it will save time. Turn it on by specifying

optimize_fft = yes

in your .mdp �le.

When running in parallel the grid must be communicated several times and thus hurting
scaling performance. With PME you can improve this by increasing grid spacing while
simultaneously increasing the interpolation to e.g. 6th order. Since the interpolation is
entirely local a this will improve the scaling in most cases.

4.7 All-hydrogen force�eld 73

4.7 All-hydrogen force�eld

The GROMACS all-hydrogen force�eld is almost identical to the normal GROMACS
force�eld, since the extra hydrogens have no Lennard-Jones interaction and zero charge.
The only di�erences are in the bond angle and improper dihedral angle terms. This
force�eld is only useful when you need the exact hydrogen positions, for instance for
distance restraints derived from NMR measurements.

4.8 GROMOS-96 notes

4.8.1 The GROMOS-96 force �eld

GROMACS supports the GROMOS-96 force �elds [42]. All parameters for the 43a1, 43a2
(development, improved alkane dihedrals) and 43b1 (vacuum) force �elds are included.
All standard building blocks are included and topologies can be build automatically by
pdb2gmx. The GROMOS-96 force �eld is a further development of the GROMOS-87
force �eld on which the GROMACS force�eld is based. The GROMOS-96 force �eld
has improvements over the GROMACS force �eld for proteins and small molecules. It
is, however, not recommended to be used for long alkanes and lipids. The GROMOS-96
force �eld di�ers from the GROMACS force �eld in a few aspects:

� the force �eld parameters

� the parameters for the bonded interactions are not linked to atom types

� a fourth power bond stretching potential (sec. 4.2.1)

� an angle potential based on the cosine of the angle (sec. 4.2.3)

There are two di�erences in implementation between GROMACS and GROMOS-96 which
can lead to slightly di�erent results when simulating the same system with both packages:

� in GROMOS-96 neighbor searching for solvents is performed on the �rst atom of
the solvent molecule, this is not implemented in GROMACS, but the di�erence with
searching with centers of charge groups is very small

� the virial in GROMOS-96 is molecule based, this is not implemented in GROMACS,
which uses atomic virials

The GROMOS-96 force �eld was parameterized with a Lennard-Jones cut-o� of 1.4 nm, so
be sure to use a Lennard-Jones cut-o� of at least 1.4. A larger cut-o� is possible, because
the Lennard-Jones potential and forces are almost zero beyond 1.4 nm.

4.8.2 GROMOS-96 �les

GROMACS can read and write GROMOS-96 coordinate and trajectory �les. These �les
should have the extension .g96. Such a �le can be a GROMOS-96 initial/�nal con�gura-
tion �le or a coordinate trajectory �le or a combination of both. The �le is �xed format,

74 Force �elds

all oats are written as 15.9 (�les can get huge). GROMACS supports the following data
blocks in the given order:

� Header block:

TITLE (mandatory)

� Frame blocks:

TIMESTEP (optional)

POSITION/POSITIONRED (mandatory)

VELOCITY/VELOCITYRED (optional)

BOX (optional)

See the GROMOS-96 manual [42] for a complete description of the blocks. Note that all
GROMACS programs can read compressed or g-zipped �les.

Chapter 5

Topologies

5.1 Introduction

GROMACS must know on which atoms and combinations of atoms the various contri-
butions to the potential functions (see chapter 4) must act. It must also know what
parameters must be applied to the various functions. All this is described in the topology
�le *.top, which lists the constant attributes of each atom. There are many more atom
types than elements, but only atom types present in biological systems are parameterized
in the force �eld, plus some metals, ions and silicon. The bonded and special interactions
are determined by �xed lists that are included in the topology �le. Certain non-bonded
interactions must be excluded (�rst and second neighbors), as these are already treated in
bonded interactions. In addition there are dynamic attributes of atoms: their positions,
velocities and forces, but these do not strictly belong to the molecular topology.

This Chapter describes the set up of the topology �le, the *.top �le: what the parameters
stand for and how/where to change them if needed.

Note: if you have constructed your own *.top, please send a copy plus description to:
gromacs@chem.rug.nl

so we can extend our topology database and prevent GROMACS users from \inventing
the wheel twice". This also applies for new force �eld parameters that were originally not
included in the GROMACS force �eld.

The �les are grouped per force�eld type (named e.g. gmx for the GROMACS force�eld or
G43a1 for the GROMOS96 force�eld). All �les for one force�eld have names beginning
with ff??? where ??? stands for the force�eld name.

5.2 Particle type

In GROMACS there are 5 types of particles, see Table 5.1. Only regular atoms and
dummy particles are used in GROMACS, nuclei, shells and bond shells are necessary for
polarizable force�elds, which we don't yet have.

76 Topologies

Particle Symbol

atom A
nucleus N
shell S
bond shell B
dummy D

Table 5.1: Particle types in GROMACS

5.2.1 Atom types

GROMACS uses 47 di�erent atom types, as listed below, with their corresponding masses
(in a.m.u.). This is the same listing as in the �le ff???.atp (.atp = atom type parameter
�le), therefore in this �le you can change and/or add an atom type.

O 15.99940 ; carbonyl oxygen (C=O)

OM 15.99940 ; carboxyl oxygen (CO-)

OA 15.99940 ; hydroxyl oxygen (OH)

OW 15.99940 ; water oxygen

N 14.00670 ; peptide nitrogen (N or NH)

NT 14.00670 ; terminal nitrogen (NH2)

NL 14.00670 ; terminal nitrogen (NH3)

NR5 14.00670 ; aromatic N (5-ring,2 bonds)

NR5* 14.00670 ; aromatic N (5-ring,3 bonds)

NP 14.00670 ; porphyrin nitrogen

C 12.01100 ; bare carbon (peptide,C=O,C-N)

CH1 13.01900 ; aliphatic CH-group

CH2 14.02700 ; aliphatic CH2-group

CH3 15.03500 ; aliphatic CH3-group

CR51 13.01900 ; aromatic CH-group (5-ring), united

CR61 13.01900 ; aromatic CH-group (6-ring), united

CB 12.01100 ; bare carbon (5-,6-ring)

H 1.00800 ; hydrogen bonded to nitrogen

HO 1.00800 ; hydroxyl hydrogen

HW 1.00800 ; water hydrogen

HS 1.00800 ; hydrogen bonded to sulfur

S 32.06000 ; sulfur

FE 55.84700 ; iron

ZN 65.37000 ; zinc

NZ 14.00670 ; arg NH (NH2)

NE 14.00670 ; arg NE (NH)

P 30.97380 ; phosphor

OS 15.99940 ; sugar or ester oxygen

CS1 13.01900 ; sugar CH-group

NR6 14.00670 ; aromatic N (6-ring,2 bonds)

NR6* 14.00670 ; aromatic N (6-ring,3 bonds)

CS2 14.02700 ; sugar CH2-group

SI 28.08000 ; silicon

NA 22.98980 ; sodium (1+)

CL 35.45300 ; chlorine (1-)

5.2 Particle type 77

CA 40.08000 ; calcium (2+)

MG 24.30500 ; magnesium (2+)

F 18.99840 ; fluorine (cov. bound)

CP2 14.02700 ; aliphatic CH2-group using Ryckaert-Bell.

CP3 15.03500 ; aliphatic CH3-group using Ryckaert-Bell.

CR5 12.01100 ; aromatic CH-group (5-ring)+H

CR6 12.01100 ; aromatic C- bonded to H (6-ring)+H

HCR 1.00800 ; H attached to aromatic C (5 or 6 ri

OWT3 15.99940 ; TIP3P water oxygen

SD 32.06000 ; DMSO Sulphur

OD 15.99940 ; DMSO Oxygen

CD 15.03500 ; DMSO Carbon

Atomic detail is used except for hydrogen atoms bound to (aliphatic) carbon atoms, which
are treated as united atoms. No special hydrogen-bond term is included.

The last 10 atom types are extra atom types with respect to the GROMOS-87 force
�eld [35]:

� F was taken from ref. [39],

� CP2 and CP3 from ref. [36] and references cited therein,

� CR5, CR6 and HCR from ref. [54]

� OWT3 from ref. [38]

� SD, OD and CD from ref. [40]

Therefore, if you use the GROMACS force �eld as it is, make sure you use the

references in your publications as mentioned above.

Note: GROMACS makes use of the atom types as a name, not as a number (as e.g. in
GROMOS).

5.2.2 Dummy atoms

Some force �elds use dummy atoms (virtual sites that are constructed from real atoms)
on which certain interaction functions are located (e.g. on benzene rings, to reproduce the
correct quadrupole). This is described in sec. 4.5.

To make dummy atoms in your system, you should include a section [dummies?] in
your topology �le, where the `?' stands for the number constructing atoms for the dummy
atom. This will be `2' for type 2, `3' for types 3, 3fd, 3fad and 3out and `4' for type 4fd
(the di�erent types are explained in sec. 4.5).

Parameters for type 2 should look like this:

[dummies2]

; Dummy from funct a

5 1 2 1 0.7439756

78 Topologies

for type 3 like this:

[dummies3]

; Dummy from funct a b

5 1 2 3 1 0.7439756 0.128012

for type 3fd like this:

[dummies3]

; Dummy from funct a d

5 1 2 3 2 0.5 -0.105

for type 3fad like this:

[dummies3]

; Dummy from funct d theta

5 1 2 3 3 0.5 120

for type 3out like this:

[dummies3]

; Dummy from funct a b c

5 1 2 3 4 -0.4 -0.4 6.9281

for type 4fd like this:

[dummies4]

; Dummy from funct a b d

5 1 2 3 4 1 0.33333 0.33333 -0.105

This will result in the construction of a dummy `atom', number 5 (�rst column `Dummy'),
based on the positions of 1 and 2 or 1, 2 and 3 or 1, 2, 3 and 4 (next two, three or
four columns `from') following the rules determined by the function number (next column
`funct') with the parameters speci�ed (last one, two or three columns `a b . .').

Note that any bonds de�ned between dummy atoms and/or normal atoms will be removed
by grompp after the exclusions have been generated. This way, exclusions will not be
a�ected by an atom being de�ned as dummy atom or not, but by the bonding con�guration
of the atom.

5.3 Parameter �les

5.3.1 Atoms

A number of static properties are assigned to the atom types in the GROMACS force
�eld: Type, Mass, Charge, � and � (see Table 5.2 The mass is listed in ff???.atp

(see 5.2.1), whereas the charge is listed in ff???.rtp (.rtp = residue topology parameter
�le, see 5.3.5). This implies that the charges are only de�ned in the building blocks of

5.3 Parameter �les 79

Property Symbol Unit

Type - -
Mass m a.m.u.
Charge q electron
epsilon � kJ/mol
sigma � nm

Table 5.2: Static atom type properties in GROMACS

amino acids or user de�ned building blocks. When generating a topology (*.top) using
the pdb2gmx program the information from these �les is combined.

The following dynamic quantities are associated with an atom

� Position x

� Velocity v

These quantities are listed in the coordinate �le, *.gro (see section File format, 5.4.4).

5.3.2 Bonded parameters

The bonded parameters (i.e. bonds, angles, improper and proper dihedrals) are listed in
ff???bon.itp. The term func can be ignored in GROMACS 2.0, because for bonds and
angles we only use 1 function, so far. For the dihedral, this is explained after this listing.

[bondtypes]

; i j func b0 kb

C O 1 0.12300 502080.

C OM 1 0.12500 418400.

......

[angletypes]

; i j k func th0 cth

HO OA C 1 109.500 397.480

HO OA CH1 1 109.500 397.480

......

[dihedraltypes]

; i l func q0 cq

NR5* NR5 2 0.000 167.360

NR5* NR5* 2 0.000 167.360

......

[dihedraltypes]

; j k func phi0 cp mult

C OA 1 180.000 16.736 2

C N 1 180.000 33.472 2

......

80 Topologies

[dihedraltypes]

;

; Ryckaert-Bellemans Dihedrals

;

; aj ak funct

CP2 CP2 3 9.2789 12.156 -13.120 -3.0597 26.240 -31.495

Also in this �le are the Ryckaert-Bellemans [55] parameters for the CP2-CP2 dihedrals in
alkanes or alkane tails with the following constants:

(kJ/mol)
C0 = 9:28 C2 = �13:12 C4 = 26:24
C1 = 12:16 C3 = � 3:06 C5 = �31:5

(Note: The use of this potential implies exclusions of LJ-interactions between the �rst
and the last atom of the dihedral, and is de�ned according to the 'polymer convention'
(trans = 0)).

So there are three types of dihedrals in the GROMACS force �eld:

� proper dihedral : funct = 1, with mult = multiplicity, so the number of possible
angles

� improper dihedral : funct = 2

� Ryckaert-Bellemans dihedral : funct = 3

In the �le ff???bon.itp you can add bonded parameters. If you want to include pa-
rameters for new atom types, make sure you de�ne this new atom type in ff???.atp as
well.

5.3.3 Non-bonded parameters

The non-bonded parameters consist of the Van der Waals parameters A and C, as listed
in ff???nb.itp, where ptype is the particle type (see Table 5.1):

[atomtypes]

;name mass charge ptype c6 c12

O 15.99940 0.000 A 0.22617E-02 0.74158E-06

OM 15.99940 0.000 A 0.22617E-02 0.74158E-06

.....

[nonbond_params]

; i j func c6 c12

O O 1 0.22617E-02 0.74158E-06

O OA 1 0.22617E-02 0.13807E-05

.....

5.3 Parameter �les 81

[pairtypes]

; i j func cs6 cs12 ; THESE ARE 1-4 INTERACTIONS

O O 1 0.22617E-02 0.74158E-06

O OM 1 0.22617E-02 0.74158E-06

.....

With A and C being de�ned as
Aii = 4�i�

12
i (5.1)

Cii = 4�i�
6
i (5.2)

and computed according to the combination rules :

Aij = (AiiAjj)
1

2 (5.3)

Cij = (CiiCjj)
1

2 (5.4)

It is also possible to use the combination rules based on the Lennard-Jones parameters �
and � with :

�ij =
1

2
(�ii + �jj) (5.5)

�ij =
p
�ii�jj (5.6)

This is useful if you want to use for example the OPLS [44] force �eld. We note however,
that is not yet possible to use this in GROMACS 2.0.

5.3.4 Exclusions and 1-4 interaction

The exclusions for bonded particles are generated by grompp for neighboring atoms up
to a certain number of bonds away, as de�ned in the [moleculetype] section in the
topology �le (see 5.4.1). Particles are considered bonded when they are connected by
bonds ([bonds] type 1 or 2) or constraints ([constraints] type 1). There is a
second constraint type ([constraints] type 2) which �xes the distance, but does not
connect the atoms by a chemical bond.

Extra exclusions within a molecule can be added manually in a [exclusions] section.
Each line should start with one atom index, followed by one or more atom indices. All
non-bonded interactions between the �rst atom and the other atoms will be excluded.

The 1-4 interactions are also listed for the atom types in ff???nb.itp under
[pairtypes]. It is possible to change them there of course, or add new parameters
for di�erent/new atom types.

5.3.5 Residue database

The �le holding the residue database is ff???.rtp. Originally this �le contained building
blocks (amino acids) for proteins, and is the GROMACS interpretation of the rt37c4.dat
�le of GROMOS. So the residue �le contains information (bonds, charge, charge groups
and improper dihedrals) for a frequently used building block. It is better not to change
this �le because it is standard input for pdb2gmx, but if changes are needed make them

82 Topologies

in the *.top �le (see section Topology �le, 5.4.1). However, in the ff???.rtp �le the
user can de�ne a new building block or molecule: see for example 2,2,2-triuoroethanol
(TFE) or n-decane (C10). But when de�ning new molecules (non-protein) it is preferable
to create a *.itp �le. This will be discussed in a next section (section 5.4.2).

The �le ff???.rtp is only used by pdb2gmx. As mentioned before, the only extra infor-
mation this program needs from ff???.rtp is bonds, charges of atoms, charge groups and
improper dihedrals, because the rest is read from the coordinate input �le (in the case of
pdb2gmx, a pdb format �le). Some proteins contain residues that are not standard, but
are listed in the coordinate �le. You have to construct a building block for this \strange"
residue, otherwise you will not obtain a *.top �le. This also holds for molecules in the
coordinate �le like phosphate or sulphate ions. The residue database is constructed in the
following way:

[bondedtypes] ; mandatory

; bonds angles dihedrals impropers

1 1 1 2 ; mandatory

[GLY] ; mandatory

[atoms] ; mandatory

; name type charge chargegroup

N N -0.280 0

H H 0.280 0

CA CH2 0.000 1

C C 0.380 2

O O -0.380 2

[bonds] ; optional

;atom1 atom2 b0 kb

N H

N CA

CA C

C O

-C N

[angles] ; optional

;atom1 atom2 atom3 th0 cth

[dihedrals] ; optional

;atom1 atom2 atom3 atom4 phi0 cp mult

[impropers] ; optional

;atom1 atom2 atom3 atom4 q0 cq

N -C CA H

-C -CA N -O

[ZN]

[atoms]

ZN ZN 2.000 0

5.3 Parameter �les 83

The �le is free format, the only restriction is that there can be at most one entry on a line.
The �rst �eld in the �le is the [bondedtypes] �eld, which is followed by four numbers,
that indicate the interaction type for bonds, angles, dihedrals and improper dihedrals. The
�le contains residue entries, which consist of atoms and optionally bonds, angles dihedrals
and impropers. The charge group codes denote the charge group numbers. Atoms in
the same charge group should always be below each other. When using the hydrogen
database with pdb2gmx for adding missing hydrogens, the atom names de�ned in the .rtp
entry should correspond exactly to the naming convention used in the hydrogen database,
see 5.3.6. The atom names in the bonded interaction can be preceded by a minus or a plus,
indicating that the atom is in the preceding or following residue respectively. Parameters
can be added to bonds, angles, dihedrals and impropers, these parameters override the
standard parameters in the .itp �les. This should only be used in special cases. Instead of
parameters, a string can be added for each bonded interaction, this is used in GROMOS96
.rtp �les. These strings are copied to the topology �le and can be replaced by force �eld
parameters by the C-preprocessor in grompp using #define statements.

pdb2gmx automatically generates all angles, this means that the [angles] �eld is only
useful for overriding .itp parameters.

pdb2gmx automatically generates one proper dihedral for every rotatable bond, preferably
on heavy atoms. When the [dihedrals] �eld is used, no other dihedrals will be gen-
erated for the bonds corresponding to the speci�ed dihedrals. It is possible to put more
than one dihedral on a rotatable bond.

5.3.6 Hydrogen database

The hydrogen database is stored in ff???.hdb. It contains information for the pdb2gmx

program on how to connect hydrogen atoms to existing atoms. Hydrogen atoms are named
after the atom they are connected to: the �rst letter of the atom name is replaced by an
'H'. If more then one hydrogen atom is connected to the same atom, a number will be
added to the end of the hydrogen atom name. For example, adding two hydrogen atoms to
ND2 (in asparagine), the hydrogen atoms will be named HD21 and HD22. This is important
since atom naming in the .rtp �le (see 5.3.5) must be the same. The format of the
hydrogen database is as follows:

; res # additions

H add type i j k

ALA 1

1 1 N -C CA

ARG 4

1 2 N CA C

1 1 NE CD CZ

2 3 NH1 CZ NE

2 3 NH2 CZ NE

On the �rst line we see the residue name (ALA or ARG) and the number of additions.
After that follows one line for each addition, on which we see:

� The number of H atoms added

84 Topologies

� The way of adding H atoms, can be any of

1 one planar hydrogen, e.g. rings or peptide bond

one hydrogen atom (n) is generated, lying in the plane of atoms (i,j,k) on the
line bisecting angle (j-i-k) at a distance of 0.1 nm from atom i, such that the
angles (n-i-j) and (n-i-k) are > 90 degrees

2 one single hydrogen, e.g. hydroxyl

one hydrogen atom (n) is generated at a distance of 0.1 nm from atom i, such
that angle (n-i-j)=109.5 degrees and dihedral (n-i-j-k)=trans

3 two planar hydrogens, e.g. -NH2

two hydrogens (n1,n2) are generated at a distance of 0.1 nm from atom i, such
that angle (n1-i-j)=(n2-i-j)=120 degrees and dihedral (n1-i-j-k)=cis and (n2-i-
j-k)=trans, such that names are according to IUPAC standards [56]

4 two or three tetrahedral hydrogens, e.g. -CH3

three (n1,n2,n3) or two (n1,n2) hydrogens are generated at a distance of 0.1 nm
from atom i, such that angle (n1-i-j)=(n2-i-j)=(n3-i-j)=109.5, dihedral (n1-i-j-
k)=trans, (n2-i-j-k)=trans+120 and (n3-i-j-k)=trans+240 degrees

5 one tetrahedral hydrogen, e.g. C3CH

one hydrogen atom (n1) is generated at a distance of 0.1 nm from atom i
in tetrahedral conformation such that angle (n1-i-j)=(n1-i-k)=(n1-i-l)=109.5
degrees

6 two tetrahedral hydrogens, e.g. C-CH2-C

two hydrogen atoms (n1,n2) are generated at a distance of 0.1 nm from atom
i in tetrahedral conformation on the plane bissecting angle i-j-k with angle
(n1-i-n2)=(n1-i-j)=(n1-i-k)=109.5

7 two water hydrogens

two hydrogens are generated around atom i according to SPC [57] water geom-
etry. The symmetry axis will alternate between three coordinate axes in both
directions

� Three or four control atoms (i,j,k,l), where the �rst always is the atom to which the
H atoms are connected. The other two or three depend on the code selected.

5.3.7 Termini database

The termini databases are stored in ff???-n.tdb and ff???-c.tdb for the N- and C-
terminus respectively. They contain information for the pdb2gmx program on how to
connect new atoms to existing ones, which atoms should be removed or changed and
which bonded interactions should be added. The format of the is as follows (this is an
example from the ffgmx-c.tdb):

[None]

[COO-]

[replace]

C C C 12.011 0.27

5.3 Parameter �les 85

[add]

2 8 C CA N

O OM 15.9994 -0.635

[delete]

O

[impropers]

C O1 O2 CA

The �le is organized in blocks, each with a header specifying the name of the block.
These blocks correspond to di�erent types of termini that can be added to a molecule.
In this example [None] is the �rst block, corresponding to a terminus that leaves the
molecule as it is; [COO-] is the second terminus type, corresponding to changing the
terminal carbon atom into a deprotonated carboxyl group. Block names cannot be any of
the following: replace, add, delete, bonds, angles, dihedrals, impropers; this would
interfere with the parameters of the block, and would probably also be very confusing to
human readers.

Per block the following options are present:

� [replace]

replace an existing atom by one with a di�erent atom type, atom name, charge
and/or mass. For each atom to be replaced on line should be entered with the
following �elds:

{ name of the atom to be replaced

{ new atom name

{ new atom type

{ new mass

{ new charge

� [add]

add new atoms. For each (group of) added atom(s), a two-line entry is necessary. The
�rst line contains the same �elds as an entry in the hydrogen database (number of
atoms, type of addition, control atoms, see 5.3.5), but the possible types of addition
are extended by two more, speci�cally for C-terminal additions:

8 two carboxyl oxygens, -COO�

two oxygens (n1,n2) are generated according to rule 3, at a distance of 0.136
nm from atom i and an angle (n1-i-j)=(n2-i-j)=117 degrees

9 carboxyl oxygens and hydrogen, -COOH

two oxygens (n1,n2) are generated according to rule 3, at distances of 0.123
nm and 0.125 nm from atom i for n1 and n2 resp. and angles (n1-i-j)=121 and
(n2-i-j)=115 degrees. One hydrogen (n') is generated around n2 according to
rule 2, where n-i-j and n-i-j-k should be read as n'-n2-i and n'-n2-i-j resp.

After this line another line follows which speci�es the details of the added atom(s),
in the same way as for replacing atoms, i.e.:

86 Topologies

{ atom name

{ atom type

{ mass

{ charge

Like in the hydrogen database (see 5.3.5), when more then one atom is connected to
an existing one, a number will be appended to the end of the atom name.

� [delete]

delete existing atoms. One atom name per line.

� [bonds], [angles], [dihedrals] and [impropers]

add additional bonded parameters. The format is identical to that used in the
ff???.rtp, see 5.3.5.

5.4 File formats

5.4.1 Topology �le

The topology �le is built following the GROMACS speci�cation for a molecular topology.
A *.top �le can be generated by pdb2gmx.

Description of the �le layout:

� semicolon (;) and newline surround comments

� on a line ending with n the newline character is ignored.

� directives are surrounded by [and]

� the topology consists of three levels:

{ the parameter level (see Table 5.3)

{ the molecule level, which should contain one or more molecule de�nitions (see
Table 5.4)

{ the system level: [system], [molecules]

� items should be separated by spaces or tabs, not commas

� atoms in molecules should be numbered consecutively starting at 1

� the �le is parsed once only which implies that no forward references can be treated:
items must be de�ned before they can be used

� exclusions can be generated from the bonds or overridden manually

� the bonded force types can be generated from the atom types or overridden per bond

� descriptive comment lines and empty lines are highly recommended

5.4 File formats 87

� using one of the [atoms], [bonds], [pairs], [angles], etc. without
having used [moleculetype] before is meaningless and generates a warning.

� using [molecules] without having used [system] before is meaningless and
generates a warning.

� after [system] the only allowed directive is [molecules]

� using an unknown string in [] causes all the data until the next directive to be
ignored, and generates a warning.

Here is an example of a topology �le, urea.top:

;

; Example topology file

;

; The force field files to be included

#include "ffgmx.itp"

[moleculetype]

; name nrexcl

Urea 3

[atoms]

; nr type resnr residu atom cgnr charge

1 C 1 UREA C1 1 0.683

2 O 1 UREA O2 1 -0.683

3 NT 1 UREA N3 2 -0.622

4 H 1 UREA H4 2 0.346

5 H 1 UREA H5 2 0.276

6 NT 1 UREA N6 3 -0.622

7 H 1 UREA H7 3 0.346

8 H 1 UREA H8 3 0.276

[bonds]

; ai aj funct b0 kb

3 4 1 1.000000e-01 3.744680e+05

3 5 1 1.000000e-01 3.744680e+05

6 7 1 1.000000e-01 3.744680e+05

6 8 1 1.000000e-01 3.744680e+05

1 2 1 1.230000e-01 5.020800e+05

1 3 1 1.330000e-01 3.765600e+05

1 6 1 1.330000e-01 3.765600e+05

[pairs]

; ai aj funct c6 c12

2 4 1 0.000000e+00 0.000000e+00

2 5 1 0.000000e+00 0.000000e+00

2 7 1 0.000000e+00 0.000000e+00

2 8 1 0.000000e+00 0.000000e+00

3 7 1 0.000000e+00 0.000000e+00

3 8 1 0.000000e+00 0.000000e+00

88 Topologies

4 6 1 0.000000e+00 0.000000e+00

5 6 1 0.000000e+00 0.000000e+00

[angles]

; ai aj ak funct th0 cth

1 3 4 1 1.200000e+02 2.928800e+02

1 3 5 1 1.200000e+02 2.928800e+02

4 3 5 1 1.200000e+02 3.347200e+02

1 6 7 1 1.200000e+02 2.928800e+02

1 6 8 1 1.200000e+02 2.928800e+02

7 6 8 1 1.200000e+02 3.347200e+02

2 1 3 1 1.215000e+02 5.020800e+02

2 1 6 1 1.215000e+02 5.020800e+02

3 1 6 1 1.170000e+02 5.020800e+02

[dihedrals]

; ai aj ak al funct phi cp mult

2 1 3 4 1 1.800000e+02 3.347200e+01 2.000000e+00

6 1 3 4 1 1.800000e+02 3.347200e+01 2.000000e+00

2 1 3 5 1 1.800000e+02 3.347200e+01 2.000000e+00

6 1 3 5 1 1.800000e+02 3.347200e+01 2.000000e+00

2 1 6 7 1 1.800000e+02 3.347200e+01 2.000000e+00

3 1 6 7 1 1.800000e+02 3.347200e+01 2.000000e+00

2 1 6 8 1 1.800000e+02 3.347200e+01 2.000000e+00

3 1 6 8 1 1.800000e+02 3.347200e+01 2.000000e+00

[dihedrals]

; ai aj ak al funct q0 cq

3 4 5 1 2 0.000000e+00 1.673600e+02

6 7 8 1 2 0.000000e+00 1.673600e+02

1 3 6 2 2 0.000000e+00 1.673600e+02

[position_restraints]

; This you wouldn't use normally for a molecule like Urea,

; but it's here for didactical purposes

; ai funct fc

1 1 1000 1000 1000 ; Restrain to a point

2 1 1000 0 1000 ; Restrain to a line (Y-axis)

3 1 1000 0 0 ; Restrain to a plane (Y-Z-plane)

; Include SPC water topology

#include "spc.itp"

[system]

Urea in Water

[molecules]

;molecule name nr.

Urea 1

SOL 1000

Here follows the explanatory text.

5.4 File formats 89

[defaults] :

� non-bond type = 1 (Lennard-Jones) or 2 (Buckingham)
note: when using the Buckingham potential no combination rule can be used, and
a full interaction matrix must be provided under the nonbond params section.

� combination rule = 1 (based on Van der Waals) or 2 (based on � and �)

� generate pairs = no (get 1-4 interactions from pair list) or yes (generate 1-4 interac-
tions from normal Lennard-Jones parameters using FudgeLJ and FudgeQQ)

� FudgeLJ = factor to change Lennard-Jones 1-4 interactions

� FudgeQQ = factor to change electrostatic 1-4 interactions

note: FudgeLJ and FudgeQQ only need to be speci�ed when generate pairs is set to 'yes'.

#include "ffgmx.itp" : this includes the bonded and non-bonded GROMACS param-
eters, the gmx in ffgmx will be replaced by the name of the force�eld you are actually
using.

[moleculetype] : de�nes the name of your molecule in this *.top and nrexcl = 3
stands for excluding non-bonded interactions between atoms that are no further than 3
bonds away.

[atoms] : de�nes the molecule, where nr and type are �xed, the rest is user de�ned. So
atom can be named as you like, cgnr made larger or smaller (if possible, the total charge
of a charge group should be zero), and charges can be changed here too.

[bonds] : no comment.

[pairs] : 1-4 interactions

[angles] : no comment

[dihedrals] : in this case there are 9 proper dihedrals (funct = 1), 3 improper (funct =
2) and no Ryckaert-Bellemans type dihedrals. If you want to include Ryckaert-Bellemans
type dihedrals in a topology, do the following (in case of e.g. decane):

[dihedrals]

; ai aj ak al funct c0 c1 c2

1 2 3 4 3

2 3 4 5 3

and do not forget to erase the 1-4 interaction in [pairs]!!

[position restraints] : harmonically restrain particles to reference positions
(sec. 4.2.7). The reference positions are read from a separate coordinate �le by grompp.

#include "spc.itp" : includes a topology �le that was already constructed (see next
section, molecule.itp).

[system] : title of your system, user de�ned

90 Topologies

Parameters

interaction directive # f. parameters pert

type at. tp

mandatory defaults non-bonded function type;

combination rule;

generate pairs (no/yes);

fudge LJ (); fudge QQ ()

mandatory atomtypes atom type; m (u); q (e); particle type;

c6 (kJ mol
�1nm6); c12 (kJ mol

�1nm12)

bondtypes (see Table 5.4, directive bonds)

constrainttypes (see Table 5.4, directive constraints)

pairtypes (see Table 5.4, directive pairs)

angletypes (see Table 5.4, directive angles)

proper dih. dihedraltypes 2(b) 1 �max (deg); fc (kJ mol
�1); mult X(a)

improper dih. dihedraltypes 2(c) 2 �0 (deg); fc (kJ mol
�1rad�2) X

RB dihedral dihedraltypes 2(b) 3 C0, C1, C2, C3, C4, C5 (kJ mol
�1)

LJ nonbond params 2 1 c6 (kJ mol
�1nm6); c12 (kJ mol

�1nm12)

Buckingham nonbond params 2 2 a (kJ mol�1); b (nm�1);

c6 (kJ mol
�1nm6)

'# at' is the number of atom types

'f. tp' is function type

'pert' indicates if this interaction type can be modi�ed during free energy perturbation
(a) multiplicities can not be modi�ed
(b) the outer two atoms in the dihedral
(c) the inner two atoms in the dihedral

For free energy perturbation, the parameters for topology 'B' (lambda = 1) should be added

on the same line, after the normal parameters, in the same order as the normal parameters.

