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Abstract 
Multiple sequence alignment remains one of the most powerful tools for assessing evolutionary 
sequence relationships and the identification of structurally and functionally important protein 
regions. Membrane-bound proteins represent a special class of proteins. The regions that 
insert into the cell-membrane have a profoundly different hydrophobicity pattern as compared 
with soluble proteins. Multiple alignment techniques employing scoring schemes tailored for 
sequences of soluble proteins are therefore in principle not optimal to align membrane-bound 
proteins. In this chapter we describe some of the characteristics leading transmembrane 
proteins to display differences at the sequence level. We will also cover computational 
strategies and methods developed over the years for aligning this special class of proteins, 
discuss some current bottlenecks, and suggest some avenues for improvement. 
 

Introduction 
Over the past years, integral membrane proteins have received a great deal of attention. They 
carry out essential functions in many cellular and physiological processes, such as signal 
transduction, cell-cell recognition and molecular transport. Membrane proteins are likely to 
constitute 20-30% of all ORFs contained in genomes (Jones 1998; Wallin and von Heijne 
1998). Unfortunately, the number of determined transmembrane (TM)* structures in the PDB 
is still very low: 1.7% (1139 of more than 64000) are transmembrane (Tusnády et al. 2005). 
Despite a solid growth of the number of membrane protein structures (White 2004), and a 
steadily increasing fraction in the total PDB (up from ~1.4% in 2003), their determination 
remains a difficult task, such that they will continue to lag behind the number of experi-
mentally solved soluble protein structures.  
Given the biomedical importance of TM proteins and the large and growing gap between the 
number of solved TM protein structures and the number of TM protein sequences, sequence 
analysis techniques are crucial. The simultaneous alignment of three or more nucleotide or 
amino acid sequences is one of the most common tasks in bioinformatics. Multiple sequence 
alignment (MSA) is an essential pre-requisite to many further modes of analysis into protein 
families such as homology modelling, secondary structure prediction, phylogenetic recon-
struction, or the delineation of conserved and variable sites within a family. Alignments may be 
further used to derive profiles (Gribskov et al. 1987) or hidden Markov models (Bucher et al. 
1996; Eddy 1998; Karplus et al. 1998) that can be used to scour databases for distantly 
related members of the family. 
The automatic generation of an accurate multiple alignment is potentially a daunting task. 
Ideally, one would make use of an in-depth knowledge of the evolutionary and structural 
relationships within the family but this information is often lacking or difficult to use. General 
empirical models of protein evolution (Dayhoff 1978; Henikoff and Henikoff 1992) are widely 
used instead but these can be difficult to apply when the sequences are less than 30% 
identical (Sander and Schneider 1991). Further, mathematically sound methods for carrying 
out alignments, using these models, can be extremely demanding in computer resources for 
more than a handful of sequences (Carrillo and Lipman 1988; Stoye 1998). To be able to cope 
with practical dataset sizes, heuristics have been developed that are used for all but the 
smallest data sets. 
The most commonly used heuristic methods are based on the progressive alignment strategy 
(Hogeweg and Hesper 1984; Feng and Doolittle 1987; Thompson et al. 1994, Heringa 1999). 

                                          
* Abbreviations: TM transmembrane, MSA multiple sequence alignment, SP sum of pairs (score), TC total column (score) 



The idea is to establish an initial order for joining the sequences, and to follow this order in 
gradually building up the alignment. Many implementations use an approximation of a 
phylogenetic tree between the sequences as a guide tree that dictates the alignment order.  
Although appropriate for many alignment problems, the progressive strategy suffers from its 
greediness. Errors made in the first alignments during the progressive protocol cannot be 
corrected later as the remaining sequences are added in. Attempts to minimize such alignment 
errors have generally been targeted at global sequence weighting (Altschul et al. 1989; 
Thompson et al. 1994), where the contribution of individual sequences are weighted during the 
alignment process. However, such global sequence weighting schemes carry the risk of 
propagating rather than reducing error when used in progressive multiple alignment strategies 
(Heringa 1999). 
 