Table 5.3: The topology (*.top) �le, part 1.

5.4 File formats 91

Molecule de�nition

interaction directive # f. parameters pert

type at. tp

mandatory moleculetype molecule name;

exclude neighbors # bonds away

for non-bonded interactions

mandatory atoms 1 atom type; residue number;

residue name; atom name;

charge group number; q (e); m (u) X(b)

bond bonds 2 1 b0 (nm); fc (kJ mol
�1nm�2) X

G96 bond bonds 2 2 b0 (nm); fc (kJ mol
�1nm�4) X

morse bonds 2 3 b0 (nm); D (kJ mol�1); � (nm�1) X

LJ 1-4 pairs 2 1 c6 (kJ mol
�1nm6);

c12 (kJ mol�1nm12) X

angle angles 3 1 �0 (deg); fc (kJ mol
�1rad�2) X

G96 angle angles 3 2 �0 (deg); fc (kJ mol
�1) X

proper dih. dihedrals 4 1 �max (deg); fc (kJ mol�1); mult X(a)

improper dih. dihedrals 4 2 �0 (deg); fc (kJ mol
�1rad�2) X

RB dihedral dihedrals 4 3 C0, C1, C2, C3, C4, C5 (kJ mol
�1)

constraint constraints 2 1 b0 (nm) X

constr. n.c. constraints 2 2 b0 (nm) X

settle settles 3 1 doh, dhh (nm)

dummy2 dummies2 2 1 a ()

dummy3 dummies3 3 1 a, b ()

dummy3fd dummies3 3 2 a (); d (nm)

dummy3fad dummies3 3 3 d (nm); � (deg)

dummy3out dummies3 3 4 a, b (); c (nm�1)

dummy4fd dummies4 4 1 a, b (); d (nm);

position res. position restraints 1 1 kx, ky, kz (kJ mol
�1nm�2)

distance res. distance restraints 2 1 type; index; low, up1, up2 (nm);

factor ()

angle res. angle restraints 4 1 �0 (deg); fc (kJ mol
�1); mult X(a)

angle res. z angle restraints z 2 1 �0 (deg); fc (kJ mol
�1); mult X(a)

exclusions exclusions 1 one or more atom indices

System

mandatory system system name

mandatory molecules molecule name; number of molecules

'# at' is the number of atom indices

'f. tp' is function type

'pert' indicates if this interaction type can be modi�ed during free energy perturbation
(a) multiplicities can not be modi�ed
(b) only the atom type, charge and mass can be modi�ed

For free energy perturbation, the parameters for topology 'B' (lambda = 1) should be added

on the same line, after the normal parameters, in the same order as the normal parameters.

Table 5.4: The topology (*.top) �le, part 2.

92 Topologies

[molecules] : this de�nes the total number of (sub)molecules in your system that are
de�ned in this *.top. In this example �le it stands for 1 urea molecules dissolved in 1000
water molecules. The molecule type SOL is de�ned in the spc.itp �le.

5.4.2 Molecule.itp �le

If you construct a topology �le you will use more often (like a water molecule, spc.itp)
it is better to make a molecule.itp �le, which only lists the information of the molecule:

[moleculetype]

; name nrexcl

Urea 3

[atoms]

; nr type resnr residu atom cgnr charge

1 C 1 UREA C1 1 0.683

.................

.................

8 H 1 UREA H8 3 0.276

[bonds]

; ai aj funct c0 c1

3 4 1 1.000000e-01 3.744680e+05

.................

.................

1 6 1 1.330000e-01 3.765600e+05

[pairs]

; ai aj funct c0 c1

2 4 1 0.000000e+00 0.000000e+00

.................

.................

5 6 1 0.000000e+00 0.000000e+00

[angles]

; ai aj ak funct c0 c1

1 3 4 1 1.200000e+02 2.928800e+02

.................

.................

3 1 6 1 1.170000e+02 5.020800e+02

[dihedrals]

; ai aj ak al funct c0 c1 c2

2 1 3 4 1 1.800000e+02 3.347200e+01 2.000000e+00

.................

.................

3 1 6 8 1 1.800000e+02 3.347200e+01 2.000000e+00

[dihedrals]

; ai aj ak al funct c0 c1

3 4 5 1 2 0.000000e+00 1.673600e+02

5.4 File formats 93

6 7 8 1 2 0.000000e+00 1.673600e+02

1 3 6 2 2 0.000000e+00 1.673600e+02

This results in a very short *.top �le as described in the previous section, but this time
you only need to include �les:

; The force field files to be included

#include "ffgmx.itp"

; Include urea topology

#include "urea.itp"

; Include SPC water topology

#include "spc.itp"

[system]

Urea in Water

[molecules]

;molecule name number

Urea 1

SOL 1000

5.4.3 Ifdef option

A very powerful feature in GROMACS is the use of #ifdef statements in your *.top

�le. By making use of this statement, di�erent parameters for one molecule can be used
in the same *.top �le. An example is given for TFE, where there is an option to use
di�erent charges on the atoms: charges derived by De Loof et al. [58] or by Van Buuren
and Berendsen [39]. In fact you can use all the options of the C-Preprocessor, cpp, because
this is used to scan the �le. The way to make use of the #ifdef option is as follows:

� in grompp.mdp (the GROMACS preprocessor input parameters) use the option
define = -DDeloof or define = -DVanBuuren

� put the #ifdef statements in your *.top, as shown below:

[atoms]

; nr type resnr residu atom cgnr charge mass

#ifdef DeLoof

; Use Charges from DeLoof

1 C 1 TFE C 1 0.74

2 F 1 TFE F 1 -0.25

3 F 1 TFE F 1 -0.25

4 F 1 TFE F 1 -0.25

5 CH2 1 TFE CH2 1 0.25

6 OA 1 TFE OA 1 -0.65

7 HO 1 TFE HO 1 0.41

#else

; Use Charges from VanBuuren

94 Topologies

1 C 1 TFE C 1 0.59

2 F 1 TFE F 1 -0.2

3 F 1 TFE F 1 -0.2

4 F 1 TFE F 1 -0.2

5 CH2 1 TFE CH2 1 0.26

6 OA 1 TFE OA 1 -0.55

7 HO 1 TFE HO 1 0.3

#endif

#ifdef BONDS

[bonds]

; ai aj funct c0 c1

6 7 1 1.000000e-01 3.138000e+05

1 2 1 1.360000e-01 4.184000e+05

1 3 1 1.360000e-01 4.184000e+05

1 4 1 1.360000e-01 4.184000e+05

1 5 1 1.530000e-01 3.347000e+05

5 6 1 1.430000e-01 3.347000e+05

#else

[constraints]

; ai aj funct dist

6 7 1 1.000000e-01

1 2 1 1.360000e-01

1 3 1 1.360000e-01

1 4 1 1.360000e-01

1 5 1 1.530000e-01

5 6 1 1.430000e-01

#endif

Also in this example is the option #ifdef BONDS, which results in constraints instead of
normal bonds.

5.4.4 Coordinate �le

Files with the .gro �le extension contain a molecular structure in GROMOS87 format.
A sample piece is included below:

MD of 2 waters, reformat step, PA aug-91

6

1WATER OW1 1 0.126 1.624 1.679 0.1227 -0.0580 0.0434

1WATER HW2 2 0.190 1.661 1.747 0.8085 0.3191 -0.7791

1WATER HW3 3 0.177 1.568 1.613 -0.9045 -2.6469 1.3180

2WATER OW1 4 1.275 0.053 0.622 0.2519 0.3140 -0.1734

2WATER HW2 5 1.337 0.002 0.680 -1.0641 -1.1349 0.0257

2WATER HW3 6 1.326 0.120 0.568 1.9427 -0.8216 -0.0244

1.82060 1.82060 1.82060

This format is �xed, i.e. all columns are in a �xed position. If you want to read such a �le
in your own program without using the GROMACS libraries you can use the following
formats:

5.4 File formats 95

C-format: "%5i%5s%5s%5i%8.3f%8.3f%8.3f%8.4f%8.4f%8.4f"

Or to be more precise, with title etc., it looks like this:

"%s\n", Title

"%5d\n", natoms

for (i=0; (i<natoms); i++) {

"%5d%5s%5s%5d%8.3f%8.3f%8.3f%8.4f%8.4f%8.4f\n",

residuenr,residuename,atomname,atomnr,x,y,z,vx,vy,vz

}

"%10.5f%10.5f%10.5f%10.5f%10.5f%10.5f%10.5f%10.5f%10.5f\n",

box[X][X],box[Y][Y],box[Z][Z],

box[X][Y],box[X][Z],box[Y][X],box[Y][Z],box[Z][X],box[Z][Y]

Fortran format: (i5,2a5,i5,3f8.3,3f8.4)

So confin.gro is the GROMACS coordinate �le and is almost the same as the GROMOS-
87 �le (for GROMOS users: when used with ntx=7). The only di�erence is the box for
which GROMACS uses a tensor, not a vector.

96 Topologies

Chapter 6

Special Topics

6.1 Calculating potentials of mean force: the pull code

There are a number of options to calculate potentials of mean force and related topics. In
the current version of GROMACS this is implemented through some extra �les for mdrun.

6.1.1 Overview

Four di�erent types of calculation are supported:

1. Constraint forces The distance between the centers of mass of two groups of atoms
can be constrained and the constraint force monitored. The distance can be in 1, 2,
or 3 dimensions. This method uses the SHAKE algorithm but only needs 1 iteration
to be exact if only two groups are constrained.

2. Umbrella sampling A simple umbrella sampling with an harmonic umbrella po-
tential that acts on the center of mass of a group of atoms.

3. AFM pulling A spring is connected to an atom and slowly retracted. This has the
e�ect of pulling an atom or group of atoms away from its initial location. The rate
constant and spring constant for the spring can be varied to study e.g. the unbinding
of a protein and a ligand (see �gure 6.1).

4. Starting structures This option creates a number of starting structures for po-
tential of mean force calculations, moving 1 or 2 groups of atoms at a speci�ed rate
towards or away from a reference group, writing out a coordinate �le at speci�ed
intervals. Note that the groups given in the index �le are translated a speci�ed dis-
tance each step, but in addition also undergo the normal MD, subject to de�nitions
of e.g. temperature coupling groups, freeze groups and the like.

In the calculations, there has to be 1 reference group and 1 or 2 other groups of atoms.
For constrained runs, the distance between the reference group and the other groups is
kept constant at the distance they have in the input coordinate �le (.tpr) �le.

98 Special Topics

V

zz link spring

rup

Figure 6.1: Schematic picture of pulling a lipid out of a lipid bilayer with AFM pulling.
Vrup is the velocity at which the spring is retracted, Zlink is the atom to which the spring
is attached and Zspring is the location of the spring.

6.1.2 Usage

Input �les

The mdrun programs needs 4 additional �les: 2 input �les and 2 output �les.

-pi pull.ppa

If this �le is speci�ed the pull code will be used. It contains the parameters that
control what type of calculation is done. A full explanation of all the options is given
below.

-pn index.ndx

This �le de�nes the di�erent groups for use in all pull calculations. The groups are
referred to by name, so the index �le can contain other groups that are not used as
well.

-po pullout.ppa

A formatted copy of the input parameter �le with the parameters that were actually
used in the run.

-pdo pull.pdo

The data �le with the calculated forces (AFM pulling, constraint force) or positions
(umbrella sampling).

De�nition of groups

The way the reference groups and di�erent reference types work is summarized in �gure 6.2.
There are four di�erent possibilities for the reference group.

6.1 Calculating potentials of mean force: the pull code 99

c

cd

cd

Figure 6.2: Overview of the di�erent reference group possibilities, applied to interface
systems. C is the reference group. The circles represent the center of mass of 2 groups
plus the reference group, and dc is the reference distance.

com

The center of mass of the group given under reference group, calculated each step
from the current coordinates.

com t0

The center of mass of the group given under reference group, calculated each step
from the current coordinates, but corrected for atoms that have crossed the box. If
the reference group consists of all the water molecules in the system, and a single
water molecule moves across the box and enters from the other side, the c.o.m. will
show a slight jump. This is simply due to the periodic boundary conditions, and
shows that the center of mass in a simulation in periodic boundary conditions is ill
de�ned if the group used to calculate it is e.g. a slab of liquid. If the 'real' positions
are used instead of the coordinates that have been reset to be inside the box, the
center of mass of the whole system is conserved.

dynamic

In a phospholipid bilayer system it may be of interest to calculate the pmf of a lipid
as function of its distance from the whole bilayer. The whole bilayer can be taken
as reference group in that case, but it might also be of interest to de�ne the reaction
coordinate for the pmf more locally. dynamic does not use all the atoms of the
reference group, but instead only those within a cylinder with radius r below the
main group. This only works for distances de�ned in 1 dimension, and the cylinder is
oriented with its long axis along this 1 dimension. A second cylinder can be de�ned
with rc, with a linear switch function that weighs the contribution of atoms between
r and rc with distance. This smoothes the e�ects of atoms moving in and out of
the cylinder (which causes jumps in the constraint forces).

dynamic t0

100 Special Topics

The same as dynamic, but using the coordinates corrected for boxcrossings like in
com t0. Note that strictly speaking this is not correct if the reference group is not
the whole system, including the groups de�ned with group 1 and group 2.

To further smooth rapidly uctuating distances between the reference group and the other
groups, the average distance can be constrained instead of the instanteneous distance. This
is de�ned by setting reflag to the number of steps to average over. However, using this
option is not strictly correct for calculating potentials of mean force from the average
constraint force.

The parameter �le

verbose = no

If this is set to yes, a large amount of detailed information is sent to stderr, which
is only useful for diagnostic purposes. The .pdo �le also becomes more detailed,
which is not necessary for normal use.

runtype = constraint

Options are start, afm, constraint, umbrella. This selects the type of cal-
culation: making starting structures, AFM pulling, constraint force calculation or
umbrella sampling.

group 1 = MB21 1

group 2 = MB21 2

The groups with the atoms to act on. The �rst group is mandatory, the second
optional.

reference group = OCTA

The reference group. Distances are calculated betweeen group 1 (and group 2 if
speci�ed) and this group. If e.g. the constraint force between two ions is needed,
you would speci�y group 1 as a group with 1 ion, and reference group as the other
ion.

reftype = com

The type of reference group. Options are com, com t0, dynamic, dynamic t0 as
explained above.

reflag = 1

The position of the reference group can be taken as average over a number of steps,
speci�ed by reflag (see above).

direction = 0.0 0.0 1.0

Distances are calculated weighted by x, y, z as speci�ed in direction. Setting them
all to 1.0 calculates the distance between two groups, setting the �rst two to 0.0 and
the third to 1.0 calculates the distance in the z direction only.

6.1 Calculating potentials of mean force: the pull code 101

reverse = to reference

This option selects the direction in which the groups are moved with respect to the
reference group for AFM pulling and starting structure calculations. The options
are to reference, from reference.

r = 0

If dynamic reference groups are selected (dynamic, dynamic t0), r is the radius of
the cylinder used to de�ne which atoms are part of the reference group (see above).

rc = 0

With dynamic reference groups, the cylinder can be smoothly switched so that atoms
that fall between r and rc are weighted linearly from 1 to 0 going from r to rc. As
reasonable initial values we suggest r = 1.0 and rc = 1.5 but this will depend
strongly on the exact system of interest.

update = 1

The frequency with which the dynamic reference groups are recalculated. Usually
there is no reason to use anything other than 1.

pullrate = 0.00005

The pull rate in nm/timestep for AFM pulling.

forceconstant = 100

The force constant for the spring in AFM pulling, in kJ mol�1 nm�2.

width = 0

Width of the umbrella sampling potential in kJ mol�1 nm�2.

r0 group2 = 0.0 0.0 3.300

The initial location of the groups with respect to the reference group. Only coor-
dinates selected with direction are taken into account. The groups are moved to
these initial positions before the actual creation of a series of starting structures
commences.

tolerance = 0.001

The accuracy with which the actual position of the groups must match the calculated
ideal positions for a starting structure (in nm).

translation rate = 0.00001

The rate of translation in all directions (nm/step). As mentioned above, normal MD
force calculations and position updates also act on the groups.

transstep = 0.2

The interval in nm at which structures are written out.

6.1.3 Output

The output �le is a text �le with forces or positions, one per line. If there are two groups
they alternate in the output �le. Currently there is no supported analysis program to read
this �le, but it is simple to parse.

102 Special Topics

6.1.4 Limitations

Apart from obvious limitations that are simply not implemented (e.g. a better umbrella
sampling and analysis scheme), there is one important limitation: constraint forces can
only be calculated between molecules or groups of molecules. If a group contains part of a
molecule of which the bondlengths are constrained, SHAKE or LINCS and the constraint
force calculation here will interfere with each other, making the results unreliable. If a
constraint force is wanted between two atoms, this can be done through the free energy
perturbation code. In summary:

� pull code: between molecules or groups of molecules.

� free energy perturbation code: between single atoms.

� not possible currently: between groups of atoms that are part of a larger molecule
for which the bonds are constrained with SHAKE or LINCS.

6.1.5 Implementation

The code for the options described above can be found in the �les pull.c, pullinit.c,

pullio.c, pullutil.c and the header�les pull.h and pulls.h. This last �le de�nes a
few datatypes, pull.h explains the main functions.

6.1.6 Future development

There are several additional features that would be useful, including more advanced um-
brella sampling, an analysis tool to analyse the output of the pull code, incorporation
of the input parameters and index �le into the grompp program input �les, extension to
more groups, more exible de�nition of a reaction coordinate, extension to groups that are
parts of molecules that use SHAKE or LINCS, and a combination of the starting structure
calculation with constraints for faster convergence of starting structures.

6.2 Removing fastest degrees of freedom

The maximum time step in MD simulations is limited by the smallest oscillation pe-
riod that can be found in the simulated system. Bond-stretching vibrations are in their
quantum-mechanical ground state and are therefore better represented by a constraint
than by a harmonic potential.

For the remaining degrees of freedom, the shortest oscillation period as measured from a
simulation is 13 fs for bond-angle vibrations involving hydrogen atoms. Taking as a guide-
line that with a Verlet (leap-frog) integration scheme a minimum of 5 numerical integration
steps should be performed per period of a harmonic oscillation in order to integrate it with
reasonable accuracy, the maximum time step will be about 3 fs. Disregarding these very
fast oscillations of period 13 fs the next shortest periods are around 20 fs, which will allow
a maximum time step of about 4 fs

6.2 Removing fastest degrees of freedom 103

Removing the bond-angle degrees of freedom from hydrogen atoms can best be done by
de�ning them as dummy atoms in stead of normal atoms. Where a normal atoms is
connected to the molecule with bonds, angles and dihedrals, a dummy atom's position
is calculated from the position of three nearby heavy atoms in a prede�ned manner (see
also sec. 4.5). For the hydrogens in water and in hydroxyl, sulfhydryl or amine groups,
no degrees of freedom can be removed, because rotational freedom should be preserved.
The only other option available to slow down these motions, is to increase the mass
of the hydrogen atoms at the expense of the mass of the connected heavy atom. This
will increase the moment of inertia of the water molecules and the hydroxyl, sulfhydryl
or amine groups, without a�ecting the equilibrium properties of the system and without
a�ecting the dynamical properties too much. These constructions will shortly be described
in subsec. 6.2.1 and have previously been described in full detail [59].

Using both dummy atoms and modi�ed masses, the next bottleneck is likely to be formed
by the improper dihedrals (which are used to preserve planarity or chirality of molecular
groups) and the peptide dihedrals. The peptide dihedral cannot be changed without a�ect-
ing the physical behavior of the protein. The improper dihedrals that preserve planarity,
mostly deal with aromatic residues. Bonds, angles and dihedrals in these residues can also
be replaced with somewhat elaborate dummy atom constructions, as will be described in
sub sec. 6.2.2.

All modi�cations described in this section can be performed using the GROMACS topol-
ogy building tool pdb2gmx. Separate options exist to increase hydrogen masses, dummify
all hydrogen atoms or also dummify all aromatic residues. Note that when all hydrogen
atoms are dummi�ed, also those inside the aromatic residues will be dummi�ed, i.e. hy-
drogens in the aromatic residues are treated di�erently depending on the treatment of the
aromatic residues.

Parameters for the dummy constructions for the hydrogen atoms are inferred from the
force�eld parameters (vis. bond lengths and angles) directly by grompp while processing
the topology �le. The constructions for the aromatic residues are based on the bond
lengths and angles for the geometry as described in the force�elds, but these parameters
are hard-coded into pdb2gmx due to the complex nature of the construction needed for a
whole aromatic group.

6.2.1 Hydrogen bond-angle vibrations

Construction of Dummy Atoms

The goal of de�ning hydrogen atoms as dummy atoms is to remove all high-frequency de-
grees of freedom from them. In some cases not all degrees of freedom of a hydrogen atom
should be removed, e.g. in the case of hydroxyl or amine groups the rotational freedom
of the hydrogen atom(s) should be preserved. Care should be taken that no unwanted
correlations are introduced by the construction of dummy atoms, e.g. bond-angle vibra-
tion between the constructing atoms could translate into hydrogen bond-length vibration.
Additionally, since dummy atoms are by de�nition mass-less, in order to preserve total
system mass, the mass of each hydrogen atom that is treated as dummy atom should be
added to the bonded heavy atom.

104 Special Topics

D

d

α

d

BA C

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

����
����
����

����
����
����

���
���
���

���
���
���

��
��
��
��

���
���
���

���
���
���

����
����
����

����
����
����

Figure 6.3: The di�erent types of dummy atom constructions used for hydrogen atoms.
The atoms used in the construction of the dummy atom(s) are depicted as black circles,
dummy atoms as grey ones. Hydrogens are smaller than heavy atoms. A: �xed bond
angle, note that here the hydrogen is not a dummy atom; B: in the plane of three atoms,
with �xed distance; C: in the plane of three atoms, with �xed angle and distance; D:
construction for amine groups (-NH2 or -NH

+
3), see text for details.

Taking into account these considerations, the hydrogen atoms in a protein naturally fall
into several categories, each requiring a di�erent approach, see also Fig. 6.3:

� hydroxyl (-OH) or sulfhydryl (-SH) hydrogen: The only internal degree of freedom in
a hydroxyl group that can be constrained is the bending of the C-O-H angle. This
angle is �xed by de�ning an additional bond of appropriate length, see Fig. 6.3A.
This removes the high frequency angle bending, but leaves the dihedral rotational
freedom. The same goes for a sulfhydryl group. Note that in these cases the hydrogen
is not treated as a dummy atom.

� single amine or amide (-NH-) and aromatic hydrogens (-CH-): The position of these
hydrogens cannot be constructed from a linear combination of bond vectors, because
of the exibility of the angle between the heavy atoms. In stead, the hydrogen atom
is positioned at a �xed distance from the bonded heavy atom on a line going through
the bonded heavy atom and a point on the line through both second bonded atoms,
see Fig. 6.3B.

� planar amine (-NH2) hydrogens: The method used for the single amide hydrogen is
not well suited for planar amine groups, because no suitable two heavy atoms can
be found to de�ne the direction of the hydrogen atoms. In stead, the hydrogen is
constructed at a �xed distance from the nitrogen atom, with a �xed angle to the
carbon atom, in the plane de�ned by one of the other heavy atoms, see Fig. 6.3C.

� amine group (umbrella -NH2 or -NH
+
3) hydrogens: Amine hydrogens with rotational

freedom cannot be constructed as dummy atoms from the heavy atoms they are
connected to, since this would result in loss of the rotational freedom of the amine
group. To preserve the rotational freedom while removing the hydrogen bond-angle
degrees of freedom, two \dummy masses" are constructed with the same total mass,
moment of inertia (for rotation around the C-N bond) and center of mass as the amine
group. These dummy masses have no interaction with any other atom, except for
the fact that they are connected to the carbon and to each other, resulting in a
rigid triangle. From these three particles the positions of the nitrogen and hydrogen

6.2 Removing fastest degrees of freedom 105

ε

η

ζδ

ε

γ

ε

δ ε

δ

ε
δ

γ

ζ
ε

η

εδ

γ

Phe Tyr HisTrp

ζ

ε

ζ

εδ

γ

δδ

����
����
����
����

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���

���
���
���

����
����
����
����

��
��
��
��

���
���
���
���

���
���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����

����
����
����

Figure 6.4: The di�erent types of dummy atom constructions used for aromatic residues.
The atoms used in the construction of the dummy atom(s) are depicted as black circles,
dummy atoms as grey ones. Hydrogens are smaller than heavy atoms. A: phenylalanine;
B: tyrosine (note that the hydroxyl hydrogen is not a dummy atom); C: tryptophane; D:
histidine.

atoms are constructed as linear combinations of the two carbon-mass vectors and
their outer product, resulting in an amine group with rotational freedom intact, but
without other internal degrees of freedom. See Fig. 6.3D.

6.2.2 Out-of-plane vibrations in aromatic groups

The planar arrangements in the side chains of the aromatic residues lends itself perfectly
for a dummy-atom construction, giving a perfectly planar group without the inherently in-
stable constraints that are necessary to keep normal atoms in a plane. The basic approach
is to de�ne three atoms or dummy masses with constraints between them to �x the geom-
etry and create the rest of the atoms as simple dummy type 3 atoms (see section sec. 4.5)
from these three. Each of the aromatic residues require a di�erent approach:

� Phenylalanine: C , C�1 and C�2 are kept as normal atoms, but with each a mass of
one third the total mass of the phenyl group. See Fig. 6.3A.

� Tyrosine: The ring is treated identical to the phenylalanine ring. Additionally,
constraints are de�ned between C�1 and C�2 and O�. The original improper dihedral
angles will keep both triangles (one for the ring and one with O�) in a plane, but due
to the larger moments of inertia this construction will be much more stable. The
bond angle in the hydroxyl group will be constrained by a constraint between C
and H�, note that the hydrogen is not treated as a dummy atom. See Fig. 6.3B.

� Tryptophane: C� is kept as a normal atom and two dummy masses are created at
the center of mass of each of the rings, each with a mass equal to the total mass
of the respective ring (C�2 and C�2 are each counted half for each ring). This keeps
the overall center of mass and the moment of inertia almost (but not quite) equal to
what it was. See Fig. 6.3C.

� Histidine: C , C�1 and N�2 are kept as normal atoms, but with masses redistributed
such that the center of mass of the ring is preserved. See Fig. 6.3D.

106 Special Topics

6.3 Running with PVM.

If you have a parallel computer, it may be equipped with PVM (Parallel Virtual Ma-
chines, see also chapter 3), otherwise, have your system administrator install it. The
package is public domain software and supports virtually every commercially available
computer, such as an SGI Power Challenge, Paragon Intel i860 box, Thinking machines
CM-5, CRAY-J9036287, Convex MPP, etc., or on a cluster of workstations.

The GROMACS software can work with the PVM library, but only on computers with
the same processor, it is not possible to mix e.g. Sparc and MIPS chips. We will assume
here that the software is installed with PVM. A sample PVM session is described below.

First, set the PVM environment variables in your .cshrc �le.

setenv PVM_ROOT=/home/pvm

setenv PVM_ARG=SGI

You also need access to a number of workstations, let's call them vince, butch and mia,
we'll assume your username is wallace. Make a .rhosts �le in your home directory:

vince wallace

butch wallace

mia wallace

Now log o� and on again to e�ectuate all this (assuming you are sitting on vince). Start
the pvm front-end:

% pvm

pvm>add butch mia

2 successful

HOST DTID

vince 80000

mia 100000

pvm>quit

pvmd still running.

%

Now you can use GROMACS with PVM. You just have to add the option -N 3 to your
grompp and mdrun command lines. Since the remotely running mdruns will start from
your home directory, give a full path for the log �le, e.g.:
-g /data/pulp/wallace/speptide/md.

PVM jobs can be stopped within the PVM command line utility with kill process. All
PVM's can be terminated with the halt command.

6.4 Running with MPI 107

6.4 Running with MPI

If you have installed the MPI (Message Passing Interface) on your computer(s) you can
compile GROMACS with this communication library. Some hardware vendors provide
optimized MPI libraries for shared-memory architectures, or whatever is fast on their par-
ticular platform. Compiling the GROMACS distribution with MPI support is straightfor-
ward. Edit your Makefile.$CPU in the gmxhome/src/makef directory, and set the USE MPI

variable to yes and recompile all sources. If all is well, you can now run with MPI.

There usually is a program called mpirun with which you can �re up the parallel processes.
A typical command line looks like:
% mpirun -p goofus,doofus,fred 10 mdrun -s topol -v -N 30

this runs on each of the machines goofus,doofus,fred with 10 processes on each1.

If you have a single machine with multiple processors you don't have to use the mpirun

command, but you can do with an extra option to mdrun:
% mdrun -np 8 -s topol -v -N 8

In this example MPI reads the �rst option from the command line. Since mdrun also wants
to know the number of processes you have to type it twice. Please note that no automatic
nicing is done, which means that only the �rst process will be niced by default. Check
your local manuals (or online manual) for exact details of your MPI implementation.

The online manual for MPI on the web can be found at:
http:://www.mcs.anl.gov/mpi/index.html

1This example taken from Silicon Graphics manual

108 Special Topics

Chapter 7

Run parameters and Programs

7.1 Online and html manuals

All the information in this chapter can also be found on:
$GMXHOME/html/online.html

and online on the GROMACS web site:
http://md.chem.rug.nl/~gmx/online2.0.html

The program manual pages as referenced by $GMXHOME/html/online.html should be
generated by executing make html in $GMXHOME/src (this only works if you have csh).
The program manual pages can also be found in Appendix E. Furthermore standard
UNIX manuals can be generated using make nroff. In the GMXRC �le an extension of the
$MANPATH has been set that allows one to use the manual (e.g. man grompp).

7.2 File types

Table 7.1 lists the �le types used by GROMACS along with a short description. A more
elaborate description of the �le types can be found in your GROMACS directory at:

$GMXHOME/html/online/files.html

and online at:
http://md.chem.rug.nl/~gmx/online2.0/files.html

GROMACS �les written in xdr format can be read on any architecture with a GROMACS
version (1.6 or newer) compiled with an XDR library.

7.3 Run Parameters

7.3.1 General

Default values are given in parentheses. The �rst option is always the default option.
Units are given in square brackets The di�erence between a dash and an underscore is
ignored.

110 Run parameters and Programs

Default Default
Name Ext. Type Option Description
atomtp.atp Asc Atomtype �le used by pdb2gmx
eiwit.brk Asc -f Brookhaven data bank �le
nnnice.dat Asc Generic data �le
user.dlg Asc Dialog Box data for ngmx
sam.edi Asc ED sampling input
sam.edo Asc ED sampling output

ener.edr Generic energy: edr ene

ener.edr xdr Energy �le in portable xdr format
ener.ene Bin Energy �le

eiwit.ent Asc -f Entry in the protein date bank
plot.eps Asc Encapsulated PostScript (tm) �le

gtraj.g87 Asc Gromos-87 ASCII trajectory format
conf.g96 Asc -c Coordinate �le in Gromos-96 format
conf.gro -c Generic structure: gro g96 pdb tpr tpb tpa

out.gro -o Generic structure: gro g96 pdb

conf.gro Asc -c Coordinate �le in Gromos-87 format
polar.hdb Asc Hydrogen data base
topinc.itp Asc Include �le for topology

run.log Asc -l Log �le
ps.m2p Asc Input �le for mat2ps
ss.map Asc File that maps matrix data to colors
ss.mat Asc Matrix Data �le

grompp.mdp Asc -f grompp input �le with MD parameters
hessian.mtx Bin -m Hessian matrix
index.ndx Asc -n Index �le
hello.out Asc -o Generic output �le
eiwit.pdb Asc -f Protein data bank �le
pull.pdo Asc Pull data output
pull.ppa Asc Pull parameters

residue.rtp Asc Residue Type �le used by pdb2gmx
doc.tex Asc -o LaTeX �le

topol.top Asc -p Topology �le
topol.tpa Asc -s Ascii run input �le
topol.tpb Bin -s Binary run input �le
topol.tpr -s Generic run input: tpr tpb tpa

topol.tpr -s Structure+mass(db): tpr tpb tpa gro g96 pdb

topol.tpr xdr -s Portable xdr run input �le
traj.trj Bin Trajectory �le (cpu speci�c)
traj.trr Full precision trajectory: trr trj

traj.trr xdr Trajectory in portable xdr format
root.xpm Asc X PixMap compatible matrix �le
traj.xtc -f Generic trajectory: xtc trr trj gro g96 pdb

traj.xtc xdr Compressed trajectory (portable xdr format)
graph.xvg Asc -o xvgr/xmgr �le

Table 7.1: The GROMACS �le types.

7.3 Run Parameters 111

A sample .mdp �le is available. This should be appropriate to start a normal simulation.
Edit it to suit your speci�c needs and desires.

7.3.2 Preprocessing

title:

this is redundant, so you can type anything you want

cpp: (/lib/cpp)

your preprocessor

include:

directories to include in your topology. format:
-I/home/john/my lib -I../more lib

de�ne: ()

de�nes to pass to the preprocessor, default is no de�nes. You can use any de�nes to
control options in your customized topology �les. Options that are already available
by default are:
-DFLEX SPC

Will tell grompp to include FLEX SPC in stead of SPC into your topology,
this is necessary to make conjugate gradient work and will allow steepest

descent to minimize further.

-DPOSRE

Will tell grompp to include posre.itp into your topology, used for position re-
straints.

7.3.3 Run control

integrator:

md

A leap-frog algorithm for integrating Newton's equations.

steep

A steepest descent algorithm for energy minimization. The maximum step size
is emstep [nm], the tolerance is emtol [kJ mol�1 nm�1].

cg

A conjugate gradient algorithm for energy minimization, the tolerance is emtol

[kJ mol�1 nm�1]. CG is more e�cient when a steepest descent step is done
every once in a while, this is determined by nstcgsteep.

ld

An Euler integrator for position Langevin dynamics, the velocity is the force
divided by a friction coe�cient (ld fric [amu ps�1]) plus random thermal noise
(ld temp [K]). The random generator is initialized with ld seed

112 Run parameters and Programs

tinit: (0) [ps]

starting time for your run (only makes sense for integrators md and ld)

dt: (0.001) [ps]

time step for integration (only makes sense for integrators md and ld)

nsteps: (1)

maximum number of steps to integrate

nstcomm: (1) [steps]

if positive: frequency for center of mass motion removal if negative: frequency for
center of mass motion and rotational motion removal (should only be used for vac-
uum simulations)

7.3.4 Langevin dynamics

ld temp: (300) [K]

temperature in ld run (controls thermal noise level)

ld fric: (0) [amu ps�1]

ld friction coe�cient

ld seed: (1993) [integer]

used to initialize random generator for thermal noise when ld seed is set to -1, the
seed is calculated as (time() + getpid()) % 65536

7.3.5 Energy minimization

emtol: (100.0) [kJ mol�1 nm�1]

the minimization is converged when the maximum force is smaller than this value

emstep: (0.01) [nm]

initial step-size

nstcgsteep: (1000) [steps]

frequency of performing 1 steepest descent step while doing conjugate gradient en-
ergy minimization.

7.3.6 Output control

nstxout: (100) [steps]

frequency to write coordinates to output trajectory �le, the last coordinates are
always written

nstvout: (100) [steps]

frequency to write velocities to output trajectory, the last velocities are always writ-
ten

7.3 Run Parameters 113

nstfout: (0) [steps]

frequency to write forces to output trajectory.

nstlog: (100) [steps]

frequency to write energies to log �le, the last energies are always written

nstenergy: (100) [steps]

frequency to write energies to energy �le, the last energies are always written

nstxtcout: (0) [steps]

frequency to write coordinates to xtc trajectory

xtc precision: (1000) [real]

precision to write to xtc trajectory

xtc grps:

group(s) to write to xtc trajectory, default the whole system is written (if nstxtcout
is larger than zero)

energygrps:

group(s) to write to energy �le

7.3.7 Neighbor searching

nstlist: (10) [steps]

frequency to update neighborlist

ns type:

grid

Make a grid in the box and only check atoms in neighboring grid cells when
constructing a new neighbor list every nstlist steps. The number of grid cells
per Coulomb cut-o� length is set with deltagrid, this number should be 2 for
optimal performance. In large systems grid search is much faster than simple
search.

simple

Check every atom in the box when constructing a new neighbor list every
nstlist steps.

deltagrid: (2)

number of grid cells per Coulomb cut-o� length

box:

rectangular

Selects a rectangular box shape.

none

Selects no box, for use in vacuum simulations.

114 Run parameters and Programs

rlist: (1) [nm]

cut-o� distance for making the neighbor list

7.3.8 Electrostatics and VdW

coulombtype:

Cut-o�

Twin range cut-o�'s with neighborlist cut-o� rlist and Coulomb cut-o�
rcoulomb, where rlist < rvdw < rcoulomb. The dielectric constant is set
with epsilon r.

Ewald

Classical Ewald sum electrostatics. Use e.g. rlist=0.9, rvdw=0.9,
rcoulomb=0.9. The highest magnitude of wave vectors used in reciprocal space
is controlled by fourierspacing. The relative accuracy of direct/reciprocal
space is controlled by ewald rtol. NOTE: Ewald scales as O(N3=2)) and is
thus extremely slow for large systems. It is included mainly for reference - in
most cases PME will perform much better.

PME

Fast Particle-Mesh Ewald electrostatics. Direct space is similar to the Ewald
sum, while the reciprocal part is performed with FFTs. Grid dimensions are
controlled with fourierspacing and the interpolation order with pme order.
With a grid spacing of 0.1 nm and cubic interpolation the electrostatic forces
have an accuracy of 2-3e-4. Since the error from the vdw-cuto� is larger than
this you might try 0.15 nm. When running in parallel the interpolation paral-
lelizes better than the FFT, so try decreasing grid dimensions while increasing
interpolation.

PPPM

Particle-Particle Particle-Mesh algorithm for long range electrostatic interac-
tions. Use for example rlist=1.0, rcoulomb switch=0.0, rcoulomb=0.85,
rvdw switch=1.0 and rvdw=1.0. The grid dimensions are controlled by
fourierspacing. Reasonable grid spacing for PPPM is 0.05-0.1 nm. See Shift
for the details of the particle-particle potential. NOTE: the pressure in incorrect
when using PPPM.

Reaction-Field

Reaction �eld with Coulomb cut-o� rcoulomb, where rcoulomb > rvdw >

rlist. The dielectric constant beyond the cut-o� is epsilon r. The dielectric
constant can be set to in�nity by setting epsilon r=0.

Generalized-Reaction-Field

Generalized reaction �eld with Coulomb cut-o� rcoulomb, where rcoulomb

> rvdw > rlist. The dielectric constant beyond the cut-o� is epsilon r. The
ionic strength is computed from the number of charged (i.e. with non zero
charge) charge groups. The temperature for the GRF potential is set with
ref t [K].

7.3 Run Parameters 115

Shift

The Coulomb potential is decreased over the whole range and the forces decay
smoothly to zero between rcoulomb switch and rcoulomb. The neighbor
search cut-o� rlist should be 0.1 to 0.3 nm larger than rcoulomb to accommo-
date for the size of charge groups and di�usion between neighbor list updates.

User

Specify rshort and rlong to the same value, mdrun will now expect to �nd a
�le ctab.xvg with user-de�ned functions. This �les should contain 5 columns:
the x value, and the function value with its 1st to 3rd derivative. The x should
run from 0 [nm] to rlist+0.5 [nm], with a spacing of 0.002 [nm] when you
run in single precision, or 0.0005 [nm] when you run in double precision. The
function value at x=0 is not important.

rcoulomb switch: (0) [nm]

where to start switching the Coulomb potential

rcoulomb: (1) [nm]

distance for the Coulomb cut-o�

epsilon r: (1)

dielectric constant

vdwtype:

Cut-o�

Twin range cut-o�'s with neighbor list cut-o� rlist and VdW cut-o� rvdw,
where rvdw > rlist.

Shift

The LJ (not Buckingham) potential is decreased over the whole range and the
forces decay smoothly to zero between rvdw switch and rvdw. The neighbor
search cut-o� rlist should be 0.1 to 0.3 nm larger than rvdw to accommodate
for the size of charge groups and di�usion between neighbor list updates.

User

mdrun will now expect to �nd two �les with user-de�ned functions: rtab.xvg
for Repulsion, dtab.xvg for Dispersion. These �les should contain 5 columns:
the x value, and the function value with its 1st to 3rd derivative. The x should
run from 0 [nm] to rvdw+0.5 [nm], with a spacing of 0.002 [nm] when you
run in single precision, or 0.0005 [nm] when you run in double precision. The
function value at x=0 is not important. When you want to use LJ correction,
make sure that rvdw corresponds to the cut-o� in the user-de�ned function.

rvdw switch: (0) [nm]

where to start switching the LJ potential

rvdw: (1) [nm]

distance for the LJ or Buckingham cut-o�

bDispCorr:

116 Run parameters and Programs

no

don't apply any correction

yes

apply long range dispersion corrections for Energy and Pressure

fourierspacing: (0.12) [nm]

The maximum grid spacing for the FFT grid when using PPPM or PME. For ordi-
nary Ewald the spacing times the box dimensions determines the highest magnitude
to use in each direction. In all cases each direction can be overridden by entering a
non-zero value for fourier n*.

fourier nx (0); fourier ny (0); fourier nz: (0)

Highest magnitude of wave vectors in reciprocal space when using Ewald. Grid size
when using PPPM or PME. These values override fourierspacing per direction.
The best choice is powers of 2, 3, 5 and 7. Avoid large primes.

pme order (4)

Interpolation order for PME. 4 equals cubic interpolation. You might try 6/8/10
when running in parallel and simultaneously decrease grid dimension.

ewald rtol (1e-5)

The relative strength of the Ewald-shifted direct potential at the cuto� is given by
ewald rtol. Decreasing this will give a more accurate direct sum, but then you need
more wave vectors for the reciprocal sum.

optimize �t:

no

Don't calculate the optimal FFT plan for the grid at startup.

yes

Calculate the optimal FFT plan for the grid at startup. This saves a few percent
for long simulations, but takes a couple of minutes at start.

7.3.9 Temperature coupling

tcoupl:

no

No temperature coupling.

yes

Temperature coupling with a Berendsen-thermostat to a bath with tempera-
ture ref t [K], with time constant tau t [ps]. Several groups can be coupled
separately, these are speci�ed in the tc grps �eld separated by spaces.

tc grps:

groups to couple separately to temperature bath

7.3 Run Parameters 117

tau t: [ps]
time constant for coupling (one for each group in tc grps)

ref t: [K]
reference temperature for coupling (one for each group in tc grps)

7.3.10 Pressure coupling

pcoupl:

no

No pressure coupling. This means a �xed box size.

isotropic

Pressure coupling with time constant tau p [ps]. The compressibility and ref-
erence pressure are set with compressibility [bar�1] and ref p [bar], one value
is needed.

semiisotropic

Pressure coupling which is isotropic in the x and y direction, but di�erent in
the z direction. This can be useful for membrane simulations. 2 values are
needed for x/y and z directions respectively.

anisotropic

Idem, but 3 values are needed for x, y and z directions respectively. Beware
that isotropic scaling can lead to extreme deformation of the simulation box.

surface-tension

Surface tension coupling for surfaces parallel to the xy-plane. Uses normal
pressure coupling for the z-direction, while the surface tension is coupled to the
x/y dimensions of the box. The �rst ref p value is the reference surface tension
times the number of surfaces [bar nm], the second value is the reference z-
pressure [bar]. The two compressibility [bar�1] values are the compressibility
in the x/y and z direction respectively. The value for the z-compressibility
should be reasonably accurate since it inuences the converge of the surface-
tension, it can also be set to zero to have a box with constant height.

triclinic

Not supported yet.

tau p: (1) [ps]

time constant for coupling

compressibility: [bar�1]
compressibility (NOTE: this is now really in bar�1) For water at 1 atm and 300 K
the compressibility is 4.5e-5 [bar�1].

ref p: [bar]
reference pressure for coupling

118 Run parameters and Programs

7.3.11 Simulated annealing

annealing:

no

No simulated annealing.

yes

Simulated annealing to 0 [K] at time zero temp time (ps). Reference temper-
ature for the Berendsen-thermostat is ref t x (1 - time / zero temp time),
time constant is tau t [ps]. Note that the reference temperature will not go
below 0 [K], i.e. after zero temp time (if it is positive) the reference temper-
ature will be 0 [K]. Negative zero temp time results in heating, which will go
on inde�nitely.

zero temp time: (0) [ps]

time at which temperature will be zero (can be negative). Temperature during the
run can be seen as a straight line going through T=ref t [K] at t=0 [ps], and T=0 [K]
at t=zero temp time [ps]. Look in our FAQ for a schematic graph of temperature
versus time.

7.3.12 Velocity generation

gen vel:

no

Do not generate velocities at startup. The velocities are set to zero when there
are no velocities in the input structure �le.

yes

Generate velocities according to a Maxwell distribution at temperature
gen temp [K], with random seed gen seed. This is only meaningful with
integrator md.

gen temp: (300) [K]

temperature for Maxwell distribution

gen seed: (173529) [integer]

used to initialize random generator for random velocities

7.3.13 Solvent optimization

solvent optimization:

<empty>

Do not use water speci�c non-bonded optimizations

7.3 Run Parameters 119

<solvent molecule name>

Use water speci�c non-bonded optimizations. This string should match the
solvent molecule name in your topology. Check your run time to see if it is
faster.

7.3.14 Bonds

constraints:

none

No constraints, i.e. bonds are represented by a harmonic or a Morse potential
(depending on the setting of morse) and angles by a harmonic potential.

hbonds

Only constrain the bonds with H-atoms.

all-bonds

Constrain all bonds.

h-angles

Constrain all bonds and constrain the angles that involve H-atoms by adding
bond-constraints.

all-angles

Constrain all bonds and constrain all angles by adding bond-constraints.

constraint alg:

lincs

LINear Constraint Solver. The accuracy in set with lincs order, which sets
the number of matrices in the expansion for the matrix inversion, 4 is enough
for a "normal" MD simulation, 8 is needed for LD with large time-steps. If a
bond rotates more than lincs warnangle [degrees] in one step, a warning will
be printed both to the log �le and to stderr. Lincs should not be used with
coupled angle constraints.

shake

Shake is slower and less stable than Lincs, but does work with angle constraints.
The relative tolerance is set with shake tol, 0.0001 is a good value for "normal"
MD.

unconstrained start:

no

apply constraints to the start con�guration

yes

do not apply constraints to the start con�guration

shake tol: (0.0001)

relative tolerance for shake

120 Run parameters and Programs

lincs order: (4)

Highest order in the expansion of the constraint coupling matrix. lincs order is
also used for the number of Lincs iterations during energy minimization, only one
iteration is used in MD.

lincs warnangle: (30) [degrees]

maximum angle that a bond can rotate before Lincs will complain

nstlincsout: (1000) [steps]

frequency to output constraint accuracy in log �le

morse:

no

bonds are represented by a harmonic potential

yes

bonds are represented by a Morse potential

7.3.15 NMR re�nement

disre:

none

no distance restraints (ignore distance restraints information in topology �le)

simple

simple (per-molecule) distance restraints

ensemble

distance restraints over an ensemble of molecules

disre weighting:

equal

divide the restraint force equally over all atom pairs in the restraint

conservative

the forces are the derivative of the restraint potential, this results in an r�7

weighting of the atom pairs

disre mixed:

no

the violation used in the calculation of the restraint force is the time averaged
violation

yes

the violation used in the calculation of the restraint force is the square root of
the time averaged violation times the instantaneous violation

7.3 Run Parameters 121

disre fc: (1000) [kJ mol�1 nm�2]

force constant for distance restraints, which is multiplied by a (possibly) di�erent
factor for each restraint

disre tau: (0) [ps]

time constant for distance restraints running average

nstdisreout: (100) [steps]

frequency to write the running time averaged and instantaneous distances of all atom
pairs involved in restraints to the energy �le (can make the energy �le very large)

7.3.16 Free Energy Perturbation

free energy:

no

Only use topology A.

yes

Change the system from topology A (lambda=0) to topology B (lambda=1)
and calculate the free energy di�erence. The starting value of lambda is
init lambda the increase per time step is delta lambda.

init lambda: (0)

starting value for lambda

delta lambda: (0)

increase per time step for lambda

7.3.17 Non-equilibrium MD

acc grps:

groups for constant acceleration (e.g.: Protein Sol) all atoms in groups Protein
and Sol will experience constant acceleration as speci�ed in the accelerate line

accelerate: (0) [nm ps�2]

acceleration for acc grps; x, y and z for each group (e.g. 0.1 0.0 0.0 -0.1 0.0

0.0 means that �rst group has constant acceleration of 0.1 nm ps�2 in X direction,
second group the opposite).

freezegrps:

Groups that are to be frozen (i.e. their X, Y, and/or Z position will not be updated;
e.g. Lipid SOL). freezedim speci�es for which dimension the freezing applies.

freezedim:

dimensions for which groups in freezegrps should be frozen, specify Y or N for X, Y
and Z and for each group (e.g. Y Y N N N N means that particles in the �rst group
can move only in Z direction. The particles in the second group can move in any
direction).

122 Run parameters and Programs

7.3.18 Electric �elds

E x ; E y ; E z:

If you want to use an electric �eld in a direction, enter 3 numbers after the appro-
priate E *, the �rst number: the number of cosines, only 1 is implemented (with
frequency 0) so enter 1, the second number: the strength of the electric �eld in V
nm�1, the third number: the phase of the cosine, you can enter any number here
since a cosine of frequency zero has no phase.

E xt ; E yt ; E zt:

not implemented yet

7.3.19 User de�ned thingies

user1 grps ; user2 grps ; user3 grps:

userint1 (0); userint2 (0); userint3 (0); userint4: (0)

userreal1 (0); userreal2 (0); userreal3 (0); userreal4: (0)

These you can use if you hack out code. You can pass integers and reals to your
subroutine. Check the inputrec de�nition in src/include/types/inputrec.h

7.4 Program Options

� Optional �les are not used unless the option is set, in contrast to non optional �les,
where the default �le name is used when the option is not set.

All GROMACS programs will accept �le options without a �le extension or �lename
being speci�ed. In such cases the default �lenames will be used. With multiple input
�le types, such as generic structure format, the directory will be searched for �les
of each type with the supplied or default name. When no such �le is found, or with
output �les the �rst �le type will be used.

All GROMACS programs with the exception of mdrun, nmrun and eneconv check
if the command line options are valid. If this is not the case, the program will be
halted.

� All GROMACS programs have 4 hidden options:

option type default description
-hidden bool yes [hidden] Print hidden options
-quiet bool no [hidden] Do not print help info
-man enum tex [hidden] Write manual and quit: no, html, tex, nro�, java,

ascii or completion
-debug bool no [hidden] Write �le with debug information

� When compiled with the HAVE MOTIF option, all GROMACS programs have an ad-
ditional option:

7.5 Programs by topic 123

-X bool no Use dialog box GUI to edit command line options

� When compiled on an SGI-IRIX system, allGROMACS programs have an additional
option:

-npri int 0 Set non blocking priority (try 128)

� Enumerated options (enum) should be used with one of the arguments listed in
the option description, the argument may be abbreviated. The �rst match to the
shortest argument in the list will be selected.

� Vector options can be used with 1 or 3 parameters. When only one parameter is
supplied the two others are also set to this value.

� All GROMACS programs can read compressed or g-zipped �les. There might be
a problem with reading compressed .xtc, .trr and .trj �les, but these will not
compress very well anyway.

� Most GROMACS programs can process a trajectory with less atoms than the run
input or structure �le, but only if the trajectory consists of the �rst n atoms of the
run input or structure �le.

7.5 Programs by topic

Generating topologies and coordinates

pdb2gmx converts pdb �les to topology and coordinate �les
editconf edits the box and writes subgroups
genbox solvates a system
genion generates mono atomic ions on energetically favorable positions
genconf multiplies a conformation in 'random' orientations
genpr generates position restraints for index groups
protonate protonates structures

Running a simulation

grompp makes a run input �le
tpbconv makes a run input �le for restarting a crashed run
mdrun performs a simulation

Viewing trajectories

ngmx displays a trajectory
trjconv converts trajectories to e.g. pdb which can be viewed with e.g. rasmol

Processing energies

g energy writes energies to xvg �les and displays averages
g enemat extracts an energy matrix from an energy �le
mdrun with -rerun (re)calculates energies for trajectory frames

124 Run parameters and Programs

Converting �les

editconf converts and manipulates structure �les
trjconv converts and manipulates trajectory �les
trjcat concatenates trajectory �les
eneconv converts energy �les
xmp2ps converts XPM matrices to encapsulated postscript (or XPM)

Tools

make ndx makes index �les
mk angndx generates index �les for g angle
gmxcheck checks and compares �les
gmxdump makes binary �les human readable
g analyze analyzes data sets

Distances between structures

g rms calculates rmsd's with a reference structure and rmsd matrices
g confrms �ts two structures and calculates the rmsd
g cluster clusters structures
g rmsf calculates atomic uctuations

Distances in structures over time

g mindist calculates the minimum distance between two groups
g dist calculates the distances between the centers of mass of two groups
g mdmat calculates residue contact maps
g rmsdist calculates atom pair distances averaged with power 2, -3 or -6

Mass distribution properties over time

g com calculates the center of mass
g gyrate calculates the radius of gyration
g msd calculates mean square displacements
g rotacf calculates the rotational correlation function for molecules
g rdf calculates RDF's
g rdens calculates radial densities

Analyzing bonded interactions

g bond calculates bond length distributions
mk angndx generates index �les for g angle
g angle calculates distributions and correlations for angles and dihedrals
g dih analyzes dihedral transitions

Structural properties

7.5 Programs by topic 125

g hbond computes and analyzes hydrogen bonds
g saltbr computes salt bridges
g sas computes solvent accessible surface area
g order computes the order parameter per atom for carbon tails
g sgangle computes the angle and distance between two groups
g disre analyzes distance restraints

Kinetic properties

g velacc calculates velocity autocorrelation functions

Electrostatic properties

genion generates mono atomic ions on energetically favorable positions
g potential calculates the electrostatic potential across the box
g dipoles computes the total dipole plus uctuations
g dielectric calculates frequency dependent dielectric constants

Protein speci�c analysis

do dssp assigns secondary structure and calculates solvent accessible surface area
g chi calculates everything you want to know about chi and other dihedrals
g helix calculates everything you want to know about helices
g rama computes Ramachandran plots
xrama shows animated Ramachandran plots
wheel plots helical wheels

Interfaces

g potential calculates the electrostatic potential across the box
g density calculates the density of the system
g order computes the order parameter per atom for carbon tails
g h2order computes the orientation of water molecules

Covariance analysis

g covar calculates and diagonalizes the covariance matrix
g anaeig analyzes the eigenvectors

Normal modes

grompp makes a run input �le
mdrun �nds a potential energy minimum
nmrun calculates the Hessian
g nmeig diagonalizes the Hessian
g anaeig analyzes the normal modes
g nmens generates an ensemble of structures from the normal modes

126 Run parameters and Programs

Chapter 8

Analysis.

In this chapter di�erent ways of analyzing your trajectory are described. The names of
the corresponding analysis programs are given. Speci�c info on the in- and output of these
programs can be found in the on-line manual at http://md.chem.rug.nl/~gmx. Often the
output �les are in xmgr-format.

First in sec. 8.1 the group concept in analysis is explained. Then the di�erent analysis
tools are presented.

8.1 Groups in Analysis.

make_ndx

mk_angndx

In chapter 3 it was explained how groups of atoms can be used in the MD-program. In
most analysis programs an index �le is necessary too to select groups to work on. Let's
consider a simulation of a binary mixture of components A and B. When we want to
calculate the radial distribution function (rdf) gAB(r) of A with respect to B, we have to
calculate

4�r2gAB(r) = V

NAX
i2A

NBX
j2B

P (r) (8.1)

where V is the volume and P (r) is the probability to �nd a B atom at a distance r from
an A atom.

By having the user de�ne the atom numbers for groups A and B in a simple �le we can
calculate this gAB in the most general way, without having to make any assumptions in
the rdf-program about the type of particles.

128 Analysis.

Figure 8.1: The window of ngmx showing a box of water.

Groups can therefore consist of a series of atom numbers, but in some cases also of molecule

numbers. It is also possible to specify a series of angles by triples of atom numbers,
dihedrals by quadruples of atom numbers and bonds or vectors (in a molecule) by couples

of atom numbers. When appropriate the type of index �le will be speci�ed for the following
analysis programs. To help creating such index �les (index.ndx), there are a couple of
programs to generate them, using either your input con�guration or the topology. To
generate an index �le consisting of a series of atom numbers (as in the example of gAB)
use make ndx. To generate an index �le with angles or dihedrals, use mk angndx. Of course
you can also make them by hand. The general format is presented here:

[Oxygen]

1 4 7

[Hydrogen]

2 3 5 6

8 9

First the group name is written between square brackets. The following atom numbers
may be spread out over as many lines as you like. The atom numbering starts at 1.

8.2 Looking at your trajectory

ngmx

Before analyzing your trajectory it is often informative to look at your trajectory �rst.
There is a special graphics program ngmx to show your binary trajectory. It is also possible
to generate a hard-copy in Encapsulated Postscript format, see Fig. 8.1.

8.3 General properties 129

8.3 General properties

g_energy

g_com

To analyze some or all energies and other properties, such as total pressure, pressure tensor,
density, box-volume and box-sizes, use the program g energy. A choice can be made from
a list a set of energies, like potential, kinetic or total energy, or individual contributions,
like Lennard-Jones or dihedral energies.

The center-of-mass velocity, de�ned as

vcom =
1

M

NX
i=1

mivi (8.2)

withM =
P

N

i=1mi the total mass of the system, can be monitored in time by the program
g com. It is however recommended to remove the center-of-mass velocity every step (see
chapter 3)!

8.4 Radial distribution functions

g_rdf

The radial distribution function (rdf) or pair correlation function gAB(r) between particles
of type A and B is de�ned in the following way:

gAB(r) =
< �B(r) >

< �B >local

=
1

< �B >local

1

NA

NAX
i2A

NBX
j2B

�(rij � r)

4�r2

(8.3)

with < �B(r) > the particle density of type B at a distance r around particles A, and
< �B >local the particle density of type B averaged over all spheres around particles A
with radius rmax (see Fig. 8.2C).

Usually the value of rmax is half of the box length. The averaging is also performed in
time. In practice the analysis program g rdf divides the system into spherical slices (from
r to r+ dr, see Fig. 8.2A) and makes a histogram in stead of the �-function. An example
of the rdf of Oxygen-Oxygen in SPC-water [57] is given in Fig. 8.3.

With g rdf it is also possible to calculate an angle dependent rdf gAB(r; �), where the
angle � is de�ned with respect to a certain laboratory axis e, see Fig. 8.2B.

gAB(r; �) =
1

< �B >local; �

1

NA

NAX
i2A

NBX
j2B

�(rij � r)�(�ij � �)

2�r2sin(�)
(8.4)

cos(�ij) =
rij � e

krijk kek
(8.5)

130 Analysis.

r

r+dr r+dr

r
θ+dθ

θ

e

A B

DC
Figure 8.2: De�nition of slices in g rdf: A. gAB(r). B. gAB(r; �). The slices are colored
grey. C. Normalization < �B >local. D. Normalization < �B >local; �. Normalization
volumes are colored grey.

0.0 0.5 1.0 1.5 2.0
r (nm)

0.0

1.0

2.0

3.0

g(
r)

Gromacs RDF
OW1-OW1

Figure 8.3: gOO(r) for Oxygen-Oxygen of SPC-water.

8.5 Correlation functions 131

This gAB(r; �) is useful for analyzing anisotropic systems. Note that in this case the
normalization < �B >local; � is the average density in all angle slices from � to � + d� up
to rmax, so angle dependent, see Fig. 8.2D.

8.5 Correlation functions

8.5.1 Theory of correlation functions

The theory of correlation functions is well established [60]. However we want to describe
here the implementation of the various correlation function avors in the GROMACS
code. The de�nition of the autocorrelation function (ACF) Cf (t) for a property f(t) is

Cf (t) = hf(�)f(� + t)i
�

(8.6)

where the notation on the right hand side means averaging over �, i.e. over time origins.
It is also possible to compute cross-correlation function from two properties f(t) and g(t):

Cfg(t) = hf(�)g(� + t)i
�

(8.7)

however, in GROMACS there is no standard mechanism to do this (note: you can use
the xmgr program to compute cross correlations). The integral of the correlation function
over time is the correlation time �f :

�f =

Z 1

0
Cf (t)dt (8.8)

In practice correlation functions are calculated based on data points with discrete time
intervals �t, so that the ACF from an MD simulation is:

Cf (j�t) =
1

N � j

N�1�jX
i=0

f(i�t)f((i+ j)�t) (8.9)

where N is the number of available time frames for the calculation. The resulting ACF
is obviously only available at time points with the same interval �t. Since for many
applications it is necessary to know the short time behavior of the ACF (e.g. the �rst 10
ps) this often means that we have to save the atomic coordinates with short intervals.
Another implication of eqn. 8.9 is that in principle we can not compute all points of the
ACF with the same accuracy, since we have N � 1 data points for Cf (�t) but only 1 for
Cf ((N � 1)�t). However, if we decide to compute only an ACF of length M�t, where
M � N=2 we can compute all points with the same statistical accuracy:

Cf (j�t) =
1

M

N�1�MX
i=0

f(i�t)f((i+ j)�t) (8.10)

here of course j < M . M is sometimes referred to as the time lag of the correlation
function. When we decide to do this, we intentionally do not use all the available points
for very short time intervals (j << M), but it makes it easier to interpret the results.

132 Analysis.

Another aspect that may not be neglected when computing ACFs from simulation, is that
usually the time origins � (eqn. 8.6) are not statistically independent, which may introduce
a bias in the results. This can be tested using a block-averaging procedure, where only
time origins with a spacing at least the length of the time lag are included, e.g. using k
time origins with spacing of M�t (where kM � N):

Cf (j�t) =
1

k

k�1X
i=0

f(iM�t)f((iM + j)�t) (8.11)

However, one needs very long simulations to get good accuracy this way, because there
are many fewer points that contribute to the ACF.

8.5.2 Using FFT for computation of the ACF

The computational cost for calculating an ACF according to eqn. 8.9 is proportional to
N2, which is considerable. However, this can be improved by using fast Fourier transforms
to do the convolution [60].

8.5.3 Special forms of the ACF

There are some important varieties on the ACF, e.g. the ACF of a vector p:

Cp(t) =

Z 1

0
Pn(cos 6 (p(t);p(t+ �)) d� (8.12)

where Pn(x) is the n
th order Legendre polynomial 1. Such correlation times can actually

be obtained experimentally using e.g. NMR or other relaxation experiments. GROMACS
can compute correlations using the 1st and 2nd order Legendre polynomial (eqn. 8.12).
This can a.o. be used for rotational autocorrelation (g rotacf), dipole autocorrelation
(g dipoles).

In order to study torsion angle dynamics we de�ne a dihedral autocorrelation function
as [61]:

C(t) = hcos(�(�)� �(� + t))i
�

(8.13)

Note that this is not a product of two functions as is generally used for correlation func-
tions, but it may be rewritten as the sum of two products:

C(t) = hcos(�(�)) cos(�(� + t)) + sin(�(�)) sin(�(� + t))i
�

(8.14)

8.5.4 Some Applications

The program g velacc calculates this Velocity Auto Correlation Function.