Factors influencing the alignment of transmembrane proteins. 
Transmembrane regions have a modified amino acid composition and different conservation 
patterns as compared to soluble proteins. Most current MSA techniques have been built, and 
optimised, to align homologous soluble proteins. Even though many such techniques are still 
applicable to transmembrane regions, yielding a somewhat lower alignment accuracy than for 
soluble proteins (Forrest et al. 2006), there are some specific differences that should be taken 
into consideration when creating a multiple sequence alignment for TM proteins. 
The lipid environment of transmembrane regions influences the folding properties of the pro-
tein backbone and side chains, which can be observed in a different amino acid composition, 
but also in different evolutionary substitutions and different structural conservation. The 
hydrophobic nature of lipid tails of the membrane do not allow for H-bonding with the 
backbone or side chains of the peptide as water does. Therefore, backbone H-bonds of a TM 
region are typically satisfied through secondary structure: membrane spanning helices or beta 
barrels. The amino acid composition of TM regions is predominantly hydrophobic. These 
conditions are not dissimilar to the buried regions of soluble protein. TM regions nevertheless 
show some characteristic quite different from buried regions. 
Donnelly et al. noted that transmembrane helices, though mostly hydrophobic, had an 
alternating pattern of conserved and non-conserved amino acids; the conserved amino acids 
form the core of the protein structure, while the non-conserved hydrophobic amino acids point 
out towards the lipids (Donnelly et al. 1993). Furthermore regions facing other protein parts 
within the lipid are typically enriched in phenylalanine and tyrosine (Langosch and Heringa 
1998; Bordner 2009). Jones et al. noted that polar regions are highly conserved within TM 
regions; this may be explained by charges or H-bonds needing to be satisfied by the protein 
itself, making polar residues in the membrane highly specific (Jones et al. 1994). 
 

Transmembrane substitution rates 
Conventional scoring matrices such as PAM (Dayhoff et al. 1978) or BLOSUM (Henikoff and 
Henikoff 1992), routinely used for sequence retrieval and alignment, are therefore not optimal 
to align TM regions. Several groups have made attempts to capture the evolutionary trends 
specific to TM regions in an amino acids substitution matrix, e.g. the JTT matrix (Jones et al. 
1994), the PHAT matrix (Ng et al. 2000) , the asymmetric SLIM matrices (Müller et al. 2001) 
and the bbTM matrix specialised for TM β-barrels (Jimenez-Morales et al. 2008). Substitution 
scores, sij, are generally based on the frequency of amino acid substitutions, qij, in a set of 
aligned homologous sequences, according to: 
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where λ is a constant, and fi are the background frequencies of amino acids. For the JTT matrix 
the qij and fi were both calculated from aligned transmembrane regions. The PHAT matrix 
calculates the observed substitutions in a similar fashion, but takes the expected number of 
substitutions (fifj) from general hydrophobic areas; in this way the background expectancy is 
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based on TM as well as buried regions from soluble proteins. PHAT was shown to outperform 
the JTT matrix on database homology searches; this may be rationalised through background 
noise in alignments being similar to hydrophobic regions (Ng et al. 2000).  
Table 11.1 shows the major differences in substitution rates between TM regions and soluble 
proteins, by subtracting the normalised PHAT matrix from the normalised BLOSUM62 matrix 
(Henikoff and Henikoff 1992). It can be observed that the polar residues have large positive 
self substitution scores, i.e. the substitution scores is PHAT are higher than those in 
BLOSUM62, indicating that polar residues are more conserved in TM regions. Table 11.1 also 
shows that hydrophobic residues are less conserved, and that proline is particularly conserved 
in TM regions. The high proline conservation may be explained by the special role of proline 
residues forming kinks in transmembrane regions (von Heijne 1991). 
 

 C F L W V I M H Y A G P N T S R Q D K E 
C -7.1         
F 4.0 -2.7        
L -1.1 1.6 -1.8       
W -2.2 -2.0 -0.7 -4.9      
V -1.1 0.4 -0.4 -0.2 -1.8      
I -2.7 0.0 -0.9 -0.2 -1.3 -0.2     