Cv(�) = < vi(�) � vi(0) >i2A (8.15)

1P0(x) = 1, P1(x) = x, P2(x) = (3x2 � 1)=2

8.6 Bonds, angles and dihedrals 133

The self di�usion coe�cient can be calculated using the Green-Kubo relation [60]

DA =
1

3

Z 1

0
< vi(t) � vi(0) >i2A dt (8.16)

which is just the integral of the velocity autocorrelation function. There is a widely
held belief that the velocity ACF converges faster than the mean square displacement
(sec. 8.5.5), which can also be used for the computation of di�usion constants. However,
Allen & Tildesly [60] warn us that the long time contribution to the velocity ACF can not
be ignored, so care must be taken.

Another important quantity is the dipole correlation time. The dipole correlation function

for particles A is calculated as follows by g dipoles:

C�(�) = < �i(�) � �i(0) >i2A (8.17)

with �i =
P

j2i rjqj. The dipole correlation time can be computed using eqn. 8.8. For
some applications see [62].

The viscosity of a liquid can be related to the correlation time of the Pressure tensor
P [63, 64]. g energy can compute the viscosity, but in our experience this is not very
accurate (actually the values do not converge...).

8.5.5 Mean Square Displacement

To determine the self di�usion coe�cient DA of particles A one can use the Einstein
relation [60]

lim
t!1

< jri(t)� ri(0)j2 >i2A = 6DAt (8.18)

This Mean Square Displacement and DA are calculated by the program g msd. For
molecules consisting of more than one atom, ri is the center of mass positions. In that case
you should use an index �le with molecule numbers! The program can also be used for
calculating di�usion in one or two dimensions. This is useful for studying lateral di�usion
on interfaces.

An example of the mean square displacement of SPC-water is given in Fig. 8.4.

8.6 Bonds, angles and dihedrals

g_bond

g_angle

g_sgangle

134 Analysis.

0.0 50.0 100.0 150.0
Time (ps)

0.0

1000.0

2000.0

3000.0

4000.0

M
S

D
 (

10
-5
 c

m
2 s

-1
)

Mean Square Displacement
D = 3.5027 (10

-5
 cm

2
 s

-1
)

Figure 8.4: Mean Square Displacement of SPC-water.

To monitor speci�c bonds in your molecules during time, the program g bond calculates the
distribution of the bond length in time. The index �le consists of pairs of atom numbers,
for example

[bonds_1]

1 2

3 4

9 10

[bonds_2]

12 13

The program g angle calculates the distribution of angles and dihedrals in time. It also
gives the average angle or dihedral. The index �le consists of triplets or quadruples of
atom numbers:

[angles]

1 2 3

2 3 4

3 4 5

[dihedrals]

1 2 3 4

2 3 5 5

For the dihedral angles you can use either the \biochemical convention" (� = 0 � cis) or
\polymer convention" (� = 0 � trans), see Fig. 8.5.

To follow speci�c angles in time between two vectors, a vector and a plane or two planes
(de�ned by 2, resp. 3 atoms inside your molecule, see Fig. 8.6A, B, C), use the program
g sgangle.

8.6 Bonds, angles and dihedrals 135

φ = 0φ = 0

A B

Figure 8.5: Dihedral conventions: A. \Biochemical convention". B. \Polymer convention".

b b
a

φ

2

C

D

d

d

E

φ

d

φ

A B

n

1d

n

n

Figure 8.6: Options of g sgangle: A. Angle between 2 vectors. B. Angle between a
vector and the normal of a plane. C. Angle between two planes. D. Distance between the
geometrical centers of 2 planes. E. Distances between a vector and the center of a plane.

136 Analysis.

For planes it uses the normal vector perpendicular to the plane. It can also calculate the
distance d between the geometrical center of two planes (see Fig. 8.6D), and the distances
d1 and d2 between 2 atoms (of a vector) and the center of a plane de�ned by 3 atoms (see
Fig. 8.6D). It further calculates the distance d between the center of the plane and the
middle of this vector. Depending on the input groups (i.e. groups of 2 or 3 atom numbers),
the program decides what angles and distances to calculate. For example, the index-�le
could look like this:

[a_plane]

1 2 3

[a_vector]

3 4 5

8.7 Radius of gyration and distances

g_gyrate

g_sgangle

g_mindist

g_mdmat

xpm2ps

To have a rough measure for the compactness of a structure, you can calculate the radius
of gyration with the program g gyrate as follows:

Rg =

 P
i r

2
i
miP

imi

! 1

2

(8.19)

where mi is the mass of atom i and ri the position of atom i with respect to the center of
mass of the molecule. It is especially useful to characterize polymer solutions and proteins.

Sometimes it is interesting to plot the distance between two atoms, or the minimum

distance between two groups of atoms (e.g.: protein side-chains in a salt bridge). To
calculate these distances between certain groups there are several possibilities:

� The distance between the geometrical centers of two groups can be calculated with
g sgangle, as explained in sec. 8.6.

� The minimum distance between two groups of atoms during time can be calculated
with the program g mindist. It also calculates the number of contacts between
these groups within a certain radius rmax.

� To monitor the minimum distances between residues (see chapter 5) within a (protein)
molecule, you can use the program g mdmat. This minimum distance between two
residues Ai and Aj is de�ned as the smallest distance between any pair of atoms (i
2 Ai, j 2 Aj). The output is a symmetrical matrix of smallest distances between all
residues. To visualize this matrix, you can use a program such as xv. If you want

8.8 Root mean square deviations in structure 137

21 30 40 50 60 70 80 90

21

30

40

50

60

70

80

90

t=
0

ps

Residue Number

0 Distance (nm) 1.2

Figure 8.7: A minimum distance matrix for a peptide [3].

to view the axes and legend or if you want to print the matrix, you can convert it
with xpm2ps into a Postscript picture, see Fig. 8.7.

Plotting these matrices for di�erent time-frames, one can analyze changes in the
structure, and e.g. forming of salt bridges.

8.8 Root mean square deviations in structure

g_rms

g_rmsdist

The root mean square deviation (RMSD) of certain atoms in a molecule with respect to
a reference structure can be calculated with the program g rms by least-square �tting the
structure to the reference structure (t2 = 0) and subsequently calculating the RMSD

(eqn. 8.20).

RMSD(t1; t2) =

"
1

N

NX
i=1

(ri(t1)� ri(t2))
2

1

2

(8.20)

where ri(t) is the position of atom i at time t. NOTE that �tting does not have to use
the same atoms as the calculation of the RMSD; e.g.: a protein is usually �tted on the
backbone atoms (N,C�,C), but the RMSD can be computed of the backbone or of the
whole protein.

Instead of comparing the structures to the initial structure at time t = 0 (so for example
a crystal structure), one can also calculate eqn. 8.20 with a structure at time t2 = t1 � � .
This gives some insight in the mobility as a function of � . Also a matrix can be made with
the RMSD as a function of t1 and t2, this gives a nice graphical impression of a trajectory.
If there are transitions in a trajectory, they will clearly show up in such a matrix.

138 Analysis.

Alternatively the RMSD can be computed using a �t-free method with the program
g rmsdist:

RMSD(t) =

2
4 1

N2

NX
i=1

NX
j=1

(rij(t)� rij(0))
2

3
5

1

2

(8.21)

where the distance rij between atoms at time t is compared with the distance between the
same atoms at time 0.

In stead of comparing the structures to the initial structure at time t = 0 (so for example
a crystal structure), one can also calculate eqn. 8.20 using a time shift � :

RMSD(t; �) =

"
1

N

NX
i=1

(ri(t)� ri(t� �))2
1

2

(8.22)

so comparing to a least-square structure at t� � . This gives some insight in the mobility
as a function of � . Use the program g run rms.

8.9 Covariance analysis

Covariance analysis, also called principal component analysis or essential dynamics [28],
can �nd correlated motions. It uses the covariance matrix C of the atomic coordinates:

Cij =M
1

2

ii
h(xi � hxii)(xj � hxji)iM

1

2

jj
(8.23)

whereM is a diagonal matrix containing the masses of the atoms (mass-weighted analysis)
or the unit matrix (non-mass weighted analysis). C is a symmetric 3N�3N matrix, which
can be diagonalized with an orthonormal transformation matrix T :

T TCT = diag(�1; �2; : : : ; �3N) where �1 � �2 � : : : � �3N (8.24)

The columns of T are the eigenvectors, also called principal or essential modes. T de�nes
a transformation to a new coordinate system. The trajectory can be projected on the
principal modes to give the principal components pi(t):

p(t) = T TM
1

2 (x(t) � hxi) (8.25)

The eigenvalue �i is the mean square uctuation of principal component i. The �rst few
principal modes often describe collective, global motions in the system. The trajectory
can be �ltered along one (or more) principal modes. For one principal mode i this goes as
follows:

xfiltered(t) = hxi+M� 1

2Tpi(t) (8.26)

When the analysis is performed on a macromolecule, one often wants to remove the overall
rotation and translation to look at the internal motion only. This can be achieved by least
square �tting to a reference structure. Care has to be taken that the reference structure
is representative for the ensemble, since the choice of reference structure inuences the
covariance matrix. One should always check if the principal modes are well de�ned. If the

8.10 Hydrogen bonds 139

D

H

α

A

r

Figure 8.8: Geometrical Hydrogen bond criterion.

�rst principal component resembles a half cosine and the second resembles a full cosine,
you might be �ltering noise. A good way to check the relevance of the �rst few principal
modes is to calculate the eigenvector subspace overlap between the �rst and second half
of the simulation. The overlap between two sets of n orthonormal vectors v1; : : : ;vn and
w1; : : : ;wn can be quanti�ed as follows:

overlap(v;w) =
1

n

nX
i=1

nX
j=1

(vi �wj)
2 (8.27)

The overlap is 1 when sets v and w span the same subspace. Note that this can only be
done when the same reference structure is used for the two halves.

The covariance matrix is built and diagonalized by g covar. The principal components
and subspace overlap (any many more things) can be plotted and analyzed with g anaeig.

8.10 Hydrogen bonds

g_hbond

The program g hbond analyses the hydrogen bonds (H-bonds) between all possible donors
D and acceptors A. To determine if an H-bond exists, a geometrical criterion is used, see
also Fig. 8.8:

r � rHB = 0:35nm
� � �HB = 60o

(8.28)

The value of rHB = 3:5�A corresponds to the �rst minimum of the rdf of SPC-water (see
also Fig. 8.3).

The program g hbond analyses all hydrogen bonds existing between two groups of atoms
(which must be either identical or non-overlapping) or in speci�ed Donor Hydrogen Ac-
ceptor triplets, in the following ways:

� Donor-Acceptor distance (r) distribution of all H-bonds

� Hydrogen-Donor-Acceptor angle (�) distribution of all H-bonds

� The total number of H-bonds in each time frame

140 Analysis.

O

D A

H

H

H

(1)
(2)

(2)

Figure 8.9: Insertion of water into an H-bond. (1) Normal H-bond between two residues.
(2) H-bonding bridge via a water molecule.

� The number of H-bonds in time between residues, divided into groups n-n+i where
n and n+i stand for residue numbers and i goes from 0 to 6. The group for i = 6
also includes all H-bonds for i > 6. These groups include the n-n+3, n-n+4 and
n-n+5 H-bonds which provide a measure for the formation of �-helices or �-turns
or strands.

� The lifetime of the H-bonds is calculated from the average over all autocorrelation
functions of the existence functions (either 0 or 1) of all H-bonds:

C(�) = < si(t) si(t+ �) > (8.29)

with si(t) = f0; 1g for H-bond i at time t. The integral of C(�) gives a rough estimate
of the average H-bond lifetime �HB :

�HB =

Z 1

0
C(�)d� (8.30)

Both the integral and the complete auto correlation function C(�) will be output,
so that more sophisticated analysis (e.g. using multi-exponential �ts) can be used to
get better estimates for �HB .

� An H-bond existence map can be generated of dimensions # H-bonds�# frames.

� Index groups are output containing the analyzed groups, all donor-hydrogen atom
pairs and acceptor atoms in these groups, donor-hydrogen-acceptor triplets involved
in hydrogen bonds between the analyzed groups and all solvent atoms involved in
insertion.

� Solvent insertion into H-bonds can be analyzed, see Fig. 8.9. In this case an addi-
tional group identifying the solvent must be selected. The occurrence of insertion
will be indicated in the existence map. Note that insertion into and existence of a
speci�c H-bond can occur simultaneously and will also be indicated as such in the
existence map.

8.11 Protein related items 141

0 100 200 300 400 500 600 700 800 900 1000

1

5

10

15

R
es

id
ue

Time (ps)
Coil Bend Turn A-Helix B-Bridge

Figure 8.10: Analysis of the secondary structure elements of a peptide in time.

C

O

N

C
H

R

C

Oα

N

H

H

ψ
φ

Figure 8.11: De�nition of the dihedral angles � and of the protein backbone.

8.11 Protein related items

do_dssp

g_rama

xrama

wheel

To analyze structural changes of a protein, you can calculate the radius of gyration or the
minimum residue distances during time (see sec. 8.7), or calculate the RMSD (sec. 8.8).

You can also look at the changing of secondary structure elements during your run. For
this you can use the program do dssp, which is an interface for the commercial program
dssp [65]. For further information, see the dssp-manual. A typical output plot of do dssp

is given in Fig. 8.10.

One other important analysis of proteins is the so called Ramachandran plot. This is the
projection of the structure on the two dihedral angles � and of the protein backbone,
see Fig. 8.11.

To evaluate this Ramachandran plot you can use the program g rama. A typical output
is given in Fig. 8.12.

It is also possible to generate an animation of the Ramachandran plot in time. This can be
of help for analyzing certain dihedral transitions in your protein. You can use the program
xrama for this.

When studying �-helices it is useful to have a helical wheel projection of your peptide, to
see whether a peptide is amphipatic. This can be done using the wheel program. Two
examples are plotted in Fig. 8.13.

142 Analysis.

–180.0 –120.0 –60.0 0.0 60.0 120.0 180.0
Phi

–180.0

–120.0

–60.0

0.0

60.0

120.0

180.0

P
si

Ramachandran Plot

Figure 8.12: Ramachandran plot of a small protein.

HPr-A HIS-15+

T
H

R
-16

ARG-17+

PR
O

-1
8

ALA-19

ALA-20

G
LN

-2
1

PHE-22

V
A

L-23

LYS-24+

G
LU

-2
5-

ALA-26

LYS-27+

GLY-28

Figure 8.13: Helical wheel projection of the N-terminal helix of HPr.

8.12 Interface related items 143

8.12 Interface related items

g_order

g_density

g_potential

g_coord

When simulating molecules with long carbon tails, it can be interesting to calculate their
average orientation. There are several avors of order parameters, most of which are
related. The program g order can calculate order parameters using the equation

Sz =
3

2
hcos2 �zi �

1

2
(8.31)

where �z is the angle between the z-axis of the simulation box and the molecular axis under
consideration. The latter is de�ned as the vector from Cn�1 to Cn+1. The parameters
Sx and Sy are de�ned in the same way. The brackets imply averaging over time and
molecules. Order parameters can vary between 1 (full order along the interface normal)
and �1=2 (full order perpendicular to the normal), with a value of zero in the case of
isotropic orientation.

The program can do two things for you. It can calculate the order parameter for each CH2

segment separately, for any of three axes, or it can divide the box in slices and calculate
the average value of the order parameter per segment in one slice. The �rst method gives
an idea of the ordering of a molecule from head to tail, the second method gives an idea
of the ordering as function of the box length.

The electrostatic potential () across the interface can be computed from a trajectory by
evaluating the double integral of the charge density (�(z)):

 (z) � (�1) = �
Z

z

�1
dz0
Z

z0

�1
�(z00)dz00=�0 (8.32)

where the position z = �1 is far enough in the bulk phase that the �eld is zero. With this
method, it is possible to \split" the total potential into separate contributions from lipid
and water molecules. The program g potential divides the box in slices and sums all
charges of the atoms in each slice. It then integrates this charge density, giving the electric
�eld, and the electric �eld, giving the potential. Charge density, �eld and potential are
written to xvgr-input �les.

The program g coord is a very simple analysis program. All it does is print the coordinates
of selected atoms to three �les, containing respectively the x-, y- and z-coordinates of those
atoms. It can also calculate the center of mass of one or more molecules and print the
coordinates of the center of mass to three �les. By itself, this is probably not a very useful
analysis, but having the coordinates of selected molecules or atoms can be very handy for
further analysis, not only in interface systems.

The program g pvd calculates a lot of properties, among which the density of a group
in particles per unit of volume, but not a density that takes the mass of the atoms into
account. The program g density also calculates the density of a group, but takes the

144 Analysis.

masses into account and gives a plot of the density against a box axis. This is useful for
looking at the distribution of groups or atoms across the interface.

8.13 Chemical shifts

total

do_shift

You can compute the NMR chemical shifts of protons with the program do shift. This
is just an GROMACS interface to the public domain program total [66]. For further
information, read the article.

Appendix A

Technical Details.

A.1 Installation.

The GROMACS code is distributed in SOURCE form by our WWW server at
http://md.chem.rug.nl/~gmx
On this server you will �nd all the information you need to install the software, as well as
the license form that you have to submit before you are allowed to down load the code.
When you have �lled in this license form, a user name and password will be sent to you
by e-mail with which you can down load the �les. The e-mail address you specify on your
license sheet will also be used to send you information on updates, bug-�xes etc.

For commercial use of the software, please contact us directly: gromacs@chem.rug.nl

A.2 Single or Double precision

GROMACS can be compiled in both single and double precision. Double precision will be
0 to 50% slower than single precision depending on the architecture you are running on.
Double precision will use somewhat more memory and run input, energy and full-precision
trajectory �les will be almost twice as large.

The energies in single precision are accurate up to the last decimal, the last one or two
decimals of the forces are non-signi�cant. The virial is less accurate than the forces, since
the virial is only one order of magnitude larger than the size of each element in the sum
over all atoms (sec. B.1). In most cases this is not really a problem, since the uctuations
in de virial can be 2 orders of magnitude larger than the average. In periodic charged
systems these errors are often negligible. Especially cut-o�'s for the Coulomb interactions
cause large errors in the energies, forces and virial. Even when using a reaction-�eld or
lattice sum method the errors are larger than or comparable to the errors due to the
single precision. Since MD is chaotic, trajectories with very similar starting conditions
will diverge rapidly, the divergence is faster in single precision than in double precision.

For most simulations single precision is accurate enough. In some cases double precision
is required to get reasonable results:

146 Technical Details.

� normal mode analysis, for the conjugate gradient minimization and the calculation
and diagonalization of the Hessian

� calculation of the constraint force between two large groups of atoms

� energy conservation (this can only be done without temperature coupling and with-
out cut-o�'s)

A.3 Porting GROMACS.

The GROMACS system is designed with portability as one major design goal. However
there are a number of things we assume to be present on the system GROMACS is being
ported on. We assume the following features:

1. the UNIX operating system (BSD 4.x or SYSTEM V rev.3 or higher) or UNIX-like
libraries

2. an ANSI C compiler

3. optionally a Fortran-77 compiler or Fortran-90 compiler for faster (on some comput-
ers) inner loop routines

4. optionally an XDR library, which will allow you to use the portable versions of the
GROMACS binary �le types (GROMACS �les written in XDR format can be read
on any architecture with a GROMACS version compiled with XDR)

5. If you want to use the graphics, the X-window system version 11 Release 4 or higher
and the X-lib graphics libraries

These are the requirements of a single processor system. If you want to compile GRO-
MACS on a multi processor environment there is another requirement:

1. Message-passing architecture

2. Ring structure.

One can understand that a message passing architecture also can be mapped onto a shared
memory machine. This implementation is left to the reader as an exercise in parallel
programming. Also the ring structure can be mapped onto e.g. a hypercube.

A.3.1 Multi-processor Porting

In the case you want to run the GROMACS software on a multi-processor machine, you
have two options.

1. Install MPI or PVM. The GROMACS WWW page has some pointers to relevant
documents.

A.4 Environment Variables 147

2. Write communication routines yourself.

It may be clear that you will hardly ever need to write the routines yourself, but if you
can't avoid it, here are some clues. The interface between these routines and the rest
of the GROMACS system is described in the �le $GMXHOME/src/include/network.hWe
will give a short description of the di�erent routines below.

extern void gmx tx(int pid,void *buf,int bufsize);

This routine, when called with the destination processor number, a pointer to a
(byte oriented) transfer bu�er, and the size of the bu�er will send the bu�er to the
indicated processor (in our case always the neighboring processor). The routine does
not wait until the transfer is �nished.

extern void gmx tx wait(int pid);

This routine waits until the previous, or the ongoing transmission is �nished.

extern void gmx txs(int pid,void *buf,int bufsize);

This routine implements a synchronous send by calling the a-synchronous routine
and then the wait. It might come in handy to code this di�erently.

extern void gmx rx(int pid,void *buf,int bufsize);

extern void gmx rx wait(int pid);

extern void gmx rxs(int pid,void *buf,int bufsize);

The very same routines for receiving a bu�er and waiting until the reception is
�nished.

extern void gmx init(int pid,int nprocs);

This routine initializes the di�erent devices needed to do the communication. In
general it sets up the communication hardware (if it is accessible) or does an initialize
call to the lower level communication subsystem.

extern void gmx stat(FILE *fp,char *msg);

With this routine we can diagnose the ongoing communication. In the current im-
plementation it prints the various contents of the hardware communication registers
of the (Intel i860) multiprocessor boards to a �le.

A.4 Environment Variables

GROMACS programs may be inuenced by the use of environment variables. First of all,
the variables set in the GMXRC �le are essential for running and compiling GROMACS.
Other variables are:

1. DUMP NL, dump neighbor list. If set to a positive number the entire neighbor list
is printed in the log �le (may be many megabytes). Mainly for debugging purposes,
but may also be handy for porting to other platforms.

148 Technical Details.

2. IAMCOOL, when set prints cool quotes, otherwise your GROMACS life will be dull
and boring.

3. WHERE, when set print debugging info on line numbers.

4. LOG BUFS, the size of the bu�er for �le I/O. When set to 0, all �le I/O will be
unbu�ered and therefore very slow. This can be handy for debugging purposes,
because it ensures that all �les are always totally up-to-date.

5. GMXNPRI, for SGI systems only. When set, gives the default non-degrading priority
(npri) for mdrun, nmrun, g covar and g nmeig, e.g. setting setenv GMXNPRI 250

causes all runs to be performed at near-lowest priority by default.

Some other environment variables are speci�c to one program, such as TOTAL for the
do shift program, and DSPP for the do dssp program.

Appendix B

Some implementation details.

In this chapter we will present some implementation details. This is far from complete, but
we deemed it necessary to clarify some things that would otherwise be hard to understand.

B.1 Single Sum Virial in GROMACS.

The virial � can be written in full tensor form as:

� = � 1

2

NX
i<j

rij
 F ij (B.1)

where
 denotes the direct product of two vectors1. When this is computed in the inner
loop of an MD program 9 multiplications and 9 additions are needed2.

Here it is shown how it is possible to extract the virial calculation from the inner loop and
also how the pressure is calculated in GROMACS.

B.1.1 Virial.

In a system with Periodic Boundary Conditions, the periodicity must be taken into account
for the virial:

� = � 1

2

NX
i<j

r
n

ij
 F ij (B.2)

where rn
ij
denotes the distance vector of the nearest image of atom i from atom j. In this

de�nition we add a shift vector �i to the position vector ri of atom i. The di�erence vector
r
n
ij
is thus equal to:

r
n

ij = ri + �i � rj (B.3)

or in shorthand:
r
n

ij = r
n

i � rj (B.4)

1(u
 v)�� = u�v�

2The calculation of Lennard-Jones and Coulomb forces is about 50 oating point operations.

150 Some implementation details.

In a triclinic system there are 27 possible images of i, when truncated octahedron is used
there are 15 possible images.

B.1.2 Virial from non-bonded forces.

Here the derivation for the single sum virial in the non-bonded force routine is given. i 6= j

in all formulae below.

� = �1

2

NX
i<j

r
n

ij
 F ij (B.5)

= �1

4

NX
i=1

NX
j=1

(ri + �i � rj)
 F ij (B.6)

= �1

4

NX
i=1

NX
j=1

(ri + �i)
 F ij � rj
 F ij (B.7)

= �1

4

0
@ NX
i=1

NX
j=1

(ri + �i)
 F ij �
NX
i=1

NX
j=1

rj
 F ij

1
A (B.8)

= �1

4

0
@ NX
i=1

(ri + �i)

NX
j=1

F ij �
NX
j=1

rj

NX
i=1

F ij

1
A (B.9)

= �1

4

0
@ NX
i=1

(ri + �i)
 F i +
NX
j=1

rj
 F j

1
A (B.10)

= �1

4

2

NX
i=1

ri
 F i +
NX
i=1

�i
 F i

!
(B.11)

In these formulae we introduced

F i =
NX
j=1

F ij (B.12)

F j =
NX
i=1

F ji (B.13)

which is the total force on i resp. j. Because we use Newton's third law

F ij = � F ji (B.14)

we must in the implementation double the term containing the shift �i.

B.1.3 The intramolecular shift (mol-shift).

For the bonded-forces and shake it is possible to make a mol-shift list, in which the
periodicity is stored. We simple have an array mshift in which for each atom an index in
the shiftvec array is stored.

B.1 Single Sum Virial in GROMACS. 151

The algorithm to generate such a list can be derived from graph theory, considering each
particle in a molecule as a bead in a graph, the bonds as edges.

1 represent the bonds and atoms as bidirectional graph

2 make all atoms white

3 make one of the white atoms black (atom i) and put it in the central box

4 make all of the neighbors of i that are currently white, grey

5 pick one of the grey atoms (atom j), give it the correct periodicity with respect to
any of its black neighbors and make it black

6 make all of the neighbors of j that are currently white, grey

7 if any grey atom remains, goto [5]

8 if any white atom remains, goto [3]

Using this algorithm we can

� optimize the bonded force calculation as well as shake

� calculate the virial from the bonded forces in the single sum way again

Find a representation of the bonds as a bidirectional graph.

B.1.4 Virial from Covalent Bonds.

The covalent bond force gives a contribution to the virial, we have

b = krnijk (B.15)

Vb =
1

2
kb(b� b0)

2 (B.16)

F i = �rVb (B.17)

= kb(b� b0)
r
n
ij

b
(B.18)

F j = �F i (B.19)

The virial contribution from the bonds then is

�b = �1

2
(rni
 F i + rj
 F j) (B.20)

= �1

2
r
n

ij
 F i (B.21)

152 Some implementation details.

B.1.5 Virial from Shake.

An important contribution to the virial comes from shake. Satisfying the constraints a
force G is exerted on the particles shaken. If this force does not come out of the algorithm
(as in standard shake) it can be calculated afterwards (when using leap-frog) by:

�ri = ri(t+�t)� [ri(t) + vi(t�
�t

2
)�t+

F i

mi

�t2] (B.22)

Gi =
mi�ri

�t2
(B.23)

but this does not help us in the general case. Only when no periodicity is needed (like in
rigid water) this can be used, otherwise we must add the virial calculation in the inner
loop of shake.

When it is applicable the virial can be calculated in the single sum way:

� = � 1

2

NcX
i

ri
 F i (B.24)

where Nc is the number of constrained atoms.

B.2 Optimizations

Here we describe some of the optimizations used in GROMACS, apart from parallelism.
One of these, the implementation of the 1.0/sqrt(x) function is treated separately in
sec. B.3. The most important other optimizations are described below.

B.2.1 Inner Loop for Water

In GROMACS a special inner loop that calculates non-bonded interactions for a water
molecule with something else is implemented. This loop assumes that the water model is
like SPC [57], i.e.:

1. The �rst atom is oxygen, the other two are hydrogens

2. The �rst atom has Lennard-Jones (sec. 4.1.1) and coulomb (sec. 4.1.3) interactions,
the other two only have coulomb.

The loop also works for the SPC/E [67] and TIP3P [38] water models. No assumption is
made about force �eld parameters, or charges. The gain of this implementation is that
there are more oating point operations in a single loop, which implies that some compilers
can schedule the code better. It turns out however, that even some of the most advanced
compilers have problems with scheduling, implying that manual tweaking is necessary
to get optimum performance. This may include common-subexpression elimination, or
moving code around. The loop is used when a solvent optimization is selected in the .mdp
�le.

B.2 Optimizations 153

B.2.2 Shake for Water - SETTLE

We have implemented the SETTLE algorithm [22] which is an analytical solution of shake
speci�cally for water. SETTLE can be selected in the topology �le. Check for instance
the topology $GMXLIB/spc.itp:

[moleculetype]

; molname nrexcl

SOL 1

[atoms]

; nr at type res nr ren nm at nm cg nr charge

1 OW 1 SOL OW1 1 -0.82

2 HW 1 SOL HW2 1 0.41

3 HW 1 SOL HW3 1 0.41

[settles]

; OW funct doh dhh

1 1 0.1 0.16333

[exclusions]

1 2 3

2 1 3

3 1 2

The section [settles] de�nes the �rst atom of the watery molecule, the settle funct is
always one, and the distance between O and H, and distance between both H atoms must
be given. Note that the algorithm can also be used for TIP3P and TIP4P [38]. TIP3P
just has another geometry. TIP4P has a dummy atom, but since that is generated it does
not need to be shaken (nor stirred).

B.2.3 Fortran Code

Unfortunately, Fortran compilers are still better than C-compilers, for most machines
anyway. For some machines (e.g. SGI Power Challenge) the di�erence may be up to a
factor of 3, in the case of vector computers this may be even larger. Therefore, some of
the routines that take up a lot of computer time have been translated into Fortran. On
most machine, calling a Fortran routine from C is not hard to do, but we did not rigorously
test this. The default for compiling GROMACS is to not use Fortran loops, except for
machines where we have tested it, but it may be turned on in your local Makefile.CPU.
When you have problems with linking, check your Fortran object �les (using the UNIX nm

utility) to see what the name of the function is, and modify the code where the function
is called. Please note, that C-compilers usually add an underscore before or after each
function name. Also do not forget that C code, unlike Fortran, is case sensitive. When
the Fortran function name in the object �le is in uppercase, you probably need to put the
call in uppercase as well.

154 Some implementation details.

Here is a list of the functions that have a Fortran equivalent:

C Source Fortran Source Purpose

c coul inloopc.c fcoul inloopf.f Coulomb interaction
c ljc inloopc.c jc inloopf.f Lennard-Jones and Coulomb interaction
c coul inloopc.c fcoul8 inloopf.f Coulomb
c ljc inloopc.c jc8 inloopf.f LJ+Coulomb
c water inloopc.c fwater inloopf.f Water Loop
cshake shakef.c fshake fshake.f Shake
cshake shakef.c fshake8 fshake.f Shake
csettle csettle.c fsettle fsettle.f Settle
csettle csettle.c fsettle8 fsettle.f Settle

Table B.1: List of C functions and their Fortran equivalent, plus the source �les. Note
that the Fortan and C source �les are both generated from one .m4 �le. The 8 refers to
double precision version of the same routine. In C it is not necessary to use a special
version of the code due to the use of typedef.

B.3 Computation of the 1.0/sqrt function.

B.3.1 Introduction.

The GROMACS project started with the development of a 1=
p
x processor which calcu-

lates

Y (x) =
1p
x

(B.25)

As the project continued, the Intel i860 processor was used to implement GROMACS,
which now turned into almost a full software project. The 1=

p
x processor was imple-

mented using a Newton-Raphson iteration scheme for one step. For this it needed lookup
tables to provide the initial approximation. The 1=

p
x function makes it possible to use

two almost independent tables for the exponent seed and the fraction seed with the IEEE
oating point representation.

B.3.2 General

According to [68] the 1=
p
x can be calculated using the Newton-Raphson iteration scheme.

The inverse function is

X(y) =
1

y2
(B.26)

So instead of calculating

Y (a) = q (B.27)

the equation

X(q)� a = 0 (B.28)

B.3 Computation of the 1.0/sqrt function. 155

| {z }| {z }
?

FES

02331

V alue = (�1)S(2E�127)(1:F)

02331

V alue = (�1)S(2E�127)(1:F)

Figure B.1: IEEE single precision oating point format

can now be solved using Newton-Raphson. An iteration is performed by calculating

yn+1 = yn �
f(yn)

f 0(yn)
(B.29)

The absolute error ", in this approximation is de�ned by

" � yn � q (B.30)

using Taylor series expansion to estimate the error results in

"n+1 = �"
2
n

2

f 00(yn)

f 0(yn)
(B.31)

according to [68] equation (3.2). This is an estimation of the absolute error.

B.3.3 Applied to oating point numbers

Floating point numbers in IEEE 32 bit single precision format have a nearly constant
relative error of �x=x = 2�24. As seen earlier in the Taylor series expansion equation
(eqn. B.31), the error in every iteration step is absolute and in general dependent of y. If
the error is expressed as a relative error "r the following holds

"rn+1 �
"n+1

y
(B.32)

and so

"rn+1 = �("n
y
)2y

f 00

2f 0
(B.33)

for the function f(y) = y�2 the term yf 00=2f 0 is constant (equal to �3=2) so the relative
error "rn is independent of y.

"rn+1 =
3

2
("rn)

2 (B.34)

The conclusion of this is that the function 1=
p
x can be calculated with a speci�ed accuracy.

156 Some implementation details.

B.3.4 Speci�cation of the lookup table

To calculate the function 1=
p
x using the previously mentioned iteration scheme, it is clear

that the �rst estimation of the solution must be accurate enough to get precise results.
The requirements for the calculation are

� Maximum possible accuracy with the used IEEE format

� Use only one iteration step for maximum speed

The �rst requirement states that the result of 1=
p
x may have a relative error "r equal

to the "r of a IEEE 32 bit single precision oating point number. From this the 1=
p
x of

the initial approximation can be derived, rewriting the de�nition of the relative error for
succeeding steps, equation (eqn. B.34)

"n

y
=

s
"rn+1

2f 0

yf 00
(B.35)

So for the lookup table the needed accuracy is

�Y

Y
=

r
2

3
2�24 (B.36)

which de�nes the width of the table that must be � 13 bit.

At this point the relative error "rn of the lookup table is known. From this the maximum
relative error in the argument can be calculated as follows. The absolute error �x is
de�ned as

�x � �Y

Y 0
(B.37)

and thus
�x

Y
=

�Y

Y
(Y 0)�1 (B.38)

and thus

�x = constant
Y

Y 0
(B.39)

for the 1=
p
x function Y=Y 0 � x holds, so �x=x = constant. This is a property of the used

oating point representation as earlier mentioned. The needed accuracy of the argument
of the lookup table follows from

�x

x
= �2�Y

Y
(B.40)

so, using the oating point accuracy, equation (eqn. B.36)

�x

x
= �2

r
2

3
2�24 (B.41)

This de�nes the length of the lookup table which should be � 12 bit.

B.3 Computation of the 1.0/sqrt function. 157

B.3.5 Separate exponent and fraction computation

The used IEEE 32 bit single precision oating point format speci�es that a number is
represented by a exponent and a fraction. The previous section speci�es for every possible
oating point number the lookup table length and width. Only the size of the fraction
of a oating point number de�nes the accuracy. The conclusion from this can be that
the size of the lookup table is length of lookup table, earlier speci�ed, times the size of
the exponent (21228; 1Mb). The 1=

p
x function has the property that the exponent is

independent of the fraction. This becomes clear if the oating point representation is
used. De�ne

x � (�1)S(2E�127)(1:F) (B.42)

see Fig. B.1 where 0 � S � 1, 0 � E � 255, 1 � 1:F < 2 and S, E, F integer
(normalization conditions). The sign bit (S) can be omitted because 1=

p
x is only de�ned

for x > 0. The 1=
p
x function applied to x results in

y(x) =
1p
x

(B.43)

or

y(x) =
1q

(2E�127)(1:F)
(B.44)

this can be rewritten as
y(x) = (2E�127)�1=2(1:F)�1=2 (B.45)

De�ne
(2E

0�127) � (2E�127)�1=2 (B.46)

1:F 0 � (1:F)�1=2 (B.47)

then 1p
2
< 1:F 0 � 1 holds, so the condition 1 � 1:F 0 < 2 which is essential for normalized

real representation is not valid anymore. By introducing an extra term this can be cor-
rected. Rewrite the 1=

p
x function applied to oating point numbers, equation (eqn. B.45)

as
y(x) = (2

127�E

2
�1)(2(1:F)�1=2) (B.48)

and
(2E

0�127) � (2
127�E

2
�1) (B.49)

1:F 0 � 2(1:F)�1=2 (B.50)

then
p
2 < 1:F � 2 holds. This is not the exact valid range as de�ned for normalized

oating point numbers in equation (eqn. B.42). The value 2 causes the problem. By
mapping this value on the nearest representation < 2 this can be solved. The small error
that is introduced by this approximation is within the allowable range.

The integer representation of the exponent is the next problem. Calculating (2
127�E

2
�1)

introduces a fractional result if (127 � E) = odd. This is again easily accounted for by
splitting up the calculation into an odd and an even part. For (127 � E) = even E0 in
equation (eqn. B.49) can be exactly calculated in integer arithmetic as a function of E.

E0 =
127 �E

2
+ 126 (B.51)

158 Some implementation details.

For (127 �E) = odd equation (eqn. B.45) can be rewritten as

y(x) = (2
127�E�1

2)(
1:F

2
)�1=2 (B.52)

thus

E0 =
126 �E

2
+ 127 (B.53)

which also can be calculated exactly in integer arithmetic. Note that the fraction is
automatically corrected for its range earlier mentioned, so the exponent does not need an
extra correction.

The conclusions from this are:

� The fraction and exponent lookup table are independent. The fraction lookup table
exists of two tables (odd and even exponent) so the odd/even information of the
exponent (lsb bit) has to be used to select the right table.

� The exponent table is an 256 x 8 bit table, initialized for odd and even.

B.3.6 Implementation

The lookup tables can be generated by a small C program, which uses oating point
numbers and operations with IEEE 32 bit single precision format. Note that because
of the odd/even information that is needed, the fraction table is twice the size earlier
speci�ed (13 bit i.s.o. 12 bit).

The function according to equation (eqn. B.29) has to be implemented. Applied to the
1=
p
x function, equation (eqn. B.28) leads to

f = a� 1

y2
(B.54)

and so

f 0 =
2

y3
(B.55)

so

yn+1 = yn �
a� 1

y2
n

2
y3
n

(B.56)

or

yn+1 =
yn

2
(3� ay2n) (B.57)

Where y0 can be found in the lookup tables, and y1 gives the result to the maximum
accuracy. It is clear that only one iteration extra (in double precision) is needed for a
double precision result.

B.4 Tabulated functions 159

B.4 Tabulated functions

In some of the inner loops of GROMACS lookup tables are used for computation of
potential and forces. The tables are interpolated using a cubic spline algorithm. There
are separate tables for electrostatic, dispersion and repulsion interactions, but for the sake
of caching performance these have been combined into a single array. The cubic spline
interpolation looks like this:

y(x) = �yi + �yi+1 +
h2

6

h
(�3 � �)y

00

i + (�3 � �)y
00

i+1

i
(B.58)

where � = 1-�, and yi and y
00

i
are the tabulated values of a function y(x) and its second

derivative respectively. Furthermore,

h = xi+1 � xi (B.59)

� = (x� xi)=h (B.60)

so that 0 � � < 1. eqn. B.58 can be rewritten as

y(x) = yi + �

yi+1 � yi �

h2

6

�
2y

00

i + y
00

i+1

�!
+ �2

h2

2
y
00

i

!
+ �3

h2

6

�
y
00

i+1 � y
00

i

�
(B.61)

Note that the x-dependence is completely in �. This can abbreviated to

y(x) = yi + �Fi + �2Gi + �3Hi (B.62)

From this we can calculate the derivative in order to determine the forces:

dy(x)

dx
=

dy(x)

d�

d�

dx
= (Fi + 2�Gi + 3�2Hi)=h (B.63)

If we store in the table yi, Fi, Gi and Hi we need a table of length 4n. The number of
points per nanometer should be on the order of 500 to 1000, for accurate representation
(relative error < 10�4 when n = 500 points/nm). The force routines get a scaling factor
s as a parameter that is equal to the number of points per nm. (Note that h is s�1).

The algorithm goes a little something like this:

1. Calculate distance vector (rij) and distance rij

2. Multiply rij by s and truncate to an integer value n0 to get a table index

3. Calculate fractional component (� = srij � n0) and �
2

4. Do the interpolation to calculate the potential V and the the scalar force f

5. Calculate the vector force F by multiplying f with rij

The tables are stored as yi, Fi, Gi, Hi in the order coulomb, dispersion, repulsion. In
total there are 12 values in each table entry. Note that table lookup is signi�cantly slower

than computation of the most simple Lennard-Jones and Coulomb interaction. However,
it is much faster than the shifted coulomb function used in conjunction with the PPPM
method. Finally it is much easier to modify a table for the potential (and get a graphical
representation of it) than to modify the inner loops of the MD program.

160 Some implementation details.

File name Function Columns

rtab.xvg Repulsion

dtab.xvg Dispersion x f(x) -f(1)(x) f(2)(x) -f(3)(x)
ctab.xvg Coulomb

Table B.2: User speci�ed potential function data. f(n)(x) denotes the nth derivative of f(x)
with respect to x.

B.4.1 Your own potential function

You can also use your own potential functions without editing the GROMACS code. When
you add the following lines in your .mdp �le:

electrostatics = User

rshort = 1.0

rlong = 1.0

the MD program will expect to �nd three �les with �ve columns of table lookup data
according to Table B.2.

As an example for the normal dispersion interaction the �le would contain:
x -x�6 -6x�7 -42x�8 -336x�9

The x should run from 0 to rc+0.5, with a spacing of 0.002 nm when you run in single
precision, or 0.0005 when you run in double precision. This and other functions contain
a singularity at x=0, but since atoms are normally not closer to each other than 0.1 nm,
the function value at x=0 is not important. In this context rc denotes the single cut-o�
denoted by the variables rshort and rlong (see above). These variables should be the
same (but need not be 1.0) and consistent with the table data. The neighbor-searching
algorithm will search all atom-pairs within a distance rlong and compute the interactions
using your potential functions.

This mechanism allows the user to use their own preferred programming language,

Appendix C

Long range corrections

C.1 Dispersion

In this section we derive long range corrections due to the use of a cut-o� for Lennard Jones
interactions. We assume that the cut-o� is so long that the repulsion term can safely be
neglected, and therefore only the dispersion term is taken into account. Due to the nature
of the dispersion interaction, energy and pressure corrections both are negative. While the
energy correction is usually small, it may be important for free energy calculations. The
pressure correction in contrast is very large and can not be neglected. Although it is in
principle possible to parameterize a force �eld such that the pressure is close to 1 bar even
without correction, such a method makes the parameterization dependent on the cut-o�
and is therefore undesirable. Please note that it is not consistent to use the long range
correction to the dispersion without using either a reaction �eld method or a proper long
range electrostatics method such as Ewald summation or PPPM.

C.1.1 Energy

The long range contribution of the dispersion interaction to the virial can be derived
analytically, if we assume a homogeneous system beyond the cut-o� distance rc. The
dispersion energy between two particles is written as:

V (rij) = � C6r
�6
ij

(C.1)

and the corresponding force is

F ij = � 6C6r
�8
ij
rij (C.2)

The long range contribution to the dispersion energy in a system with N particles and
particle density � = N=V , where V is the volume, is [60]:

Vlr =
1

2
N�

Z 1

rc

4�r2g(r)V (r)dr (C.3)

162 Long range corrections

which we can integrate assuming that the radial distribution function g(r) is 1 beyond the
cut-o� rc

Vlr = � 2

3
N��C6r

�3
c (C.4)

If we consider for example a box of pure water, simulated with a cut-o� of 0.9 nm and a
density of 1 g cm�3 this correction is -0.25 kJ mol�1.

For a homogeneous mixture of M components j with Nj particles each, we can write the
long range contribution to the energy as:

Vlr =
MX
i6=j

�2NiNj

3V
�C6(ij)r

�3
c (C.5)

This can be rewritten if we de�ne an average dispersion constant hC6i:

hC6i =
X
i6=j

NiNj

N2
C6(ij) (C.6)

Vlr = �2

3
N�� hC6i r�3c (C.7)

A special form of a non-homogeneous system in this respect, is a pure liquid in which
the atoms have di�erent C6 values. In practice this de�nition encompasses almost every
molecule, except mono-atomic molecules and symmetric molecules likeN2 orO2. Therefore
we always have to determine the average dispersion constant hC6i in simulations.

In the case of inhomogeneous simulation systems, e.g. a system with a lipid interface, the
energy correction can be applied if hC6i for both components is comparable.

C.1.2 Virial and pressure

The scalar virial of the system due to the dispersion interaction between two particles i
and j is given by:

� = � rij � F ij = 6C6r
�6
ij

(C.8)

The pressure is given by:

P =
2

3V
(Ekin � �) (C.9)

We can again integrate the long range contribution to the virial [60]:

�lr =
1

2
N�

Z 1

rc

4�r2 �dr

= 12N��C6

Z 1

rc

r�4
ij
dr

= 4�C6N�r
�3
c (C.10)

The corresponding correction to the pressure is

Plr = � 4

3
�C6�

2r�3c (C.11)

C.1 Dispersion 163

Using the same example of a water box, the correction to the virial is 3 kJ mol�1 the
corresponding correction to the pressure for SPC water at liquid density is approx. -280
bar.

For homogeneous mixtures we can again use the average dispersion constant hC6i
(eqn. C.6):

Plr = � 4

3
� hC6i �2r�3c (C.12)

For inhomogeneous systems eqn. C.12 can be applied under the same restriction as holds
for the energy (see sec. C.1.1).

164 Long range corrections

Appendix D

Averages and uctuations

D.1 Formulae for averaging

Note: this section was taken from ref [69].

When analyzing a MD trajectory averages hxi and uctuations

D
(�x)2

E 1

2 =
D
[x� hxi]2

E 1

2 (D.1)

of a quantity x are to be computed. The variance �x of a series of Nx values, fxig, can be
computed from

�x =
NxX
i=1

x2i � 1

Nx

NxX
i=1

xi

!2

(D.2)

Unfortunately this formula is numerically not very accurate, especially when �
1

2
x is small

compared to the values of xi. The following (equivalent) expression is numerically more
accurate

�x =
NxX
i=1

[xi � hxi]2 (D.3)

with

hxi =
1

Nx

NxX
i=1

xi (D.4)

Using eqns. D.2 and D.4 one has to go through the series of xi values twice, once to
determine hxi and again to compute �x, whereas eqn. D.1 requires only one sequential
scan of the series fxig. However, one may cast eqn. D.2 in another form, containing
partial sums, which allows for a sequential update algorithm. De�ne the partial sum

Xn;m =
mX
i=n

xi (D.5)

and the partial variance

�n;m =
mX
i=n

�
xi �

Xn;m

m� n+ 1

�2
(D.6)

166 Averages and uctuations

It can be shown that
Xn;m+k = Xn;m +Xm+1;m+k (D.7)

and

�n;m+k = �n;m + �m+1;m+k +

�
Xn;m

m� n+ 1
� Xn;m+k

m+ k � n+ 1

�2
�

(m� n+ 1)(m+ k � n+ 1)

k
(D.8)

For n = 1 one �nds

�1;m+k = �1;m + �m+1;m+k +

�
X1;m

m
� X1;m+k

m+ k

�2 m(m+ k)

k
(D.9)

and for n = 1 and k = 1 (eqn. D.8) becomes

�1;m+1 = �1;m +

�
X1;m

m
� X1;m+1

m+ 1

�2
m(m+ 1) (D.10)

= �1;m +
[X1;m �mxm+1]

2

m(m+ 1)
(D.11)

where we have used the relation

X1;m+1 = X1;m + xm+1 (D.12)

Using formulae (eqn. D.11) and (eqn. D.12) the average

hxi =
X1;Nx

Nx

(D.13)

and the uctuation D
(�x)2

E 1

2 =

�
�1;Nx

Nx

� 1
2

(D.14)

can be obtained by one sweep through the data.

D.2 Implementation

In GROMACS the instantaneous energies E(m) are stored in the energy �le, along with
the values of �1;m and X1;m. Although the steps are counted from 0, for the energy and
uctuations steps are counted from 1. This means that the equations presented here are
the ones that are implemented. We give somewhat lengthy derivations in this section to
simplify checking of code and equations later on.

D.2.1 Part of a Simulation

It is not uncommon to perform a simulation where the �rst part, e.g. 100 ps, is taken
as equilibration. However, the averages and uctuations as printed in the log �le are

D.2 Implementation 167

computed over the whole simulation. The equilibration time, which is now part of the
simulation, may in such a case invalidate the averages and uctuations, because these
numbers are now dominated by the initial drift towards equilibrium.

Using eqns. D.7 and D.8 the average and standard deviation over part of the trajectory
can be computed as:

Xm+1;m+k = X1;m+k �X1;m (D.15)

�m+1;m+k = �1;m+k � �1;m �
�
X1;m

m
� X1;m+k

m+ k

�2 m(m+ k)

k
(D.16)

or, more generally (with p � 1 and q � p):

Xp;q = X1;q �X1;p�1 (D.17)

�p;q = �1;q � �1;p�1 �
�
X1;p�1

p� 1
� X1;q

q

�2 (p� 1)q

q � p+ 1
(D.18)

Note that implementation of this is not entirely trivial, since energies are not stored every
time step of the simulation. We therefore have to construct X1;p�1 and �1;p�1 from the
information at time p using eqns. D.11 and D.12:

X1;p�1 = X1;p � xp (D.19)

�1;p�1 = �1;p �
[X1;p�1 � (p� 1)xp]

2

(p� 1)p
(D.20)

D.2.2 Combining two simulations

Another frequently occurring problem is, that the uctuations of two simulations must be
combined. Consider the following example: we have two simulations (A) of n and (B) of
m steps, in which the second simulation is a continuation of the �rst. However, the second
simulation starts numbering from 1 instead of from n+ 1. For the partial sum this is no
problem, we have to add XA

1;n from run A:

XAB

1;n+m = XA

1;n +XB

1;m (D.21)

When we want to compute the partial variance from the two components we have to make
a correction ��:

�AB1;n+m = �A1;n + �B1;m +�� (D.22)

if we de�ne xAB
i

as the combined and renumbered set of data points we can write:

�AB1;n+m =
n+mX
i=1

"
xABi �

XAB
1;n+m

n+m

#2
(D.23)

and thus

n+mX
i=1

"
xABi �

XAB
1;n+m

n+m

#2
=

nX
i=1

"
xAi �

XA
1;n

n

#2
+

mX
i=1

"
xBi �

XB
1;m

m

#2
+�� (D.24)

168 Averages and uctuations

or

n+mX
i=1

2
4(xABi)2 � 2xABi

XAB
1;n+m

n+m
+

XAB
1;n+m

n+m

!2
3
5 � (D.25)

nX
i=1

2
4(xAi)2 � 2xAi

XA
1;n

n
+

XA
1;n

n

!2
3
5 �

mX
i=1

2
4(xBi)2 � 2xBi

XB
1;m

m
+

XB
1;m

m

!2
3
5 = ��

all the x2
i
terms drop out, and the terms independent of the summation counter i can be

simpli�ed:

�
XAB
1;n+m

�2
n+m

�

�
XA
1;n

�2
n

�

�
XB
1;m

�2
m

� (D.26)

2
XAB
1;n+m

n+m

n+mX
i=1

xABi + 2
XA
1;n

n

nX
i=1

xAi + 2
XB
1;m

m

mX
i=1

xBi = ��

we recognize the three partial sums on the second line and use eqn. D.21 to obtain:

�� =

�
mXA

1;n � nXB
1;m

�2
nm(n+m)

(D.27)

if we check this by inserting m = 1 we get back eqn. D.11

D.2.3 Summing energy terms

The g energy program can also sum energy terms into one, e.g. potential + kinetic = total.
For the partial averages this is again easy if we have S energy components s:

XS

m;n =
nX

i=m

SX
s=1

xsi =
SX
s=1

nX
i=m

xsi =
SX
s=1

Xs

m;n (D.28)

For the uctuations it is less trivial again, considering for example that the uctuation in
potential and kinetic energy should cancel. Nevertheless we can try the same approach as
before by writing:

�Sm;n =
SX
s=1

�sm;n +�� (D.29)

if we �ll in eqn. D.6:

nX
i=m

"
SX
s=1

xsi

!
�

XS
m;n

m� n+ 1

#2
=

SX
s=1

nX
i=m

�
(xsi)�

Xs
m;n

m� n+ 1

�2
+�� (D.30)

D.2 Implementation 169

which we can expand to:

nX
i=m

2
4 SX
s=1

(xsi)
2 +

XS
m;n

m� n+ 1

!2

� 2

0
@ XS

m;n

m� n+ 1

SX
s=1

xsi +
SX
s=1

SX
s0=s+1

xsix
s0

i

1
A
3
5(D.31)

�
SX
s=1

nX
i=m

"
(xsi)

2 � 2
Xs
m;n

m� n+ 1
xsi +

�
Xs
m;n

m� n+ 1

�2#
= ��

the terms with (xs
i
)2 cancel, so that we can simplify to:

�
XS
m;n

�2
m� n+ 1

� 2
XS
m;n

m� n+ 1

nX
i=m

SX
s=1

xsi � 2
nX

i=m

SX
s=1

SX
s0=s+1

xsix
s0

i � (D.32)

SX
s=1

nX
i=m

"
�2

Xs
m;n

m� n+ 1
xsi +

�
Xs
m;n

m� n+ 1

�2#
= ��

or

�

�
XS
m;n

�2
m� n+ 1

� 2
nX

i=m

SX
s=1

SX
s0=s+1

xsix
s0

i +
SX
s=1

�
Xs
m;n

�2
m� n+ 1

= �� (D.33)

If we now expand the �rst term using eqn. D.28 we obtain:

�

�P
S

s=1X
s
m;n

�2
m� n+ 1

� 2
nX

i=m

SX
s=1

SX
s0=s+1

xsix
s
0

i +
SX
s=1

�
Xs
m;n

�2
m� n+ 1

= �� (D.34)

which we can reformulate to:

�2

2
4 SX
s=1

SX
s0=s+1

Xs

m;nX
s0

m;n +
nX

i=m

SX
s=1

SX
s0=s+1

xsix
s0

i

3
5 = �� (D.35)

or

�2

2
4 SX
s=1

Xs

m;n

SX
s0=s+1

Xs0

m;n +
SX
s=1

nX
i=m

xsi

SX
s0=s+1

xs
0

i

3
5 = �� (D.36)

which gives

�2
SX
s=1

2
4Xs

m;n

SX
s0=s+1

nX
i=m

xs
0

i +
nX

i=m

xsi

SX
s0=s+1

xs
0

i

3
5 = �� (D.37)

Since we need all data points i to evaluate this, in general this is not possible. We can
then make an estimate of �Sm;n using only the data points that are available using the left
hand side of eqn. D.30. While the average can be computed using all time steps in the
simulation, the accuracy of the uctuations is thus limited by the frequency with which
energies are saved. Since this can be easily done with a program such as xmgr this is not
built-in in GROMACS.

170 Averages and uctuations

Appendix E

Manual Pages

E.1 do dssp

do dssp reads a trajectory �le and computes the secondary structure for each time frame (or every

-dt ps) by calling the dssp program. If you do not have the dssp program, get it. do dssp assumes

that the dssp executable is in /home/mdgroup/dssp/dssp. If that is not the case, then you should

set an environment variable DSSP pointing to the dssp executable as in:

setenv DSSP /usr/local/bin/dssp

The structure assignment for each residue and time is written to an .xpm matrix �le. This �le can

be visualized with for instance xv and can be converted to postscript with xpm2ps. The number

of residues with each secondary structure type and the total secondary structure (-sss) count as

a function of time are also written to �le (-sc).

Solvent accessible surface per residue can be calculated, both in absolute values (A2) and in frac-

tions of the maximal accessible surface of a residue. The maximal accessible surface is de�ned as

the accessible surface of a residue in a chain of glycines.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb

-n index.ndx Input, Opt. Index �le

-map ss.map Input, Lib. File that maps matrix data to colors

-o ss.xpm Output X PixMap compatible matrix �le

-sc scount.xvg Output xvgr/xmgr �le

-a area.xpm Output, Opt. X PixMap compatible matrix �le

-ta totarea.xvg Output, Opt. xvgr/xmgr �le

-aa averarea.xvg Output, Opt. xvgr/xmgr �le

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

-w bool no View output using xvgr or ghostview

-dt real 0 Only analyze a frame each dt picoseconds

-sss string HEBT Secondary structures for structure count

172 Manual Pages

Diagnostics

� The program is very slow

E.2 editconf

editconf converts generic structure format to .gro or .pdb.

A number of options is present to modify the coordinates and box. -d, -dc and -box modify the

box and center the coordinates relative to the new box. -dc takes precedent over -d. -box takes

precedent over -dc and -d.

-rotate rotates the coordinates and velocities. -princ aligns the principal axes of the system along

the coordinate axes, this may allow you to decrease the box volume, but beware that molecules

can rotate signi�cantly in a nanosecond.

Scaling is applied before any of the other operations are performed. Boxes can be scaled to give

a certain density (option -density). A special feature of the scaling option, when the factor -1 is

given in one dimension, one obtains a mirror image, mirrored in one of the plains, when one uses

-1 in three dimensions a point-mirror image is obtained.

Groups are selected after all operations have been applied.

Periodicity can be removed in a crude manner. It is important that the box sizes at the bottom of

your input �le are correct when the periodicity is to be removed.

The program can optionally rotate the solute molecule to align the molecule along its principal

axes (-rotate)

When writing .pdb �les, B-factors can be added with the -bf option. B-factors are read from a

�le with with following format: �rst line states number of entries in the �le, next lines state an

index followed by a B-factor. The B-factors will be attached per residue unless an index is larger

than the number of residues or unless the -atom option is set. Obviously, any type of numeric

data can be added instead of B-factors. -legend will produce a row of CA atoms with B-factors

ranging from the minimum to the maximum value found, e�ectively making a legend for viewing.

Finally with option -label editconf can add a chain identi�er to a pdb �le, which can be useful

for analysis with e.g. rasmol.

Files
-f conf.gro Input Generic structure: gro g96 pdb tpr tpb tpa

-n index.ndx Input, Opt. Index �le

-o out.gro Output Generic structure: gro g96 pdb

-bf bfact.dat Input, Opt. Generic data �le

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel

-ndef bool no Choose output from default index groups

-d real 0 Distance between the solute and the rectangular box

-dc real 0 Distance between the solute and the cubic box

-box vector 0 0 0 Size of box

-c bool no Center molecule in box (implied by -d -dc -box)

-center vector 0 0 0 Coordinates of geometrical center

-rotate vector 0 0 0 Rotation around the X, Y and Z axes in degrees

-princ bool no Orient molecule(s) along their principal axes

E.3 eneconv 173

-scale vector 1 1 1 Scaling factor

-density real 1000 Density (g/l) of the output box achieved by scaling

-pbc bool no Remove the periodicity (make molecule whole again)

-atom bool no Force B-factor attachment per atom

-legend bool no Make B-factor legend

-label string A Add chain label for all residues

Diagnostics

� For complex molecules, the periodicity removal routine may break down, in that case you

can use trjconv

E.3 eneconv

When -f is not speci�ed:

Concatenates several energy �les in sorted order. In case of double time frames the one in the later

�le is used. By specifying -settime you will be asked for the start time of each �le. The input �les

are taken from the command line, such that the command eneconv -o fixed.edr *.edr should

do the trick.

With -f speci�ed:

Reads one energy �le and writes another, applying the -dt, -offset, -t0 and -settime options

and converting to a di�erent format if necessary (indicated by �le extentions).

-settime is applied �rst, then -dt/-offset followed by -b and -e to select which frames to write.

Files
-f ener.edr Input Generic energy: edr ene

-o fixed.edr Output, Opt. Generic energy: edr ene

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First time to use

-e real -1 Last time to use

-dt real 0 Only write out frame when t MOD dt = o�set

-offset real 0 Time o�set for -dt option

-settime bool no Change starting time interactively

-sort bool yes Sort energy �les (not frames)

E.4 g anaeig

g anaeig analyzes eigenvectors. The eigenvectors can be of a covariance matrix (g covar) or of a

Normal Modes anaysis (g nmeig).

When a trajectory is projected on eigenvectors, all structures are �tted to the structure in the

eigenvector �le, if present, otherwise to the structure in the structure �le. When no run input �le

is supplied, periodicity will not be taken into account. Most analyses are done on eigenvectors

-first to -last, but when -first is set to -1 you will be prompted for a selection.

-disp: plot all atom displacements of eigenvectors -first to -last.

174 Manual Pages

-proj: calculate projections of a trajectory on eigenvectors -first to -last.

-2d: calculate a 2d projection of a trajectory on eigenvectors -first and -last.

-3d: calculate a 3d projection of a trajectory on the �rst three selected eigenvectors.

-filt: �lter the trajectory to show only the motion along eigenvectors -first to -last.

-extr: calculate the two extreme projections along a trajectory on the average structure and in-

terpolate -nframes frames between them, or set your own extremes with -max. The eigenvector

-first will be written unless -first and -last have been set explicitly, in which case all eigen-

vectors will be written to separate �les. Chain identi�ers will be added when writing a .pdb �le

with two or three structures (you can use rasmol -nmrpdb to view such a pdb �le).

-over: calculate the subspace overlap of the eigenvectors in �le -v2 with eigenvectors -first to

-last in �le -v.

-inpr: calculate a matrix of inner-products between eigenvectors in �les -v and -v2. All eigen-

vectors of the �rst �le will be used unless -first and -last have been set explicitly.

Files
-v eigenvec.trr Input Full precision trajectory: trr trj

-v2 eigenvec2.trr Input, Opt. Full precision trajectory: trr trj

-f traj.xtc Input, Opt. Generic trajectory: xtc trr trj gro g96 pdb

-s topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb

-n index.ndx Input, Opt. Index �le

-disp eigdisp.xvg Output, Opt. xvgr/xmgr �le

-proj proj.xvg Output, Opt. xvgr/xmgr �le

-2d 2dproj.xvg Output, Opt. xvgr/xmgr �le

-3d 3dproj.pdb Output, Opt. Generic structure: gro g96 pdb

-filt filtered.xtc Output, Opt. Generic trajectory: xtc trr trj gro g96 pdb

-extr extreme.pdb Output, Opt. Generic trajectory: xtc trr trj gro g96 pdb

-over overlap.xvg Output, Opt. xvgr/xmgr �le

-inpr inprod.xpm Output, Opt. X PixMap compatible matrix �le

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

-first int 1 First eigenvector for analysis (-1 is select)

-last int 8 Last eigenvector for analysis (-1 is till the last)

-skip int 1 Only analyse every nr-th frame

-max real 0 Maximum for projection of the eigenvector on the average structure,

max=0 gives the extremes
-nframes int 2 Number of frames for the extremes output

E.5 g analyze

g analyze reads an ascii �le and analyzes data sets. A line in the input �le may start with a time

(see option -time) and any number of y values may follow. Multiple sets can also be read when

they are seperated by & (option -n), in this case only one y value is read from each line. All lines

starting with # and @ are skipped. All analyses can also be done for the derivative of a set (option

-d).

Option -ac produces the autocorrelation function(s).

E.6 g angle 175

Option -msd produces the mean square displacement(s).

Option -dist produces distribution plot(s).

Option -av produces the average over the sets, optionally with error bars (-errbar).

Option -ee produces error estimates using block averaging. A set is divided in a number of blocks

and averages are calculated for each block. The error for the total average is calculated from the

variance between the block averages. These errors are plotted as a function of the block size. For a

good error estimate the block size should be at least as large as the correlation time, but possibly

much larger.

Files
-f graph.xvg Input xvgr/xmgr �le

-ac autocorr.xvg Output, Opt. xvgr/xmgr �le

-msd msd.xvg Output, Opt. xvgr/xmgr �le

-dist distr.xvg Output, Opt. xvgr/xmgr �le

-av average.xvg Output, Opt. xvgr/xmgr �le

-ee errest.xvg Output, Opt. xvgr/xmgr �le

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-time bool yes Expect a time in the input

-n int 1 Read # sets seperated by &

-d bool no Use the derivative

-bw real 0.1 Binwidth for the distribution

-errbar enum none Error bars for the average: none, stddev or error

-subav bool no Subtract the average before autocorrelating

-oneacf bool no Calculate one ACF over all sets

-acflen int -1 Length of the ACF, default is half the number of frames

-normalize bool yes Normalize ACF

-P enum 0 Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2 or

3
-nparm enum 1 Number of parameters in exponential �t: 1 or 2

-beginfit real 0 Time where to begin the exponential �t of the correlation function

-endfit real 0 Time where to end the exponential �t of the correlation function

E.6 g angle

g angle computes the angle distribution for a number of angles or dihedrals. This way you can

check whether your simulation is correct. With option -ov you can plot the average angle of a

group of angles as a function of time. With the -all option the �rst graph is the average, the rest

are the individual angles.

With the -of option g angle also calculates the fraction of trans dihedrals (only for dihedrals) as

function of time, but this is probably only fun for a selected few.

With option -oc a dihedral correlation function is calculated.

It should be noted that the index�le should contain atom-triples for angles or atom-quadruplets

for dihedrals. If this is not the case, the program will crash.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

176 Manual Pages

-s topol.tpr Input Generic run input: tpr tpb tpa

-n angle.ndx Input Index �le

-od angdist.xvg Output xvgr/xmgr �le

-ov angaver.xvg Output, Opt. xvgr/xmgr �le

-of dihfrac.xvg Output, Opt. xvgr/xmgr �le

-ot dihtrans.xvg Output, Opt. xvgr/xmgr �le

-oh trhisto.xvg Output, Opt. xvgr/xmgr �le

-oc dihcorr.xvg Output, Opt. xvgr/xmgr �le

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

-w bool no View output using xvgr or ghostview

-type enum angle Type of angle to analyse: angle, dihedral, improper or ryckaert-

bellemans
-all bool no Plot all angles separately in the averages �le, in the order of appear-

ance in the index �le.
-binwidth real 1 binwidth (degrees) for calculating the distribution

-chandler bool no Use Chandler correlation function (N[trans] = 1, N[gauche] = 0)

rather than cosine correlation function. Trans is de�ned as phi <

-60 or phi > 60.
-avercorr bool no Average the correlation functions for the individual angles/dihedrals

-acflen int -1 Length of the ACF, default is half the number of frames

-normalize bool yes Normalize ACF

-P enum 0 Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2 or

3
-nparm enum 1 Number of parameters in exponential �t: 1 or 2

-beginfit real 0 Time where to begin the exponential �t of the correlation function

-endfit real 0 Time where to end the exponential �t of the correlation function

Diagnostics

� Counting transitions only works for dihedrals with multiplicity 3

E.7 g bond

g bond makes a distribution of bond lengths. If all is well a gaussian distribution should be made

when using a harmonic potential. bonds are read from a single group in the index �le in order

i1-j1 i2-j2 thru in-jn.

-tol gives the half-width of the distribution as a fraction of the bondlength (-blen). That means,

for a bond of 0.2 a tol of 0.1 gives a distribution from 0.18 to 0.22

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-n index.ndx Input Index �le

-o bonds.xvg Output xvgr/xmgr �le

-l bonds.log Output, Opt. Log �le

Other options
-h bool no Print help info and quit

E.8 g chi 177

-nice int 19 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

-w bool no View output using xvgr or ghostview

-blen real -1 Bond length. By default length of �rst bond

-tol real 0.1 Half width of distribution as fraction of blen

-aver bool yes Sum up distributions

Diagnostics

� It should be possible to get bond information from the topology.

E.8 g chi

g chi computes phi, psi, omega and chi dihedrals for all your amino acid backbone and sidechains.

It can compute dihedral angle as a function of time, and as histogram distributions. Output is in

form of xvgr �les, as well as a LaTeX table of the number of transitions per nanosecond.

Order parameters S2 for each of the dihedrals are calculated and output as xvgr �le and optionally

as a pdb �le with the S2 values as B-factor.

If option -c is given, the program will calculate dihedral autocorrelation functions. The function

used is C(t) = < cos(chi(tau)) cos(chi(tau+t)) >. The use of cosines rather than angles themselves,

resolves the problem of periodicity. (Van der Spoel & Berendsen (1997), Biophys. J. 72, 2032-

2041).

The option -r generates a contour plot of the average omega angle as a function of the phi and psi

angles, that is, in a Ramachandran plot the average omega angle is plotted using color coding.

Files
-s topol.tpr Input Generic run input: tpr tpb tpa

-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-o order.xvg Output xvgr/xmgr �le

-p order.pdb Output, Opt. Protein data bank �le

-jc Jcoupling.xvg Output xvgr/xmgr �le

-c dihcorr.xvg Output, Opt. xvgr/xmgr �le

-g chi.log Output Log �le

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

-w bool no View output using xvgr or ghostview

-r0 int 1 starting residue

-phi bool no Output for Phi dihedral angles

-psi bool no Output for Psi dihedral angles

-omega bool no Output for Omega dihedrals (peptide bonds)

-rama bool no Generate Phi/Psi and Chi1/Chi2 ramachandran plots

-viol bool no Write a �le that gives 0 or 1 for violated Ramachandran angles

-all bool no Output separate �les for every dihedral.

-shift bool no Compute chemical shifts from Phi/Psi angles

-run int 1 perform running average over ndeg degrees for histograms

178 Manual Pages

-maxchi enum 0 calculate �rst ndih Chi dihedrals: 0, 1, 2, 3, 4, 5 or 6

-ramomega bool no compute average omega as a function of phi/psi and plot it in an xpm

plot
-bfact real -1 bfactor value for pdb �le for atoms with no calculated dihedral order

parameter
-acflen int -1 Length of the ACF, default is half the number of frames

-normalize bool yes Normalize ACF

-P enum 0 Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2 or

3
-nparm enum 1 Number of parameters in exponential �t: 1 or 2

-beginfit real 0 Time where to begin the exponential �t of the correlation function

-endfit real 0 Time where to end the exponential �t of the correlation function

Diagnostics

� Produces MANY output �les (up to about 4 times the number of residues in the protein,

twice that if autocorrelation functions are calculated). Typically several hundred �les are

output.

E.9 g cluster

g cluster can cluster structures with several di�erent methods. Distances between structures can

be determined from a trajectory or read from an XPM matrix �le with the -dm option. RMS

deviation after �tting or RMS deviation of atom-pair distances can be used to de�ne the distance

between structures.

full linkage: add a structure to a cluster when its distance to any element of the cluster is less than

cutoff.

Jarvis Patrick: add a structure to a cluster when this structure and a structure in the cluster have

each other as neighbors and they have a least P neighbors in common. The neighbors of a structure

are the M closest structures or all structures within cutoff.

Monte Carlo: reorder the RMSD matrix using Monte Carlo.

diagonalization: diagonalize the RMSD matrix.

When unique cluster assignments can be determined (full linkage and Jarvis Patrick) and a trajec-

tory �le is supplied, the structure with the smallest average distance to the others or the average

structure for each cluster will be written to a trajectory �le.

Files
-f traj.xtc Input, Opt. Generic trajectory: xtc trr trj gro g96 pdb

-s topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb

-n index.ndx Input, Opt. Index �le

-dm rmsd.xpm Input, Opt. X PixMap compatible matrix �le

-o rmsd-clust.xpm Output X PixMap compatible matrix �le

-g cluster.log Output Log �le

-dist rmsd-dist.xvg Output xvgr/xmgr �le

-ev rmsd-eig.xvg Output, Opt. xvgr/xmgr �le

-cl clusters.pdb Output, Opt. Generic trajectory: xtc trr trj gro g96 pdb

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

E.10 g com 179

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

-w bool no View output using xvgr or ghostview

-dista bool no Use RMSD of distances instead of RMS deviation

-nlevels int 40 Discretize RMSD matrix in # levels

-cutoff real 0.1 RMSD cut-o� (nm) for two structures to be similar

-max real -1 Maximum level in RMSD matrix

-skip int 1 Only analyze every nr-th frame

-av bool no Write average iso middle structure for each cluster

-method enum linkage Method for cluster determination: linkage, jarvis-patrick, monte-

carlo or diagonalization
-binary bool no Treat the RMSD matrix as consisting of 0 and 1, where the cut-o� is

given by -cuto�
-M int 10 Number of nearest neighbors considered for Jarvis-Patrick algorithm,

0 is use cuto�
-P int 3 Number of identical nearest neighbors required to form a cluster

-seed int 1993 Random number seed for Monte Carlo clustering algorithm

-niter int 10000 Number of iterations for MC

-kT real 0.001 Boltzmann weighting factor for Monte Carlo optimization (zero turns

o� uphill steps)

E.10 g com

g com computes the translational and rotational motion of a group of atoms (i.e. a protein) as a

function of time.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb

-n index.ndx Input, Opt. Index �le

-ox xcm.xvg Output xvgr/xmgr �le

-oe ekrot.xvg Output, Opt. xvgr/xmgr �le

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

E.11 g confrms

g confrms computes the root mean square deviation (RMSD) of two structures after LSQ �tting

the second structure on the �rst one. The two structures do NOT need to have the same number

of atoms, only the two index groups used for the �t need to be identical.

The superimposed structures are written to �le. In a .pdb �le the two structures will have chain

identi�ers 'A' and 'B' respectively. When the option -one is set, only the �tted structure is written

to �le and the chain identi�ers are not changed.

Files
-f1 conf1.gro Input Structure+mass(db): tpr tpb tpa gro g96 pdb

180 Manual Pages

-f2 conf2.gro Input Generic structure: gro g96 pdb tpr tpb tpa

-o fit.pdb Output Generic structure: gro g96 pdb

-n1 fit1.ndx Input, Opt. Index �le

-n2 fit2.ndx Input, Opt. Index �le

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-one bool no Only write the �tted structure to �le

-pbc bool no Try to make molecules whole again

E.12 g covar

g covar calculates and diagonalizes the (mass-weighted) covariance matrix. All structures are

�tted to the structure in the structure �le. When this is not a run input �le periodicity will not

be taken into account. When the �t and analysis groups are identical and the analysis is non

mass-weighted, the �t will also be non mass-weighted.

The eigenvectors are written to a trajectory �le (-v). When the same atoms are used for the

�t and the covariance analysis, the reference structure is written �rst with t=-1. The average

structure is written with t=0, the eigenvectors are written as frames with the eigenvector number

as timestamp. The eigenvectors can be analyzed with g anaeig.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb

-n index.ndx Input, Opt. Index �le

-o eigenval.xvg Output xvgr/xmgr �le

-v eigenvec.trr Output Full precision trajectory: trr trj

-av average.pdb Output Generic structure: gro g96 pdb

-l covar.log Output Log �le

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

-fit bool yes Fit to a reference structure

-mwa bool no Mass-weighted covariance analysis

-last int -1 Last eigenvector to write away (-1 is till the last)

E.13 g density

Compute partial densities across the box, using an index �le. Densities in gram/cubic centimeter,

number densities or electron densities can be calculated. For electron densities, each atom is

weighed by its atomic partial charge.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-n index.ndx Input, Opt. Index �le

E.14 g dielectric 181

-s topol.tpr Input Generic run input: tpr tpb tpa

-ei electrons.dat Output Generic data �le

-o density.xvg Output xvgr/xmgr �le

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

-w bool no View output using xvgr or ghostview

-d string Z Take the normal on the membrane in direction X, Y or Z.

-sl int 10 Divide the box in #nr slices.

-number bool no Calculate number density instead of mass density. Hydrogens are not

counted!
-ed bool no Calculate electron density instead of mass density

-count bool no Only count atoms in slices, no densities. Hydrogens are not counted

Diagnostics

� When calculating electron densities, atomnames are used instead of types. This is bad.

� When calculating number densities, atoms with names that start with H are not counted.

This may be surprising if you use hydrogens with names like OP3.

E.14 g dielectric

dielectric calculates frequency dependent dielectric constants from the autocorrelation function of

the total dipole moment in your simulation. This ACF can be generated by g dipoles. For an

estimate of the error you can run g statistics on the ACF, and use the output thus generated for

this program. The functional forms of the available functions are:

One parmeter : y = Exp[-a1 x] Two parmeters : y = a2 Exp[-a1 x] Three parmeter: y = a2 Exp[-a1

x] + (1 - a2) Exp[-a3 x] Startvalues for the �t procedure can be given on the commandline. It is

also possible to �x parameters at their start value, use -n�x with the number of the parameter you

want to �x.

Three output �les are generated, the �rst contains the ACF, an exponential �t to it with 1, 2 or

3 parameters, and the numerical derivative of the combination data/�t. The second �le contains

the real and imaginary parts of the frequency-dependent dielectric constant, the last gives a plot

known as the Cole-Cole plot, in which the imaginary component is plotted as a fcuntion of the

real component. For a pure exponential relaxation (Debye relaxation) the latter plot should be

one half of a circle

Files
-f Mtot.xvg Input xvgr/xmgr �le

-d deriv.xvg Output xvgr/xmgr �le

-o epsw.xvg Output xvgr/xmgr �le

-c cole.xvg Output xvgr/xmgr �le

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

182 Manual Pages

-w bool no View output using xvgr or ghostview

-fft bool no use fast fourier transform for correlation function

-x1 bool yes use �rst column as X axis rather than �rst data set

-eint real 5 Time were to end the integration of the data and start to use the �t

-bfit real 5 Begin time of �t

-efit real 500 End time of �t

-tail real 500 Length of function including data and tail from �t

-A real 0 Start value for �t parameter A

-tau1 real 0 Start value for �t parameter tau1

-tau2 real 0 Start value for �t parameter tau2

-eps0 real 80 Epsilon 0 of your liquid

-epsRF real 78.5 Epsilon of the reaction �eld used in your simulation

-fix string Fix this parameter at its start value, e.g. A, tau1 or tau2

-nparm int 2 Number of parameters for �tting!

-nsmooth int 3 Number of points for smoothing

E.15 g dih

g dih can do two things. The default is to analyze dihedral transitions by merely computing all

the dihedral angles de�ned in your topology for the whole trajectory. When a dihedral ips over

to another minimum an angle/time plot is made.

The opther option is to discretize the dihedral space into a number of bins, and group each

conformation in dihedral space in the appropriate bin. The output is then given as a number of

dihedral conformations sorted according to occupancy.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-s topol.tpr Input Generic run input: tpr tpb tpa

-o hello.out Output Generic output �le

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

-w bool no View output using xvgr or ghostview

-sa bool no Perform cluster analysis in dihedral space instead of analysing dihe-

dral transitions.
-mult int -1 mulitiplicity for dihedral angles (by default read from topology)

E.16 g dipoles

g dipoles computes the total dipole plus uctuations of a simulation system. From this you can

compute e.g. the dielectric constant for low dielectric media

The �le dip.xvg contains the total dipole moment of a frame, the components as well as the norm

of the vector. The �le aver.xvg contains < orMuor2 > and < orMuor >2 during the simulation.

The �le dip.xvg contains the distribution of dipole moments during the simulation The mu max is

used as the highest value in the distribution graph.

E.16 g dipoles 183

Furthermore the dipole autocorrelation function will be computed, when option -c is used. It can

be averaged over all molecules, or (with option -avercorr) it can be computed as the autocorrelation

of the total dipole moment of the simulation box.

At the moment the dielectric constant is calculated only correct if a rectangular or cubic simulation

box is used.

EXAMPLES

g dipoles -P1 -n mols -o dip sqr -mu 2.273 -mumax 5.0 -nframes 1001 -no�t

This will calculate the autocorrelation function of the molecular dipoles using a �rst order Legendre

polynomial of the angle of the dipole vector and itself a time t later. For this calculation 1001

frames will be used. Further the dielectric constant will be calculated using an epsilonRF of in�nity

(default), temperature of 300 K (default) and an average dipole moment of the molecule of 2.273

(SPC). For the distribution function a maximum of 5.0 will be used.

Files
-enx ener.edr Input, Opt. Generic energy: edr ene

-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-s topol.tpr Input Generic run input: tpr tpb tpa

-n index.ndx Input, Opt. Index �le

-o Mtot.xvg Output xvgr/xmgr �le

-a aver.xvg Output xvgr/xmgr �le

-d dipdist.xvg Output xvgr/xmgr �le

-c dipcorr.xvg Output, Opt. xvgr/xmgr �le

-g gkr.xvg Output, Opt. xvgr/xmgr �le

-fa fitacf.xvg Output, Opt. xvgr/xmgr �le

-q quadrupole.xvg Output, Opt. xvgr/xmgr �le

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

-w bool no View output using xvgr or ghostview

-nframes int 10 Number of frames in trajectory (overestimating is OK)

-mu real 2.5 dipole of a single molecule (in Debye)

-mumax real 5 max dipole in Debye (for histrogram)

-epsilonRF real 0 epsilon of the reaction �eld used during the simulation, needed for

dieclectric constant calculation. WARNING: 0.0 means in�nity (de-

fault)
-temp real 300 average temperature of the simulation (needed for dielectric constant

calculation)
-avercorr bool no calculate AC function of average dipole moment of the simulation

box rather than average of AC function per molecule
-firstatom bool no Use the �rst atom of a molecule (water ?) to calculate the distance

between molecules rather than the center of geometry in the calcula-

tion of distance dependent Kirkwood factors
-acflen int -1 Length of the ACF, default is half the number of frames

-normalize bool yes Normalize ACF

-P enum 0 Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2 or

3
-nparm enum 1 Number of parameters in exponential �t: 1 or 2

-beginfit real 0 Time where to begin the exponential �t of the correlation function

-endfit real 0 Time where to end the exponential �t of the correlation function

184 Manual Pages

E.17 g disre

g disre computes violations of distance restraints. If necessary all protons can be added to a protein

molecule. The program allways computes the instantaneous violations rather than time-averaged,

because this analysis is done from a trajectory �le afterwards it does not make sense to use time

averaging.

An index �le may be used to select out speci�c restraints for printing.

Files
-s topol.tpr Input Generic run input: tpr tpb tpa

-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-ds drsum.xvg Output xvgr/xmgr �le

-da draver.xvg Output xvgr/xmgr �le

-dn drnum.xvg Output xvgr/xmgr �le

-dm drmax.xvg Output xvgr/xmgr �le

-dr restr.xvg Output xvgr/xmgr �le

-l disres.log Output Log �le

-n viol.ndx Input, Opt. Index �le

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

-w bool no View output using xvgr or ghostview

-prot bool no Protonate protein every step. This currently does not add terminal

hydrogens, and therefore works only when the termini are capped.
-ntop int 6 Number of large violations that are stored in the log �le every step

E.18 g dist

g dist can calculate the distance between the centers of mass of two groups of atoms as a function

of time.

Or when -dist is set, print all the atoms in group 2 that are closer than a certain distance to the

center of mass of group 1.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-s topol.tpr Input Generic run input: tpr tpb tpa

-n index.ndx Input, Opt. Index �le

-o dist.xvg Output, Opt. xvgr/xmgr �le

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

-dist real 0 Print all atoms in group 2 closer than dist to the center of mass of

group 1

E.19 g enemat 185

E.19 g enemat

g enemat extracts an energy matrix from an energy �le. With -groups a �le must be supplied

with on each line a group to be used. For these groups a matrices of interaction energies will be

calculated. Also the total interaction energy energy per group is calculated.

An approximation of the free energy is calculated using: E(free) = E0 + kT log(<exp((E-

E0)/kT)>), where '<>' stands for time-average. A �le with reference free energies can be supplied

to calculate the free energy di�erence with some reference state. Group names (e.g. residue names

in the reference �le should correspond to the group names as used in the -groups �le, but a

appended number (e.g. residue number)in the -groups will be ignored in the comparison.

Files
-f ener.edr Input, Opt. Generic energy: edr ene

-groups groups.dat Input Generic data �le

-eref eref.dat Input, Opt. Generic data �le

-emat emat.xpm Output X PixMap compatible matrix �le

-etot energy.xvg Output xvgr/xmgr �le

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

-w bool no View output using xvgr or ghostview

-sum bool no Sum the energy terms selected rather than display them all

-skip int 0 Skip number of frames between data points

-mean bool yes with -groups calculates matrix of mean energies in stead of matrix

for each timestep
-nlevels int 20 number of levels for matrix colors

-max real 1e+20 max value for energies

-min real -1e+20 min value for energies

-coul bool yes calculate Coulomb SR energies

-coulr bool no calculate Coulomb LR energies

-coul14 bool no calculate Coulomb 1-4 energies

-lj bool yes calculate Lennard-Jones SR energies

-lj14 bool no calculate Lennard-Jones 1-4 energies

-bham bool no calculate Buckingham energies

-free bool yes calculate free energy

-temp real 300 reference temperature for free energy calculation

E.20 g energy

g energy extracts energy components or distance restraint data from an energy �le. The user is

prompted to interactively select the energy terms she wants.

When the -viol option is set, the time averaged violations are plotted and the running time-

averaged and instantaneous sum of violations are recalculated. Additionally running time-averaged

and instantaneous distances between selected pairs can be plotted with the -pairs option.

Average and RMSD are calculated with full precision from the simulation (see printed manual).

Drift is calculated by performing a LSQ �t of the data to a straight line. Total drift is drift

multiplied by total time.

186 Manual Pages

With -G a Gibbs free energy estimate is calculated using the formula: G = -ln < e (̂E/kT) > *

kT, where k is Boltzmann's constant, T is set by -Gtemp and the average is over the ensemble (or

time in a trajectory). Note that this is in principle only correct when averaging over the whole

(Boltzmann) ensemble and using the potential energy. This also allows for an entropy estimate

using G = H - T S, where H is the enthalpy (H = U + p V) and S entropy.

Files
-f ener.edr Input, Opt. Generic energy: edr ene

-s topol.tpr Input, Opt. Generic run input: tpr tpb tpa

-o energy.xvg Output xvgr/xmgr �le

-viol violaver.xvg Output, Opt. xvgr/xmgr �le

-pairs pairs.xvg Output, Opt. xvgr/xmgr �le

-corr enecorr.xvg Output, Opt. xvgr/xmgr �le

-vis visco.xvg Output, Opt. xvgr/xmgr �le

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

-w bool no View output using xvgr or ghostview

-G bool no Do a free energy estimate

-Gtemp real 300 Reference temperature for free energy calculation

-zero real 0 Subtract a zero-point energy

-sum bool no Sum the energy terms selected rather than display them all

-dp bool no Print energies in high precision

-mutot bool no Compute the total dipole moment from the components

-skip int 0 Skip number of frames between data points

-aver bool no Print also the X1,t and sigma1,t, only if only 1 energy is requested

-nmol int 1 Number of molecules in your sample: the energies are divided by this

number
-ndf int 3 Number of degrees of freedom per molecule. Necessary for calculating

the heat capacity
-fluc bool no Calculate autocorrelation of energy uctuations rather than energy

itself
-acflen int -1 Length of the ACF, default is half the number of frames

-normalize bool yes Normalize ACF

-P enum 0 Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2 or

3
-nparm enum 1 Number of parameters in exponential �t: 1 or 2

-beginfit real 0 Time where to begin the exponential �t of the correlation function

-endfit real 0 Time where to end the exponential �t of the correlation function

E.21 g gyrate

g gyrate computes the radius of gyration of a group of atoms and the radii of gyration about the

x, y and z axes,as a function of time. The atoms are explicitly mass weighted.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb

-o gyrate.xvg Output xvgr/xmgr �le

-n index.ndx Input, Opt. Index �le

E.22 g h2order 187

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

-w bool no View output using xvgr or ghostview

-q bool no Use absolute value of the charge of an atom as weighting factor in-

stead of mass
-p bool no Calculate the radii of gyration about the principal axes.

E.22 g h2order

Compute the orientation of water molecules with respect to the normal of the box. The program

determines the average cosine of the angle between de dipole moment of water and an axis of the

box. The box is divided in slices and the average orientation per slice is printed. Each water

molecule is assigned to a slice, per time frame, based on the position of the oxygen. When -nm

is used the angle between the water dipole and the axis from the center of mass to the oxygen is

calculated instead of the angle between the dipole and a box axis.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-n index.ndx Input Index �le

-nm index.ndx Input, Opt. Index �le

-s topol.tpr Input Generic run input: tpr tpb tpa

-o order.xvg Output xvgr/xmgr �le

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

-w bool no View output using xvgr or ghostview

-d string Z Take the normal on the membrane in direction X, Y or Z.

-sl int 0 Calculate order parameter as function of boxlength, dividing the box

in #nr slices.

Diagnostics

� The program assigns whole water molecules to a slice, based on the �rstatom of three in the

index �le group. It assumes an order O,H,H.Name is not important, but the order is. If this

demand is not met,assigning molecules to slices is di�erent.

E.23 g hbond

g hbond computes and analyzes hydrogen bonds. Hydrogen bonds are determined based on cuto�s

for the angle Donor - Hydrogen - Acceptor (zero is extended) and the distance Hydrogen - Acceptor.

OH and NH groups are regarded as donors, O is an acceptor always, N is an acceptor by default,

but this can be switched using -nitacc. Dummy hydrogen atoms are assumed to be connected to

the �rst preceding non-hydrogen atom.

188 Manual Pages

You need to specify two groups for analysis, which must be either identical or non-overlapping.

All hydrogen bonds between the two groups are analyzed.

It is also possible to analyse speci�c hydrogen bonds with -sel. This index �le must contain a

group of atom triplets Donor Hydrogen Acceptor, in the following way:

[selected]

20 21 24

25 26 29

1 3 6

Note that the triplets need not be on separate lines. Each atom triplet speci�es a hydro-

gen bond to be analyzed, note also that no check is made for the types of atoms.

-ins turns on computing solvent insertion into hydrogen bonds. In this case an additional group

must be selected, specifying the solvent molecules.

-dumconn makes g hbond assume a covalent bond exists between any dummy atom and the �rst

preceding (in sequence) heavy atom. This is used in searching Donor-Hydrogen pairs.

Output:

-num: number of hydrogen bonds as a function of time.

-ac: average over all autocorrelations of the existence functions (either 0 or 1) of all hydrogen

bonds.

-dist: distance distribution of all hydrogen bonds.

-ang: angle distribution of all hydrogen bonds.

-hx: the number of n-n+i hydrogen bonds as a function of time where n and n+i stand for residue

numbers and i ranges from 0 to 6. This includes the n-n+3, n-n+4 and n-n+5 hydrogen bonds

associated with helices in proteins.

-hbn: all selected groups, donors, hydrogens and acceptors for selected groups, all hydrogen bonded

atoms from all groups and all solvent atoms involved in insertion.

-hbm: existence matrix for all hydrogen bonds over all frames, this also contains information on

solvent insertion into hydrogen bonds.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-s topol.tpr Input Generic run input: tpr tpb tpa

-n index.ndx Input, Opt. Index �le

-sel select.ndx Input, Opt. Index �le

-num hbnum.xvg Output xvgr/xmgr �le

-ac hbac.xvg Output, Opt. xvgr/xmgr �le

-dist hbdist.xvg Output, Opt. xvgr/xmgr �le

-ang hbang.xvg Output, Opt. xvgr/xmgr �le

-hx hbhelix.xvg Output, Opt. xvgr/xmgr �le

-hbn hbond.ndx Output, Opt. Index �le

-hbm hbmap.xpm Output, Opt. X PixMap compatible matrix �le

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

-ins bool no analyze solvent insertion

-a real 60 cuto� angle (degrees, Donor - Hydrogen - Acceptor)

-r real 0.25 cuto� radius (nm, Hydrogen - Acceptor)

E.24 g helix 189

-abin real 1 binwidth angle distribution (degrees)

-rbin real 0.005 binwidth distance distribution (nm)

-nitacc bool yes regard nitrogen atoms as acceptors

E.24 g helix

g helix computes all kind of helix properties. First, the peptide is checked to �nd the longest

helical part. This is determined by Hydrogen bonds and Phi/Psi angles. That bit is �tted to an

ideal helix around the Z-axis and centered around the origin. Then the following properties are

computed:

1. Helix radius (�le radius.xvg). This is merely the RMS deviation in two dimensions for all

Calpha atoms. it is calced as sqrt((SUM i(x2(i)+y2(i)))/N), where N is the number of backbone

atoms. For an ideal helix the radius is 0.23 nm

2. Twist (�le twist.xvg). The average helical angle per residue is calculated. For alpha helix it is

100 degrees, for 3-10 helices it will be smaller, for 5-helices it will be larger.

3. Rise per residue (�le rise.xvg). The helical rise per residue is plotted as the di�erence in Z-

coordinate between Ca atoms. For an ideal helix this is 0.15 nm

4. Total helix length (�le len-ahx.xvg). The total length of the helix in nm. This is simply the

average rise (see above) times the number of helical residues (see below).

5. Number of helical residues (�le n-ahx.xvg). The title says it all.

6. Helix Dipole, backbone only (�le dip-ahx.xvg).

7. RMS deviation from ideal helix, calculated for the Calpha atoms only (�le rms-ahx.xvg).

8. Average Calpha-Calpha dihedral angle (�le phi-ahx.xvg).

9. Average Phi and Psi angles (�le phipsi.xvg).

10. Ellipticity at 222 nm according to Hirst and Brooks

Files
-s topol.tpr Input Generic run input: tpr tpb tpa

-n index.ndx Input Index �le

-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-to gtraj.g87 Output, Opt. Gromos-87 ASCII trajectory format

-cz zconf.gro Output Generic structure: gro g96 pdb

-co waver.gro Output Generic structure: gro g96 pdb

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

-w bool no View output using xvgr or ghostview

-r0 int 1 The �rst residue number in the sequence

-q bool no Check at every step which part of the sequence is helical

-F bool yes Toggle �t to a perfect helix

-db bool no Print debug info

-ev bool no Write a new 'trajectory' �le for ED

-ahxstart int 0 First residue in helix

-ahxend int 0 Last residue in helix

190 Manual Pages

E.25 g mdmat

g mdmat makes distance matrices consisting of the smallest distance between residue pairs. With

-frames these distance matrices can be stored as a function of time, to be able to see di�erences

in tertiary structure as a funcion of time. If you choose your options unwise, this may generate

a large output �le. Default only an averaged matrix over the whole trajectory is output. Also a

count of the number of di�erent atomic contacts between residues over the whole trajectory can

be made. The output can be processed with xpm2ps to make a PostScript (tm) plot.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb

-n index.ndx Input, Opt. Index �le

-mean dm.xpm Output X PixMap compatible matrix �le

-frames dmf.xpm Output, Opt. X PixMap compatible matrix �le

-no num.xvg Output, Opt. xvgr/xmgr �le

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

-t real 1.5 trunc distance

-nlevels int 40 Discretize distance in # levels

-dt real 0 Only analyze a frame each dt picoseconds

E.26 g mindist

g mindist computes the distance between one group and a number of other groups. Both the

smallest distance and the number of contacts within a given distance are plotted to two separate

output �les

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-n index.ndx Input Index �le

-od mindist.xvg Output xvgr/xmgr �le

-on numcont.xvg Output xvgr/xmgr �le

-o atm-pair.out Output Generic output �le

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

-w bool no View output using xvgr or ghostview

-matrix bool no Calculate half a matrix of group-group distances

-d real 0.6 Distance for contacts

E.27 g msd 191

E.27 g msd

g msd computes the mean square displacement (MSD) of atoms from their initial positions. This

provides an easy way to compute the di�usion constant using the Einstein relation.

If the -d option is given, the di�usion constant will be printed in addition to the MSD

Mean Square Displacement calculations and Correlation functions can be calculated more accu-

rately, when using multiple starting points (see also Gromacs Manual). You can select the number

of starting points, and the interval (in picoseconds) between starting points. More starting points

implies more CPU time.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb

-n index.ndx Input, Opt. Index �le

-o msd.xvg Output xvgr/xmgr �le

-m mol.xvg Output, Opt. xvgr/xmgr �le

-d diff.xvg Output, Opt. xvgr/xmgr �le

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

-w bool no View output using xvgr or ghostview

-type enum no Compute di�usion coe�cient in one direction: no, x, y or z

-lateral enum no Calculate the lateral di�usion in a plane perpendicular to: no, x, y

or z
-ngroup int 1 Number of groups to calculate MSD for

-mw bool yes Mass weighted MSD

-nrestart int 1 Number of restarting points in trajectory

-dt real 0 Time between restarting points in trajectory (only with -nrestart >

1)

Diagnostics

� The di�usion constant given in the title of the graph for lateral di�usion has to be multiplied

by 6/4

E.28 g nmeig

g nmeig calculates the eigenvectors/values of a (Hessian) matrix, which can be calculated with

nmrun. The eigenvectors are written to a trajectory �le (-v). The structure is written �rst with

t=0. The eigenvectors are written as frames with the eigenvector number as timestamp. The

eigenvectors can be analyzed with g anaeig. An ensemble of structures can be generated from the

eigenvectors with g nmens.

Files
-f hessian.mtx Input Hessian matrix

-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb

-o eigenval.xvg Output xvgr/xmgr �le

-v eigenvec.trr Output Full precision trajectory: trr trj

192 Manual Pages

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-m bool yes Divide elements of Hessian by product of sqrt(mass) of involved atoms

prior to diagonalization. This should be used for 'Normal Modes'

analyses
-first int 1 First eigenvector to write away

-last int 100 Last eigenvector to write away

E.29 g nmens

g nmens generates an ensemble around an average structure in a subspace which is de�ned by

a set of normal modes (eigenvectors). The eigenvectors are assumed to be mass-weighted. The

position along each eigenvector is randomly taken from a Gaussian distribution with variance

kT/eigenvalue.

By default the starting eigenvector is set to 7, since the �rst six normal modes are the translational

and rotational degrees of freedom.

Files
-v eigenvec.trr Input Full precision trajectory: trr trj

-e eigenval.xvg Input xvgr/xmgr �le

-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb

-n index.ndx Input, Opt. Index �le

-o ensemble.xtc Output Generic trajectory: xtc trr trj gro g96 pdb

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-temp real 300 Temperature in Kelvin

-seed int -1 Random seed, -1 generates a seed from time and pid

-num int 100 Number of structures to generate

-first int 7 First eigenvector to use (-1 is select)

-last int -1 Last eigenvector to use (-1 is till the last)

E.30 g order

Compute the order parameter per atom for carbon tails. For atom i the vector i-1, i+1 is used

together with an axis. The index �le has to contain a group with all equivalent atoms in all tails

for each atom the order parameter has to be calculated for. The program can also give all diagonal

elements of the order tensor and even calculate the deuterium order parameter Scd (default). If the

option -szonly is given, only one order tensor component (speci�ed by the -d option) is given and

the order parameter per slice is calculated as well. If -szonly is not selected, all diagonal elements

and the deuterium order parameter is given.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-n index.ndx Input Index �le

-s topol.tpr Input Generic run input: tpr tpb tpa

-o order.xvg Output xvgr/xmgr �le

-od deuter.xvg Output xvgr/xmgr �le

-os sliced.xvg Output xvgr/xmgr �le

E.31 g potential 193

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

-w bool no View output using xvgr or ghostview

-d enum z Direction of the normal on the membrane: z, x or y

-sl int 1 Calculate order parameter as function of boxlength, dividing the box

in #nr slices.
-szonly bool no Only give Sz element of order tensor. (axis can be speci�ed with -d)

-unsat bool no Calculate order parameters for unsaturated carbons. Note that this

cannot be mixed with normal order parameters.

E.31 g potential

Compute the electrostatical potential across the box. The potential iscalculated by �rst summing

the charges per slice and then integratingtwice of this charge distribution. Periodic boundaries

are not taken into account. Reference of potential is taken to be the left side ofthe box. It's

also possible to calculate the potential in sphericalcoordinates as function of r by calculating a

charge distribution inspherical slices and twice integrating them. epsilon r is taken as 1,2 is more

appropriate in many cases

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-n index.ndx Input Index �le

-s topol.tpr Input Generic run input: tpr tpb tpa

-o potential.xvg Output xvgr/xmgr �le

-oc charge.xvg Output xvgr/xmgr �le

-of field.xvg Output xvgr/xmgr �le

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

-w bool no View output using xvgr or ghostview

-d string Z Take the normal on the membrane in direction X, Y or Z.

-sl int 10 Calculate potential as function of boxlength, dividing the box in #nr

slices.
-cb int 0 Discard �rst #nr slices of box for integration

-ce int 0 Discard last #nr slices of box for integration

-tz real 0 Translate all coordinates <distance> in the direction of the box

-spherical bool no Calculate spherical thingie

Diagnostics

� Discarding slices for integration should not be necessary.

E.32 g rama

g rama selects the Phi/Psi dihedral combinations from your topology �le and computes these as a

function of time. Using simple Unix tools such as grep you can select out speci�c residues.

194 Manual Pages

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-s topol.tpr Input Generic run input: tpr tpb tpa

-o rama.xvg Output xvgr/xmgr �le

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

-w bool no View output using xvgr or ghostview

E.33 g rdens

Compute radial densities across the box, in three avors:probability density, number density, real

density

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-n index.ndx Input Index �le

-s topol.tpr Input Generic run input: tpr tpb tpa

-op p rdens.xvg Output xvgr/xmgr �le

-on n rdens.xvg Output xvgr/xmgr �le

-or r rdens.xvg Output xvgr/xmgr �le

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

-width real 0.12 bin width for radial axis

E.34 g rdf

g rdf calculates radial distribution functions in di�erent ways. The normal method is around a

(set of) particle(s), the other method is around the center of mass of a set of particles.

If a run input �le is supplied (-s), exclusions de�ned in that �le are taken into account when

calculating the rdf. The option -cut is meant as an alternative way to avoid intramolecular peaks

in the rdf plot. It is however better to supply a run input �le with a higher number of exclusions.

For eg. benzene a topology with nrexcl set to 5 would eliminate all intramolecular contributions

to the rdf.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-s topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb

-n index.ndx Input, Opt. Index �le

-o rdf.xvg Output xvgr/xmgr �le

E.35 g rms 195

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

-w bool no View output using xvgr or ghostview

-bin real 0.005 Binwidth (nm)

-com bool no RDF with respect to the center of mass of �rst group

-cut real 0 Shortest distance (nm) to be considered

E.35 g rms

g rms computes the root mean square deviation (RMSD) of a structure from a trajectory with

respect to a reference structure from a run input �le by LSQ �tting the structures on top of each

other. The reference structure is taken from the structure �le (-s).

Option -prev produces the RMSD with a previous frame.

Option -m produces a matrix in .xpm format of RMSD's of each structure in the trajectory with

respect to each other structure. This �le can be visualized with for instance xv and can be converted

to postscript with xpm2ps. All the structures are �tted on the structure in the structure �le. With

-fitall all the structures are �tted pairwise. With -f2, the 'other structures' are taken from a

second trajectory. Option -bin does a binary dump of the RMSD matrix.

Option -bm produces a matrix of average bond angle deviations analogously to the -m option. Only

bonds between atoms in the RMSD group are considered.

Files
-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb

-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-f2 traj.xtc Input, Opt. Generic trajectory: xtc trr trj gro g96 pdb

-n index.ndx Input, Opt. Index �le

-o rmsd.xvg Output xvgr/xmgr �le

-a avgrp.xvg Output, Opt. xvgr/xmgr �le

-dist rmsd-dist.xvg Output, Opt. xvgr/xmgr �le

-m rmsd.xpm Output, Opt. X PixMap compatible matrix �le

-bin rmsd.dat Output, Opt. Generic data �le

-bm bond.xpm Output, Opt. X PixMap compatible matrix �le

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

-w bool no View output using xvgr or ghostview

-pbc bool yes PBC check

-fit bool yes Fit to reference structure

-ns bool no ns on axis instead of ps

-prev int 0 Calculate rmsd with previous frame

-fitall bool no Fit all pairs of structures in matrix

-skip int 1 Only write every nr-th frame to matrix

-skip2 int 1 Only write every nr-th frame to matrix

-max real -1 Maximum level in RMSD matrix

196 Manual Pages

-min real -1 Minimum level in RMSD matrix

-bmax real -1 Maximum level in bond angle matrix

-bmin real -1 Minimum level in bond angle matrix

-nlevels int 40 Number of levels in the matrices

E.36 g rmsdist

g rmsdist computes the root mean square deviation of atom distances, which has the advantage

that no �t is needed like in standard RMS deviation as computed by g rms. The reference structure

is taken from the structure �le. The rmsd at time t is calculated as the rms of the di�erences in

distance between atom-pairs in the reference structure and the structure at time t.

g rmsdist can also produce matrices of the rms distances, rms distances scaled with the mean

distance and the mean distances and matrices with NMR averaged distances (1/r3 and 1/r6 aver-

aging).

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-s topol.tpr Input Structure+mass(db): tpr tpb tpa gro g96 pdb

-n index.ndx Input, Opt. Index �le

-o distrmsd.xvg Output xvgr/xmgr �le

-rms rmsdist.xpm Output, Opt. X PixMap compatible matrix �le

-scl rmsscale.xpm Output, Opt. X PixMap compatible matrix �le

-mean rmsmean.xpm Output, Opt. X PixMap compatible matrix �le

-nmr3 nmr3.xpm Output, Opt. X PixMap compatible matrix �le

-nmr6 nmr6.xpm Output, Opt. X PixMap compatible matrix �le

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

-w bool no View output using xvgr or ghostview

-nlevels int 40 Discretize rms in # levels

-max real -1 Maximum level in matrices

E.37 g rmsf

g rmsf computes the root mean square uctuation (RMSF, i.e. standard deviation) of atomic

positions after �rst �tting to a reference frame.

When the (optional) pdb �le is given, the RMSF values are converted to B-factor values and

plotted with the experimental data.

With option -aver the average coordinates will be calculated and used as reference for �tting (which

is useless usually). They are also saved to a gro �le (which may be usefull).

With the option -aniso g rmsf will compute anisotropic temperature factors and then it will also

output average coordinates and a pdb �le with ANISOU records (corresonding to the -oq option).

Please note that the U values are orientation dependent, so before comparison with experimental

data you should verify that you �t to the experimental coordinates.

When a pdb input �le is passed to the program and the -aniso ag is set a correlation plot of the

Uij will be created, if any anisotropic temperature factors are present in the pdb �le.

E.38 g rotacf 197

Files
-s topol.tpr Input Generic run input: tpr tpb tpa

-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-q eiwit.pdb Input, Opt. Protein data bank �le

-oq anisou.pdb Output, Opt. Protein data bank �le

-n index.ndx Input, Opt. Index �le

-o rmsf.xvg Output xvgr/xmgr �le

-oc correl.xvg Output, Opt. xvgr/xmgr �le

-ox xaver.gro Output, Opt. Generic structure: gro g96 pdb

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

-w bool no View output using xvgr or ghostview

-aver bool no Calculate average coordinates �rst. Requires reading the coordinates

twice
-aniso bool no Compute anisotropic termperature factors

E.38 g rotacf

g rotacf calculates the rotational correlation function for molecules. Three atoms (i,j,k) must be

given in the index �le, de�ning two vectors ij and jk. The rotational acf is calculated as the

autocorrelation function of the vector n = ij x jk, i.e. the cross product of the two vectors. Since

three atoms span a plane, the order of the three atoms does not matter. Optionally, controlled

by the -d switch, you can calculate the rotational correlation function for linear molecules by

specifying two atoms (i,j) in the index �le.

EXAMPLES

g rotacf -P 1 -nparm 2 -�t -n index -o rotacf-x-P1 -fa exp�t-x-P1 -begin�t 2.5 -end�t 20.0

This will calculate the rotational correlation function using a �rst order Legendre polynomial of

the angle of a vector de�ned by the index �le. The correlation function will be �tted from 2.5 ps

till 20.0 ps to a two parameter exponential

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-s topol.tpr Input Generic run input: tpr tpb tpa

-n index.ndx Input Index �le

-o rotacf.xvg Output xvgr/xmgr �le

-a fitacf.xvg Output, Opt. xvgr/xmgr �le

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

-w bool no View output using xvgr or ghostview

-d bool no Use index doublets (vectors) for correlation function instead of

triplets (planes)
-acflen int -1 Length of the ACF, default is half the number of frames

198 Manual Pages

-normalize bool yes Normalize ACF

-P enum 0 Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2 or

3
-nparm enum 1 Number of parameters in exponential �t: 1 or 2

-beginfit real 0 Time where to begin the exponential �t of the correlation function

-endfit real 0 Time where to end the exponential �t of the correlation function

E.39 g saltbr

g saltbr plots the di�erence between all combination of charged groups as a function of time. The

groups are combined in di�erent ways.A minimum distance can be given, (eg. the cut-o�), then

groups that are never closer than that distance will not be plotted.

Output will be in a number of �xed �lenames, min-min.xvg,min-plus.xvg and plus-plus.xvg, or

�les for every individual ion-pair if selected

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-s topol.tpr Input Generic run input: tpr tpb tpa

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

-t real 1000 trunc distance

-sep bool no Use separate �les for each interaction (may be MANY)

E.40 g sas

g sas computes hydrophobic and total solvent accessible surface area.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-s topol.tpr Input Generic run input: tpr tpb tpa

-o area.xvg Output xvgr/xmgr �le

-q connelly.pdb Output, Opt. Protein data bank �le

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

-w bool no View output using xvgr or ghostview

-solsize real 0.14 Radius of the solvent probe (nm)

-ndots int 24 Number of dots per sphere, more dots means more accuracy

-qmax real 0.2 The maximum charge (e, absolute value) of a hydrophobic atom

-skip int 1 Do only every nth frame

E.41 g sgangle 199

E.41 g sgangle

Compute the angle and distance between two groups. The groups are de�ned by a number of

atoms given in an index �le and may be two or three atoms in size. The angles calculated depend

on the order in which the atoms are given. Giving for instance 5 6 will rotate the vector 5-6 with

180 degrees compared to giving 6 5.

If three atoms are given, the normal on the plane spanned by those three atoms will be calculated,

using the formula P1P2 x P1P3. The cos of the angle is calculated, using the inproduct of the two

normalized vectors.

Here is what some of the �le options do:

-oa: Angle between the two groups speci�ed in the index �le. If a group contains three atoms the

normal to the plane de�ned by those three atoms will be used. If a group contains two atoms, the

vector de�ned by those two atoms will be used.

-od: Distance between two groups. Distance is taken from the center of one group to the center of

the other group.

-od1: If one plane and one vector is given, the distances for each of the atoms from the center of

the plane is given seperately.

-od2: For two planes this option has no meaning.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-n index.ndx Input Index �le

-s topol.tpr Input Generic run input: tpr tpb tpa

-oa sg angle.xvg Output xvgr/xmgr �le

-od sg dist.xvg Output xvgr/xmgr �le

-od1 sg dist1.xvg Output xvgr/xmgr �le

-od2 sg dist2.xvg Output xvgr/xmgr �le

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

-w bool no View output using xvgr or ghostview

E.42 g velacc

g velacc computes the velocity autocorrelation function

Files
-f traj.trr Input Full precision trajectory: trr trj

-n index.ndx Input Index �le

-o vac.xvg Output xvgr/xmgr �le

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

-w bool no View output using xvgr or ghostview

-acflen int -1 Length of the ACF, default is half the number of frames

200 Manual Pages

-normalize bool yes Normalize ACF

-P enum 0 Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2 or

3
-nparm enum 1 Number of parameters in exponential �t: 1 or 2

-beginfit real 0 Time where to begin the exponential �t of the correlation function

-endfit real 0 Time where to end the exponential �t of the correlation function

E.43 genbox

Genbox can do one of 3 things:

1) Generate a box of solvent. Specify -cs and -box.

2) Solvate a solute con�guration, eg. a protein, in a bath of solvent molecules. Specify -cp (solute)

and -cs (solvent). The box speci�ed in the solute coordinate �le (-cp) is used, unless -box is set,

which also centers the solute. The program editconf has more sophisticated options to change

the box and center the solute. Solvent molecules are removed from the box where the distance

between any atom of the solute molecule(s) and any atom of the solvent molecule is less than the

sum of the VanderWaals radii of both atoms. A database (vdwradii.dat) of VanderWaals radii

is read by the program, atoms not in the database are assigned a default distance -vdw.

3) Insert a number (-nmol) of extra molecules (-ci) at random positions. The program iterates

until nmol molecules have been inserted in the box. To test whether an insertion is successful the

same VanderWaals criterium is used as for removal of solvent molecules. When no appropriately

sized holes (holes that can hold an extra molecule) are available the program does not terminate,

but searches forever. To avoid this problem the genbox program may be used several times in

a row with a smaller number of molecules to be inserted. Alternatively, you can add the extra

molecules to the solute �rst, and then in a second run of genbox solvate it all.

The default solvent is Simple Point Charge water (SPC). The coordinates for this are read from

$GMXLIB/spc216.gro. Other solvents are also supported, as well as mixed solvents. The only

restriction to solvent types is that a solvent molecule consists of exactly one residue. The residue

information in the coordinate �les is used, and should therefore be more or less consistent. In

practice this means that two subsequent solvent molecules in the solvent coordinate �le should

have di�erent residue number. The box of solute is built by stacking the coordinates read from

the coordinate �le. This means that these coordinates should be equlibrated in periodic boundary

conditions to ensure a good alignment of molecules on the stacking interfaces.

The program can optionally rotate the solute molecule to align the longest molecule axis along a

box edge. This way the amount of solvent molecules necessary is reduced. It should be kept in

mind that this only works for short simulations, as eg. an alpha-helical peptide in solution can

rotate over 90 degrees, within 500 ps. In general it is therefore better to make a more or less cubic

box.

Finally, genbox will optionally remove lines from your topology �le in which a number of solvent

molecules is already added, and adds a line with the total number of solvent molecules in your

coordinate �le.

Files
-cp protein.gro Input, Opt. Generic structure: gro g96 pdb tpr tpb tpa

-cs spc216.gro Input, Opt., Lib. Generic structure: gro g96 pdb tpr tpb tpa

-ci insert.gro Input, Opt. Generic structure: gro g96 pdb tpr tpb tpa

-o out.gro Output Generic structure: gro g96 pdb

-p topol.top In/Out, Opt. Topology �le

E.44 genconf 201

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-box vector 0 0 0 box size

-nmol int 0 no of extra molecules to insert

-seed int 1997 random generator seed

-vdwd real 0.105 default vdwaals distance

Diagnostics

� Molecules must be whole in the initial con�gurations.

E.44 genconf

genconf multiplies a given coordinate �le by simply stacking them on top of each other, like a small

child playing with wooden blocks. The program makes a grid of user de�ned proportions (-nbox),

and interspaces the grid point with an extra space -dist.

When option -rot is used the program does not check for overlap between molecules on grid points.

It is recommended to make the box in the input �le at least as big as the coordinates + Van der

Waals radius.

If the optional trajectory �le is given, conformations are not generated, but read from this �le and

translated appropriately to build the grid.

Files
-f conf.gro Input Generic structure: gro g96 pdb tpr tpb tpa

-o out.gro Output Generic structure: gro g96 pdb

-trj traj.xtc Input, Opt. Generic trajectory: xtc trr trj gro g96 pdb

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel

-nbox vector 1 1 1 Number of boxes

-dist vector 0 0 0 Distance between boxes

-seed int 0 Random generator seed

-rot bool no Randomly rotate conformations

-maxrot vector 90 90 90 Maximum random rotation

Diagnostics

� The program should allow for random displacement o� lattice points.

E.45 gendr

gendr generates a distance restraint entry for a gromacs topology from another format. The format

of the input �le must be:

resnr-i resname-i atomnm-i resnr-j resname-j atomnm-j lower upper

where lower and upper are the distance bounds. The entries must be separated by spaces, but may

be otherwise in free format. Some expansion of templates like MB -> HB1, HB2 is done but this

is not really well tested.

202 Manual Pages

Files
-s topol.tpr Input Generic run input: tpr tpb tpa

-d nnnice.dat Input Generic data �le

-o topinc.itp Output Include �le for topology

-m expmap.dat Input Generic data �le

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel

-r int 1 starting residue number

E.46 genion

genion replaces water molecules by monoatomic ions. Ions can be placed at the water oxygen

positions with the most favorable electrostatic potential or at random. The potential is calculated

on all atoms, using normal GROMACS particle based methods (in contrast to other methods based

on solving the Poisson-Boltzmann equation). The potential is recalculated after every ion insertion.

If speci�ed in the run input �le, a reaction �eld or shift function can be used. The potential can

be written as B-factors in a pdb �le (for visualisation using e.g. rasmol)

For larger ions, e.g. sulfate we recommended to use genbox.

Files
-s topol.tpr Input Generic run input: tpr tpb tpa

-o out.gro Output Generic structure: gro g96 pdb

-g genion.log Output Log �le

-pot pot.pdb Output, Opt. Protein data bank �le

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-p int 0 Number of positive ions

-pn string Na Name of the positive ion

-pq real 1 Charge of the positive ion

-n int 0 Number of negative ions

-nn string Cl Name of the negative ion

-nq real -1 Charge of the negative ion

-rmin real 0.6 Minimum distance between ions

-w1 int 1 First water atom to be cosidered (counting from 1)

-nw int 0 Number of water molecules

-random bool no Use random placement of ions instead of based on potential. The

rmin option should still work
-seed int 1993 Seed for random number generator

E.47 genpr

genpr produces an include �le for a topology containing a list of atom numbers and three force

constants for the X, Y and Z direction. A single isotropic force constant may be given on the

command line instead of three components.

This list is used as the position restraint list

E.48 gmxcheck 203

Files
-f conf.gro Input Generic structure: gro g96 pdb tpr tpb tpa

-n index.ndx Input, Opt. Index �le

-o posre.itp Output Include �le for topology

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel

-fc vector

1000 1000 1000 force constants (kJ mol-1 nm-2)

E.48 gmxcheck

gmxcheck reads a trajectory (.trj, .trr or .xtc) or an energy �le (.ene or .edr) and prints out

useful information about them.

For a coordinate �le (generic structure �le, e.g. .gro) gmxcheck will check for presence of coordi-

nates, velocities and box in the �le, for close contacts (smaller than -vdwfac and not bonded, i.e.

not between -bonlo and -bonhi, all relative to the sum of both Van der Waals radii) and atoms

outside the box (these may occur often and are no problem). If velocities are present, an estimated

temperature will be calculated from them.

The program will compare run input (.tpr, .tpb or .tpa) �les when both -s1 and -s2 are supplied.

Files
-f traj.xtc Input, Opt. Generic trajectory: xtc trr trj gro g96 pdb

-s1 top1.tpr Input, Opt. Generic run input: tpr tpb tpa

-s2 top2.tpr Input, Opt. Generic run input: tpr tpb tpa

-c topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb

-e ener.edr Input, Opt. Generic energy: edr ene

-e1 ener1.edr Input, Opt. Generic energy: edr ene

-e2 ener2.edr Input, Opt. Generic energy: edr ene

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel

-vdwfac real 0.8 Fraction of sum of VdW radii used as warning cuto�

-bonlo real 0.4 Min. fract. of sum of VdW radii for bonded atoms

-bonhi real 0.7 Max. fract. of sum of VdW radii for bonded atoms

-tol real 0 Tolerance for comparing energy terms between di�erent energy �les

E.49 gmxdump

gmxdump reads a run input �le (.tpa/.tpr/.tpb), a trajectory (.trj/.trr/.xtc) or an energy

�le (.ene/.edr) and prints that to standard output in a readable format. This program is essential

for checking your run input �le in case of problems.

Files
-s topol.tpr Input, Opt. Generic run input: tpr tpb tpa

-f traj.xtc Input, Opt. Generic trajectory: xtc trr trj gro g96 pdb

-e ener.edr Input, Opt. Generic energy: edr ene

204 Manual Pages

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel

-nr bool yes Show index numbers in output (leaving them out makes comparsion

easier, but creates a useless topology)

E.50 grompp

The gromacs preprocessor reads a molecular topology �le, checks the validity of the �le, expands

the topology from a molecular description to an atomic description. The topology �le contains in-

formation about molecule types and the number of molecules, the preprocessor copies each molecule

as needed. There is no limitation on the number of molecule types. Bonds and bond-angles can

be converted into constraints, separately for hydrogens and heavy atoms. Then a coordinate �le

is read and velocities can be generated from a Maxwellian distribution if requested. grompp also

reads parameters for the mdrun (eg. number of MD steps, time step, cut-o�), and others such as

NEMD parameters, which are corrected so that the net acceleration is zero. Eventually a binary

�le is produced that can serve as the sole input �le for the MD program.

grompp calls the c-preprocessor to resolve includes, macros etcetera. To specify a macro-

preprocessor other than /lib/cpp (such as m4) you can put a line in your parameter �le specifying

the path to that cpp. Specifying -pp will get the pre-processed topology �le written out.

If your system does not have a c-preprocessor, you can still use grompp, but you do not have access

to the features from the cpp. Command line options to the c-preprocessor can be given in the .mdp

�le. See your local manual (man cpp).

When using position restraints a �le with restraint coordinates can be supplied with -r, otherwise

constraining will be done relative to the conformation from the -c option.

Starting coordinates can be read from trajectory with -t. The last frame with coordinates and

velocities will be read, unless the -time option is used. Note that these velocities will not be used

when gen vel = yes in your .mdp �le. If you want to continue a crashed run, it is easier to use

tpbconv.

Using the -morse option grompp can convert the harmonic bonds in your topology to morse

potentials. This makes it possible to break bonds. For this option to work you need an extra �le

in your $GMXLIB with dissociation energy. Use the -debug option to get more information on the

workings of this option (look for MORSE in the grompp.log �le using less or something like that).

By default all bonded interactions which have constant energy due to dummy atom constructions

will be removed. If this constant energy is not zero, this will result in a shift in the total energy.

All bonded interactions can be kept by turning o� -rmdumbds. Additionally, all constraints for

distances which will be constant anyway because of dummy atom constructions will be removed.

If any constraints remain which involve dummy atoms, a fatal error will result.

To verify your run input �le, please make notice of all warnings on the screen, and correct where

necessary. Do also look at the contents of the mdout.mdp �le, this contains comment lines, as well

as the input that grompp has read. If in doubt you can start grompp with the -debug option which

will give you more information in a �le called grompp.log (along with real debug info). Finally,

you can see the contents of the run input �le with the gmxdump program.

Files
-f grompp.mdp Input grompp input �le with MD parameters

-po mdout.mdp Output grompp input �le with MD parameters

-c conf.gro Input Generic structure: gro g96 pdb tpr tpb tpa

E.51 highway 205

-r conf.gro Input, Opt. Generic structure: gro g96 pdb tpr tpb tpa

-n index.ndx Input, Opt. Index �le

-p topol.top Input Topology �le

-pp processed.top Output, Opt. Topology �le

-o topol.tpr Output Generic run input: tpr tpb tpa

-t traj.trr Input, Opt. Full precision trajectory: trr trj

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel

-v bool yes Be loud and noisy

-time real -1 Take frame at or �rst after this time.

-np int 1 Generate status�le for # processors

-shuffle bool no Shu�e molecules over processors

-rmdumbds bool yes Remove constant bonded interactions with dummies

-maxwarn int 10 Number of warnings after which input processing stops

Diagnostics

� shu�ing is sometimes buggy when used on systems when the number of molecules of a

certain type is smaller than the number of processors.

E.51 highway

highway is the gromacs highway simulator. It is an X-windows gadget that shows a (periodic)

autobahn with a user de�ned number of cars. Fog can be turned on or o� to increase the number

of crashes. Nice for a background CPU-eater

Files
-f highway.dat Input Generic data �le

-a auto.dat Input Generic data �le

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

E.52 make ndx

Index groups are necessary for almost every gromacs program. All these programs can generate

default index groups. You ONLY have to use make ndx when you need SPECIAL index groups.

There is a default index group for the whole system, 9 default index groups are generated for

proteins, a default index group is generated for every other residue name.

When no index �le is supplied, also make ndx will generate the default groups. With the index

editor you can select on atom, residue and chain names and numbers, you can use NOT, AND and

OR, you can split groups into chains, residues or atoms. You can delete and rename groups.

The atom numbering in the editor and the index �le starts at 1.

206 Manual Pages

Files
-f conf.gro Input Generic structure: gro g96 pdb tpr tpb tpa

-n in.ndx Input, Opt. Index �le

-o index.ndx Output Index �le

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel

E.53 mdrun

The mdrun program performs Molecular Dynamics simulations. It reads the run input �le (-s)

and distributes the topology over processors if needed. The coordinates are passed around, so that

computations can begin. First a neighborlist is made, then the forces are computed. The forces

are globally summed, and the velocities and positions are updated. If necessary shake is performed

to constrain bond lengths and/or bond angles. Temperature and Pressure can be controlled using

weak coupling to a bath.

mdrun produces at least three output �le, plus one log �le (-g) per processor. The trajectory �le

(-o), contains coordinates, velocities and optionally forces. The structure �le (-c) contains the

coordinates and velocities of the last step. The energy �le (-e) contains energies, the temperature,

pressure, etc, a lot of these things are also printed in the log �le of processor 0. Optionally

coordinates can be written to a compressed trajectory �le (-x).

When running in parallel with PVM or an old version of MPI the -np option must be given to

indicate the number of processors.

The option -dgdl is only used when free energy perturbation is turned on.

With -rerun an input trajectory can be given for which forces and energies will be (re)calculated.

ED (essential dynamics) sampling is switched on by using the -ei ag followed by an .edi �le.

The .edi �le can be produced using options in the essdyn menu of the WHAT IF program. mdrun

produces a .edo �le that contains projections of positions, velocities and forces onto selected

eigenvectors.

The options -pi, -po, -pd, -pn are used for potential of mean force calculations and umbrella

sampling. See manual.

When mdrun receives a TERM signal it will set nsteps to the current step plus one, which causes

the run to end after one step and write all the usual output. When running with MPI, a TERM

signal to one of the mdrun processes is su�cient, this signal should not be sent to mpirun or the

mdrun process that is the parent of the others.

Files
-s topol.tpr Input Generic run input: tpr tpb tpa

-o traj.trr Output Full precision trajectory: trr trj

-x traj.xtc Output, Opt. Compressed trajectory (portable xdr format)

-c confout.gro Output Generic structure: gro g96 pdb

-e ener.edr Output Generic energy: edr ene

-g md.log Output Log �le

-dgdl dgdl.xvg Output, Opt. xvgr/xmgr �le

-rerun rerun.xtc Input, Opt. Generic trajectory: xtc trr trj gro g96 pdb

-ei sam.edi Input, Opt. ED sampling input

-eo sam.edo Output, Opt. ED sampling output

E.54 mk angndx 207

-pi pull.ppa Input, Opt. Pull parameters

-po pullout.ppa Output, Opt. Pull parameters

-pd pull.pdo Output, Opt. Pull data output

-pn pull.ndx Input, Opt. Index �le

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-deffnm string Set the default �lename for all �le options

-v bool no Be loud and noisy

-compact bool yes Write a compact log �le

E.54 mk angndx

mk angndx makes an index �le for calculation of angle distributions etc. It uses a run input �le

(.tpx) for the de�nitions of the angles, dihedrals etc.

Files
-s topol.tpr Input Generic run input: tpr tpb tpa

-n angle.ndx Output Index �le

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel

-type enum angle Type of angle: angle, g96-angle, dihedral, improper, ryckaert-

bellemans or phi-psi

E.55 ngmx

ngmx is the Gromacs trajectory viewer. This program reads a trajectory �le, a run input �le and

an index �le and plots a 3D structure of your molecule on your standard X Window screen. No

need for a high end graphics workstation, it even works on Monochrome screens.

The following features have been implemented: 3D view, rotation, translation and scaling of your

molecule(s), labels on atoms, animation of trajectories, hardcopy in PostScript format, user de�ned

atom-�lters runs on MIT-X (real X), open windows and motif, user friendly menus, option to

remove periodicity, option to show computational box.

Some of the more common X command line options can be used:

-bg, -fg change colors, -font fontname, changes the font.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-s topol.tpr Input Generic run input: tpr tpb tpa

-n index.ndx Input, Opt. Index �le

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

208 Manual Pages

Diagnostics

� Balls option does not work

� Some times dumps core without a good reason

E.56 nmrun

nmrun builds a Hessian matrix from single conformation. For usual Normal Modes-like calculations,

make sure that the structure provided is properly energy-minimised. The generated matrix can be

diagonalized by g nmeig.

Files
-s topol.tpr Input Generic run input: tpr tpb tpa

-m hessian.mtx Output Hessian matrix

-g nm.log Output Log �le

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-v bool no Verbose mode

-compact bool yes Write a compact log �le

E.57 pdb2gmx

This program reads a pdb �le, lets you choose a force�eld, reads some database �les, adds hydrogens

to the molecules and generates coordinates in Gromacs (Gromos) format and a topology in Gromacs

format. These �les can subsequently be processed to generate a run input �le.

Note that a pdb �le is nothing more than a �le format, and it need not necessarily contain a protein

structure. Every kind of molecule for which there is support in the database can be converted. If

there is no support in the database, you can add it yourself.

The program has limited intelligence, it reads a number of database �les, that allow it to make

special bonds (Cys-Cys, Heme-His, etc.), if necessary this can be done manually. The program

can prompt the user to select which kind of LYS, ASP, GLU, CYS or HIS residue she wants. For

LYS the choice is between LYS (two protons on NZ) or LYSH (three protons, default), for ASP

and GLU unprotonated (default) or protonated, for HIS the proton can be either on ND1 (HISA),

on NE2 (HISB) or on both (HISH). By default these selections are done automatically. For His,

this is based on an optimal hydrogen bonding conformation. Hydrogen bonds are de�ned based

on a simple geometric criterium, speci�ed by the maximum hydrogen-donor-acceptor angle and

donor-acceptor distance, which are set by -angle and -dist respectively.

During processing the atoms will be reordered according to Gromacs conventions. With -n an

index �le can be generated that contains one group reordered in the same way. This allows you to

convert a Gromos trajectory and coordinate �le to Gromos. There is one limitation: reordering is

done after the hydrogens are stripped from the input and before new hydrogens are added. This

means that should not turn o� -reth.

The .gro and .g96 �le formats do not support chain identi�ers. Therefore it is useful to enter a

pdb �le name at the -o option when you want to convert a multichain pdb �le.

When using -reth to keep all hydrogens from the .pdb �le, the names of the hydrogens in the

.pdb �le must match the names in the database.

E.58 protonate 209

-sort will sort all residues according to the order in the database, sometimes this is necessary to

get charge groups together.

-alldih will generate all proper dihedrals instead of only those with as few hydrogens as possible,

this is useful for use with the Charmm force�eld.

The option -dummy removes hydrogen and fast improper dihedral motions. Angular and out-of-

plane motions can be removed by changing hydrogens into dummy atoms and �xing angles, which

�xes their position relative to neighboring atoms. Additionally, all atoms in the aromatic rings of

the standard amino acids (i.e. PHE, TRP, TYR and HIS) can be converted into dummy atoms,

elminating the fast improper dihedral uctuations in these rings. Note that in this case all other

hydrogen atoms are also converted to dummy atoms. The mass of all atoms that are converted

into dummy atoms, is added to the heavy atoms.

Also slowing down of dihedral motion can be done with -heavyh done by increasing the hydrogen-

mass by a factor of 4. This is also done for water hydrogens to slow down the rotational motion

of water. The increase in mass of the hydrogens is subtracted from the bonded (heavy) atom so

that the total mass of the system remains the same.

Files
-f eiwit.pdb Input Generic structure: gro g96 pdb tpr tpb tpa

-o conf.gro Output Generic structure: gro g96 pdb

-p topol.top Output Topology �le

-i posre.itp Output Include �le for topology

-n clean.ndx Output, Opt. Index �le

-q clean.pdb Output, Opt. Generic structure: gro g96 pdb

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel

-inter bool no Set the next 6 options to interactive

-ss bool no Interactive SS bridge selection

-ter bool no Interactive termini selection, iso charged

-lys bool no Interactive Lysine selection, iso charged

-asp bool no Interactive Aspartic Acid selection, iso charged

-glu bool no Interactive Glutamic Acid selection, iso charged

-his bool no Interactive Histidine selection, iso checking H-bonds

-angle real 135 Minimum hydrogen-donor-acceptor angle for a H-bond (degrees)

-dist real 0.3 Maximum donor-acceptor distance for a H-bond (nm)

-una bool no Select aromatic rings with united CH atoms on Phenylalanine, Tryp-

tophane and Tyrosine
-sort bool yes Sort the residues according to database

-H14 bool no Use 3rd neighbor interactions for hydrogen atoms

-reth bool yes Retain hydrogen atoms that are in the pdb �le

-alldih bool no Generate all proper dihedrals

-dummy enum none Convert atoms to dummy atoms: none, hydrogens or aromatics

-heavyh bool no Make hydrogen atoms heavy

E.58 protonate

protonate protonates a protein molecule.

Files
-f conf.gro Input Generic structure: gro g96 pdb tpr tpb tpa

210 Manual Pages

-o confout.gro Output Generic structure: gro g96 pdb

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel

E.59 tpbconv

tpbconv can edit run input �les in two ways.

1st. by creating a run input �le for a continuation run when your simulation has crashed due to

e.g. a full disk, or by making a continuation run input �le. Note that a frame with coordinates and

velocities is needed, which means that when you never write velocities, you can not use tpbconv

and you have to start the run again from the beginning.

2nd. by creating a tpx �le for a subset of your original tpx �le, which is useful when you want

to remove the solvent from your tpx �le, or when you want to make e.g. a pure Ca tpx �le.

WARNING: this tpx �le is not fully functional.

Files
-s topol.tpr Input Generic run input: tpr tpb tpa

-f traj.trr Input, Opt. Full precision trajectory: trr trj

-n index.ndx Input, Opt. Index �le

-o tpxout.tpr Output Generic run input: tpr tpb tpa

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel

-time real -1 Continue from frame at this time instead of the last frame

E.60 trjcat

trjcat concatenates several input trajectory �les in sorted order. In case of double time frames

the one in the later �le is used. By specifying -settime you will be asked for the start time of

each �le. The input �les are taken from the command line, such that a command like trjconv -o

fixed.trr *.trr should do the trick.

Files
-o trajout.xtc Output Generic trajectory: xtc trr trj gro g96 pdb

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First time to use

-e real -1 Last time to use

-prec int 3 Precision for .xtc and .gro writing in number of decimal places

-vel bool yes Read and write velocities if possible

-settime bool no Change starting time interactively

-sort bool yes Sort trajectory �les (not frames)

E.61 trjconv 211

E.61 trjconv

trjconv can convert trajectory �les in many ways:

1. from one format to another

2. select a subset of atoms

3. remove periodicity from molecules

4. keep multimeric molecules together

5. center atoms in the box

6. �t atoms to reference structure

7. remove duplicate frames

8. reduce the number of frames

9. change the timestamps of the frames (e.g. t0 and delta-t)

The program trjcat can concatenate multiple trajectory �les.

Currently seven formats are supported for input and output: .xtc, .trr, .trj, .gro, .g96, .pdb

and .g87. The �le formats are detected from the �le extension. For .gro and .xtc �les the output

precision can be given as a number of decimal places. Note that velocities are only supported in

.trr, .trj, .gro and .g96 �les.

The option -app can be used to append output to an existing trajectory �le. No checks are

performed to ensure integrity of the resulting combined trajectory �le. .pdb �les with all frames

concatenated can be viewed with rasmol -nmrpdb.

It is possible to select part of your trajectory and write it out to a new trajectory �le in order to

save disk space, e.g. for leaving out the water from a trajectory of a protein in water. ALWAYS

put the original trajectory on tape! We recommend to use the portable .xtc format for your

analysis to save disk space and to have portable �les.

There are two options for �tting the trajectory to a reference either for essential dynamics analysis

or for whatever. The �rst option is just plain �tting to a reference structure in the structure

�le, the second option is a progressive �t in which the �rst timeframe is �tted to the reference

structure in the structure �le to obtain and each subsequent timeframe is �tted to the previously

�tted structure. This way a continuous trajectory is generated, which might not be the case when

using the regular �t method, e.g. when your protein undergoes large conformational transitions.

The option -pbc sets the type of periodic boundary condition treatment. whole makes broken

molecules whole (a run input �le is required). -pbc is changed form none to whole when -fit

or -pfit is set. inbox puts all the atoms in the box. nojump checks if atoms jump across the

box and then puts them back. This has the e�ect that all molecules will remain whole (provided

they were whole in the initial conformation), note that this ensures a continuous trajectory but

molecules may di�use out of the box. The starting con�guration for this procedure is taken from

the structure �le, if one is supplied, otherwise it is the �rst frame. Use -center to put the system

in the center of the box. This is especially useful for multimeric proteins, since this procedure

will ensure the subunits stay together in the trajectory (due to PBC, they might be separated),

providing they were together in the initial conformation.

With the option -dt it is possible to reduce the number of frames in the output. This option relies

on the accuracy of the times in your input trajectory, so if these are inaccurate use the -timestep

option to modify the time (this can be done simultaneously).

Using -trunc trjconv can truncate .trj in place, i.e. without copying the �le. This is useful when

a run has crashed during disk I/O (one more disk full), or when two contiguous trajectories must

be concatenated without have double frames.

Also the option -checkdoublemay be used to remove all duplicate frames from such a concatenated

trajectory, this is done by ignoring all frames with a time smaller than or equal to the previous

212 Manual Pages

frame. trjcat is more suitable for concatenating trajectory �les.

The option -dump can be used to extract a frame at or near one speci�c time from your trajectory.

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-o trajout.xtc Output Generic trajectory: xtc trr trj gro g96 pdb

-s topol.tpr Input, Opt. Structure+mass(db): tpr tpb tpa gro g96 pdb

-n index.ndx Input, Opt. Index �le

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

-pbc enum none PBC treatment: none, whole, inbox or nojump

-center bool no Center atoms in box

-box vector 0 0 0 Size for new cubic box (default: read from input)

-shift vector 0 0 0 All coordinates will be shifted by framenr*shift

-fit bool no Fit molecule to ref structure in the structure �le

-pfit bool no Progressive �t, to the previous �tted structure

-prec int 3 Precision for .xtc and .gro writing in number of decimal places

-vel bool yes Read and write velocities if possible

-skip int 1 Only write every nr-th frame

-dt real 0 Only write frame when t MOD dt = �rst time

-t0 real 0 Starting time for trajectory(default: don't change)

-trunc real -1 Truncate input trj �le after this amount of ps

-dump real -1 Dump frame nearest speci�ed time

-g87box bool yes Write a box for .g87

-exec string Execute command for every output frame with the frame number as

argument
-timestep real 0 Change time step between frames

-app bool no Append output

-sep bool no Write each frame to a separate .gro or .pdb �le

-checkdouble bool no Only write frames with time larger than previous frame

E.62 wheel

wheel plots a helical wheel representation of your sequence.The input sequence is in the .dat

�le where the �rst line contains the number of residues and each consecutive line contains a

residuename.

Files
-f nnnice.dat Input Generic data �le

-o plot.eps Output Encapsulated PostScript (tm) �le

Other options
-h bool no Print help info and quit

-nice int 19 Set the nicelevel

-r0 int 1 The �rst residue number in the sequence

-rot0 real 0 Rotate around an angle initially (90 degrees makes sense)

E.63 xpm2ps 213

-T string Plot a title in the center of the wheel (must be shorter than 10 char-

acters, or it will overwrite the wheel)
-nn bool yes Toggle numbers

E.63 xpm2ps

xpm2ps makes a beautiful color plot of an XPixelMap �le. Labels and axis can be displayed, when

they are supplied in the correct matrix format. Matrix data may be generated by programs such

as do dssp, g rms or g mdmat.

Parameters are set in the m2p �le optionally supplied with -di. Reasonable defaults are supplied

in a library �le.

With -f2 a 2nd matrix �le can be supplied, both matrix �les will be read simultaneously and the

upper left half of the �rst one (-f) is plotted together with the lower right half of the second one

(-f2). The diagonal will contain values from the matrix �le selected with -diag. Plotting of the

diagonal values can be suppressed altogether by setting -diag to none.

If the color coding and legend labels of both matrices are identical, only one legend will be displayed,

else two separate legends are displayed.

-title can be set to none to suppress the title, or to ylabel to show the title in the Y-label

position (alongside the Y-axis).

With the -rainbow option dull grey-scale matrices can be turned into attractive color pictures.

Merged or rainbowed matrices can be written to an XPixelMap �le with the -xpm option.

Files
-f root.xpm Input X PixMap compatible matrix �le

-f2 root2.xpm Input, Opt. X PixMap compatible matrix �le

-di ps.m2p Input, Lib. Input �le for mat2ps

-do out.m2p Output, Opt. Input �le for mat2ps

-o plot.eps Output, Opt. Encapsulated PostScript (tm) �le

-xpm root.xpm Output, Opt. X PixMap compatible matrix �le

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel

-w bool no View output using xvgr or ghostview

-title enum top Show title at: top, ylabel or none

-legend enum both Show legend: both, �rst, second or none

-diag enum first Diagonal: �rst, second or none

-bx real 0 Box x-size (also y-size when -by is not set)

-by real 0 Box y-size

-rainbow enum no Rainbow colors, convert white to: no, blue or red

E.64 xrama

xrama shows a Ramachandran movie, that is, it shows the Phi/Psi angles as a function of time in

an X-Window.

Static Phi/Psi plots for printing can be made with g rama.

Some of the more common X command line options can be used:

-bg, -fg change colors, -font fontname, changes the font.

214 Manual Pages

Files
-f traj.xtc Input Generic trajectory: xtc trr trj gro g96 pdb

-s topol.tpr Input Generic run input: tpr tpb tpa

Other options
-h bool no Print help info and quit

-nice int 0 Set the nicelevel

-b real -1 First frame (ps) to read from trajectory

-e real -1 Last frame (ps) to read from trajectory

Bibliography

[1] Berendsen, H. J. C., van der Spoel, D., van Drunen, R. GROMACS: A message-
passing parallel molecular dynamics implementation. Comp. Phys. Comm. 91:43{56,
1995.

[2] Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots
of protein structures. J. Appl. Cryst. 24:946{950, 1991.

[3] van der Spoel, D., Vogel, H. J., Berendsen, H. J. C. Molecular dynamics simulations
of N-terminal peptides from a nucleotide binding protein. PROTEINS: Struct. Funct.
Gen. 24:450{466, 1996.

[4] van Gunsteren, W. F., Berendsen, H. J. C. Computer simulation of molecular dy-
namics: Methodology, applications, and perspectives in chemistry. Angew. Chem.
Int. Ed. Engl. 29:992{1023, 1990.

[5] Fraaije, J. G. E. M. Dynamic density functional theory for microphase separation
kinetics of block copolymer melts. J. Chem. Phys. 99:9202{9212, 1993.

[6] McQuarrie, D. A. Statistical Mechanics. New York: Harper & Row. 1976.

[7] van Gunsteren, W. F., Berendsen, H. J. C. Algorithms for macromolecular dynamics
and constraint dynamics. Mol. Phys. 34:1311{1327, 1977.

[8] Nilges, M., Clore, G. M., Gronenborn, A. M. Determination of three-dimensional
structures of proteins from interproton distance data by dynamical simulated anneal-
ing from a random array of atoms. FEBS Lett. 239:129{136, 1988.

[9] van Schaik, R. C., Berendsen, H. J. C., Torda, A. E., van Gunsteren, W. F. A
structure re�nement method based on molecular dynamics in 4 spatial dimensions.
J. Mol. Biol. 234:751{762, 1993.

[10] Zimmerman, K. All purpose molecular mechanics simulator and energy minimizer.
J. Comp. Chem. 12:310{319, 1991.

[11] Adams, D. J., Adams, E. M., Hills, G. J. The computer simulation of polar liquids.
Mol. Phys. 38:387{400, 1979.

[12] Bekker, H., Dijkstra, E. J., Renardus, M. K. R., Berendsen, H. J. C. An e�cient, box
shape independent non-bonded force and virial algorithm for molecular dynamics.
Mol. Sim. 14:137{152, 1995.

216 BIBLIOGRAPHY

[13] Berendsen, H. J. C. Electrostatic interactions. In: Computer Simulation of Biomolec-
ular Systems. van Gunsteren, W. F., Weiner, P. K., Wilkinson, A. J. eds. . ESCOM
Leiden 1993 161{181.

[14] Hockney, R. W., Goel, S. P. J. Comp. Phys. 14:148, 1974.

[15] Verlet., L. Phys. Rev. 34:1311{1327, 1967.

[16] Berendsen, H. J. C., van Gunsteren, W. F. Practical algorithms for dynamics simu-
lations.

[17] Berendsen, H. J. C., Postma, J. P. M., DiNola, A., Haak, J. R. Molecular dynamics
with coupling to an external bath. J. Chem. Phys. 81:3684{3690, 1984.

[18] Berendsen, H. J. C. Transport properties computed by linear response through weak
coupling to a bath. In: Computer Simulations in Material Science. Meyer, M., Pon-
tikis, V. eds. . Kluwer 1991 139{155.

[19] Nos�e, S. Title. J. Chem. Phys. 81:511, 1984.

[20] Hoove, W. G. Title. Phys. Rev. E 48:1695, 1985.

[21] Ryckaert, J. P., Ciccotti, G., Berendsen, H. J. C. Numerical integration of the carte-
sian equations of motion of a system with constraints; molecular dynamics of n-
alkanes. J. Comp. Phys. 23:327{341, 1977.

[22] Miyamoto, S., Kollman, P. A. SETTLE: An analytical version of the SHAKE and
RATTLE algorithms for rigid water models. J. Comp. Chem. 13:952{962, 1992.

[23] Hess, B., Bekker, H., Berendsen, H. J. C., Fraaije, J. G. E. M. LINCS: A linear
constraint solver for molecular simulations. J. Comp. Chem. 18:1463{1472, 1997.

[24] Levitt, M., Sander, C., Stern, P. S. The normal modes of a protein: Native bovine
pancreatic trypsin inhibitor. Proc. Natl. Acad. Sci. USA 10:181{199, 1983.

[25] G�o, N., Noguti, T., Nishikawa, T. Dynamics of a small globular protein in terms of
low-frequency vibrational modes. Proc. Natl. Acad. Sci. USA 80:3696{3700, 1983.

[26] Brooks, B., Karplus, M. Harmonic dynamics of proteins: Normal modes and uctua-
tions in bovine pancreatic trypsin inhibitor. Proc. Natl. Acad. Sci. USA 80:6571{6575,
1983.

[27] Hayward, S., G�o, N. Collective variable description of native protein dynamics. Annu.
Rev. Phys. Chem. 46:223{250, 1995.

[28] Amadei, A., Linssen, A. B. M., Berendsen, H. J. C. Essential dynamics of proteins.
PROTEINS: Struct. Funct. Gen. 17:412{425, 1993.

[29] de Groot, B. L., Amadei, A., van Aalten, D. M. F., Berendsen, H. J. C. Towards
an exhaustive sampling of the con�gurational spaces of the two forms of the peptide
hormone guanylin. J. Biomol. Str. Dyn. 13(5):741{751, 1996.

BIBLIOGRAPHY 217

[30] de Groot, B. L., Amadei, A., Scheek, R. M., van Nuland, N. A. J., Berendsen, H. J. C.
An extended sampling of the con�gurational space of hpr from e. coli. PROTEINS:
Struct. Funct. Gen. 26:314{322, 1996.

[31] Vriend, G. WHAT IF: a molecular modeling and drug design program. J. Mol. Graph.
8:52{56, 1990.

[32] Fincham, D. Parallel computers and molecular simulation. Mol. Sim. 1:1, 1987.

[33] Raine, A. R. C., Fincham, D., Smith, W. Systolic loop methods for molecular dy-
namics simulation. Comp. Phys. Comm. 55:13{30, 1989.

[34] Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V. PVM
3 user's guide and reference manual. Oak Ridge National Laboratory Oak Ridge,
Tennessee 37381 1994.

[35] van Gunsteren, W. F., Berendsen, H. J. C. Gromos-87 manual. Biomos BV Nij-
enborgh 4, 9747 AG Groningen, The Netherlands 1987.

[36] van Buuren, A. R., Marrink, S. J., Berendsen, H. J. C. A molecular dynamics study
of the decane/water interface. J. Phys. Chem. 97:9206{9212, 1993.

[37] Mark, A. E., van Helden, S. P., Smith, P. E., Janssen, L. H. M., van Gunsteren,
W. F. Convergence properties of free energy calculations: �-cyclodextrin complexes
as a case study. J. Am. Chem. Soc. 116:6293{6302, 1994.

[38] Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., Klein, M. L.
Comparison of simple potential functions for simulating liquid water. J. Chem. Phys.
79:926{935, 1983.

[39] van Buuren, A. R., Berendsen, H. J. C. Molecular dynamics simulation of the stability
of a 22 residue alpha-helix in water and 30 % triuoroethanol. Biopolymers 33:1159{
1166, 1993.

[40] Liu, H., M�uller-Plathe, F., van Gunsteren, W. F. A force �eld for liquid dimethyl
sulfoxide and liquid proporties of liquid dimethyl sulfoxide calculated using molecular
dynamics simulation. J. Am. Chem. Soc. 117:4363{4366, 1995.

[41] Tironi, I. G., Sperb, R., Smith, P. E., van Gunsteren, W. F. A generalized reaction
�eld method for molecular dynamics simulations. J. Chem. Phys. 102:5451{5459,
1995.

[42] van Gunsteren, W. F., Billeter, S. R., Eising, A. A., H�unenberger, P. H., Kr�uger, P.,
Mark, A. E., Scott, W. R. P., Tironi, I. G. Biomolecular Simulation: The GROMOS96
manual and user guide. Z�urich, Switzerland: Hochschulverlag AG an der ETH Z�urich.
1996.

[43] Morse, P. M. Diatomic molecules according to the wave mechanics. II. vibrational
levels. Phys. Rev. 34:57{64, 1929.

218 BIBLIOGRAPHY

[44] Jorgensen, W. L., Tirado-Rives, J. The OPLS potential functions for proteins. en-
ergy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc.
110:1657{1666, 1988.

[45] Torda, A. E., Scheek, R. M., van Gunsteren, W. F. Time-dependent distance re-
straints in molecular dynamics simulations. Chem. Phys. Lett. 157:289{294, 1989.

[46] Resat, H., Mezel, M. Studies on free energy calculations. I. Thermodynamic integra-
tion using a polynomial path. J. Chem. Phys. 99:6052{6061, 1993.

[47] van Gunsteren, W. F., Mark, A. E. Validation of molecular dynamics simulations. J.
Chem. Phys. 108:6109{6116, 1998.

[48] Berendsen, H. J. C., van Gunsteren, W. F. Molecular dynamics simulations: Tech-
niques and approaches. In: Molecular Liquids-Dynamics and Interactions. et al., A.
J. B. ed. NATO ASI C 135. Reidel Dordrecht, The Netherlands 1984 475{500.

[49] Ewald, P. P. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann.
Phys. 64:253{287, 1921.

[50] Darden, T., York, D., Pedersen, L. Particle mesh Ewald: An N-log(N) method for
Ewald sums in large systems. J. Chem. Phys. 98:10089{10092, 1993.

[51] Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., Pedersen, L. G. A
smooth particle mesh ewald potential. J. Chem. Phys. 103:8577{8592, 1995.

[52] Hockney, R. W., Eastwood, J. W. Computer simulation using particles. New York:
McGraw-Hill. 1981.

[53] Luty, B. A., Tironi, I. G., van Gunsteren, W. F. Lattice-sum methods for calculating
electrostatic interactions in molecular simulations. J. Chem. Phys. 103:3014{3021,
1995.

[54] King, P. M., Mark, A. E., van Gunsteren, W. F. Re-parameterization of aromatic
interactions in the GROMOS force-�eld. Private Communication 1993.

[55] Ryckaert, J. P., Bellemans, A. Far. Disc. Chem. Soc. 66:95, 1978.

[56] on Biochemical Nomenclature, I.-I. C. Abrreviations and symbols for the descrip-
tion of the conformation of polypeptide chains. tentative rules (1969). Biochemistry
9:3471{3478, 1970.

[57] Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., Hermans, J. Interaction
models for water in relation to protein hydration. In: Intermolecular Forces. Pullman,
B. ed. . D. Reidel Publishing Company Dordrecht 1981 331{342.

[58] de Loof, H., Nilsson, L., Rigler, R. Molecular dynamics simulations of galanin in
aqueous and nonaqueous solution. J. Am. Chem. Soc. 114:4028{4035, 1992.

[59] Feenstra, K. A., Hess, B., Berendsen, H. J. C. Improving e�ciency of large time-scale
molecular dynamics simulations of hydrogen-rich systems. J. Comp. Chem. 20:786{
798, 1999.

BIBLIOGRAPHY 219

[60] Allen, M. P., Tildesley, D. J. Computer Simulations of Liquids. Oxford: Oxford
Science Publications. 1987.

[61] van der Spoel, D., Berendsen, H. J. C. Molecular dynamics simulations of Leu-
enkephalin in water and DMSO. Biophys. J. 72:2032{2041, 1997.

[62] van der Spoel, D., van Maaren, P. J., Berendsen, H. J. C. A systematic study of
water models for molecular simulation. J. Chem. Phys. 108:10220{10230, 1998.

[63] Smith, P. E., van Gunsteren, W. F. The viscosity of spc and spc/e water. Comp.
Phys. Comm. 215:315{318, 1993.

[64] Balasubramanian, S., Mundy, C. J., Klein, M. L. Shear viscosity of polar uids:
Miolecular dynamics calculations of water. J. Chem. Phys. 105:11190{11195, 1996.

[65] Kabsch, W., Sander, C. Dictionary of protein secondary structure: Pattern recogni-
tion of hydrogen-bonded and geometrical features. Biopolymers 22:2577{2637, 1983.

[66] Williamson, M. P., Asakura, T. Empirical comparisons of models for chemical-shift
calculation in proteins. J. Magn. Reson. Ser. B 101:63{71, 1993.

[67] Berendsen, H. J. C., Grigera, J. R., Straatsma, T. P. The missing term in e�ective
pair potentials. J. Phys. Chem. 91:6269{6271, 1987.

[68] Bekker, H. Ontwerp van een special-purpose computer voor moleculaire dynamica
simulaties. Master's thesis. RuG. 1987.

[69] van Gunsteren, W. F., Berendsen, H. J. C. Molecular dynamics of simple systems.
Practicum Handleiding voor MD Practicum Nijenborgh 4, 9747 AG, Groningen, The
Netherlands 1994.

220 BIBLIOGRAPHY

Index

�t 22

"r 46
1-4 interactions 54, 81

accelerate group 15
afm pulling 97
all-hydrogen force�eld 73

amdahl's law 33
angle restraints 57
angle vibration 52

atom see particles
atom types 76
autocorrelation function 131

bond shell see particles
bond stretching 50

bonded parameters 79
born-oppenheimer 4
buckingham 45

building block 78, 82

center-of-mass velocity 18

charge group 20, 114
citing ii
combination rules 81

commercial use 145
computational chemistry 1
conjugate gradient 30, 111

constraint force 97
constraint no connect 81
constraints 4, 24, 26, 119

correlation 131
coulomb 46, 62
covariance analysis 138

cut-o� 47, 65, 115

data parallel 33

degrees of freedom 102
dielectric constant 46, 115

di�usion coe�cient 133
dihedral 54
dispersion 44
dispersion correction 116
distance restraints 57, 120

do dssp 148, 171
do shift 148
double precision 145
dummy see particles
dummy atom 67, 77, 103

editconf 172
electric �eld 122
electrostatic force 20
electrostatics 114
eneconv 173
energy �le 166
energy minimization 112
energy monitor group 15
ensemble average 2
equations of motion 2, 22
equilibration 166

essential dynamics 31, 138
ewald sum 49, 69, 114
exclusions 65, 81

�le types 109

force �eld 4, 43, 77
fortran 153
free energy calculation 97
free energy perturbation 31, 61, 121
freeze group 15

g anaeig 139, 173
g analyze 174
g angle 175
g bond 176
g chi 177
g cluster 178

222 INDEX

g com 179

g confrms 179

g covar 139, 180

g density 180

g dielectric 181

g dih 182

g dipoles 182

g disre 184

g dist 184

g enemat 185

g energy 168, 185

g gyrate 186

g h2order 187

g hbond 187

g helix 189

g mdmat 190

g mindist 190

g msd 191

g nmeig 31, 191

g nmens 192

g order 192

g potential 193

g rama 193

g rdens 194

g rdf 194

g rms 195

g rmsdist 196

g rmsf 196

g rotacf 197

g saltbr 198

g sas 198

g sgangle 199

g velacc 199

genbox 200

genconf 201

gendr 201

genion 202

genpr 202

gmxcheck 203

gmxdump 203

gmxrc 147

gromos-87 43

gromos-96 �les 73

gromos-96 force �eld 73

grompp 89, 103, 204

hessian 30
highway 205
html manual 109
hydrogen database 83
hydrogen-bond 77
hypercube 33

improper dihedral 80
install 145
interaction list 19, 65

kinetic energy 20

langevin dynamics 112
leap-frog 21, 111
lennard jones 44, 63
license form 145
limitations 3
lincs 26, 64, 119
log �le 113, 166

make ndx 205
maxwellian distribution 17
mdrun 206
mesoscopic dynamics 2
message passing 33
mirror image 53
mk angndx 207
modi�ed mass 103
molecular modeling 1
mpi 38, 107, 146

nearest image 18
neighbor list 19
neighbor searching 20, 113
neighborlist 113
ngmx 207
nmr re�nement 57, 120
nmrun 31, 208
non-bonded parameters 80
non-equilibrium md 15, 121
normal mode analysis 30
nucleus see particles

online manual 109
opls 55, 81

parabolic force 49

INDEX 223

parallel md 37
parallel virtual machines see pvm
parallelization 32
parameters 75
particle decomposition 34
particle-mesh ewald see pme
particle-particle particle-mesh see pppm
particles 75
pdb2gmx 57, 79, 103, 208
performance 152
periodic boundary conditions 13, 69, 149
planar groups 53
pme 70, 114
poisson solver 49
polymer convention 80
position restraints 56, 111
potential energy 20
potential function 43, 160
potentials of mean force 97
pppm 40, 71, 114
pressure 21
pressure coupling 23, 117
principal component analysis 138
processor topology 33
program options 122
programs by topic 123
proper dihedral 54, 80
protonate 209
pvm 33, 38, 106, 146

qsar 1
quadrupole 77

reaction �eld 46, 63, 161
reaction-�eld 114
repulsion 44
run parameters 109
ryckaert-bellemans 80

sampling 28
schr�odinger equation 1
settle 26, 153
shake 24, 119, 153
shared memory 40, 41
shell see particles
shift function 20
simulated annealing 29, 118

single precision 145
solvent optimization 152
space decomposition 34
statistical mechanics 2
steepest descent 30, 111
stochastic dynamics 2
surface tension coupling 23

tabulated functions 159
temperature 20
temperature coupling 15, 22, 116
termini database 84
third neighbors 65
time lag 131
topology 75
topology �le 86
tpbconv 210
trajectory �le 28, 112
tree 33
trjcat 210
trjconv 211

umbrella sampling 97
united atoms 77

virial 21, 66, 149
virtual site 77
viscosity 133

wheel 212

xdr 109
xmgr 169
xpm2ps 213
xrama 213