M -1.1 0.0 -0.9 -4.2 -0.4 2.7 -0.7    
H -4.9 -1.1 -0.2 -0.7 -1.8 -1.8 -2.2 1.1    
Y 2.4 0.2 -1.1 -2.4 -2.7 -2.7 -1.1 0.7 3.1    
A 1.6 2.4 0.4 -0.2 1.6 2.0 0.4 -0.7 -0.7 -0.2    
G 2.9 2.9 4.9 -3.8 2.9 4.9 4.4 -2.2 1.3 1.6 2.0    
P -6.5 0.2 -1.8 -1.4 -2.2 -0.2 -3.8 -5.4 -1.8 -2.7 -0.7 6.3    
N 2.9 4.4 1.3 0.2 1.3 1.3 0.9 4.2 7.1 0.9 -1.6 -2.2 5.1    
T 0.4 0.9 0.4 -6.9 0.0 0.4 2.0 -2.2 -0.7 0.0 2.4 -4.2 -1.6 -5.3    
S 3.6 0.9 0.9 -1.8 0.9 0.9 -1.1 -1.1 0.9 1.1 1.6 -2.7 -0.4 -0.4 1.4   
R -6.5 -4.9 -5.4 -4.9 -4.9 -3.4 -7.4 -6.2 -5.4 -7.4 -3.8 -6.9 -4.7 -7.4 -7.4 4.0  
Q -1.8 2.9 -0.7 5.6 -0.7 1.3 -1.6 3.1 2.0 -2.7 0.9 -2.7 3.1 -2.7 -1.6 -5.1 4.0 
D -4.9 -1.8 0.2 -2.9 -1.8 -1.8 -1.8 0.4 -0.2 -3.8 -1.1 -5.8 1.1 -5.8 -6.2 -6.9 0.0 6.7
K -9.6 -4.9 -6.9 -6.5 -8.5 -4.9 -7.4 -5.8 -2.2 -8.9 -3.8 -4.2 -3.1 -7.4 -7.8 -5.6 -3.6 -5.8 -2.2
E -2.9 -1.8 -1.8 -4.9 -3.8 -1.8 -3.8 -1.6 0.9 -5.8 -0.7 -5.8 0.0 -5.8 -4.7 -9.4 -2.4 5.4 -8.2 8.7

Table 11.1 Difference between the PHAT and BLOSUM substitution matrices, expressed as 
PHAT75-73 - BLOSUM62 (see text for details). Negative values are on a grey background, 
largest scores (>5 or <-5) are in bold. 
 
 

Transmembrane alignment gaps 
Not only amino acid substitution rates, but also amino acid insertions and deletions show 
different patterns in TM proteins. Generally speaking the TM regions are much more conserved 
 than their interconnecting loops (e.g. Forrest et al. 2006). These connecting loops may be 
very long, change considerably in size between homologs and they also show great structural 
flexibility or variability. Long loops are quite typical for TM proteins, and may be used for fly-
casting (Dafforn and Smith 2004) or possibly to prevent aggregation of the highly hydrophobic 
TM regions (Abeln and Frenkel 2008); however, they pose a particular problem for MSA 
techniques. Typically gap open penalties should be higher for transmembrane regions, as is 
shown for the PRALINE-TM example below (Pirovano et al. 2008a). 
 

Overview of TM MSA methods 
Not many techniques have been developed to improve the alignment of TM proteins. The 
method STAM (Shafrir and Guy 2004) represents an early attempt to improve alignment 
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accuracy by combining different substitution matrices. A more recent study by Forrest et al. 
(Forrest et al. 2006) reported that the use of a bipartite scheme (consisting of BLOSUM62 and 
PHAT) does not significantly improve membrane protein sequence alignments. They suggest 
that the previously reported progress is more likely to depend on the separation of the TM 
blocks or on the settings of specific gap penalties.  
We have recently investigated the effects of incorporating TM specific information into the mul-
tiple alignment tool PRALINE, dubbed PRALINE-TM (Pirovano et al. 2008a). This information is 
integrated in a ‘soft’ way, compared to the STAM approach where TM segments are first 
chopped and then aligned separately. In the PRALINE-TM approach the choice of the matrix 
depends on consistent TM predictions over a column and is determined dynamically during the 
alignment procedure. By applying the PHAT substitution matrix on consistently predicted TM 
regions, we show that it is possible to significantly improve the alignment quality. 
 

TM-aware multiple sequence alignment by the Praline method 
The strategy adopted by Praline for TM protein alignment, includes three basic techniques: 1) 
profile preprocessing, 2) a bipartite alignment scheme and 3) tree-based iteration of the 
alignment. 
 

Profile preprocessing 
The profile preprocessing strategy in the PRALINE method (Heringa 1999) is a position-specific 
weighting scheme aimed at incorporating into each sequence, trusted information from other 
sequences. As such, it works contrary to the early weighting schemes mentioned above 
(Altschul et al. 1989; Thompson et al. 1994) which attempt to up-weight sequences according 
to their divergence. In principle it is a good idea to perform global weighting aimed at 
increasing the contribution of more distant sequences as they carry more information at each 
alignment position. However, when sequence weighting is used in progressive multiple 
alignment, the increased chance of mistakes when aligning distant sequences can well lead to 
error propagation (Heringa, 2002). Vogt et al. (1995) compared local and global alignments of 
pair-wise sequences with a data bank of structure-based alignments (Pascarella and Argos 
1992) and included a set of over 30 substitution matrices with optimised gap-penalties. 
The best global alignments were achieved with the Gonnet residue exchange matrix (Gonnet et 
al. 1992), resulting in 15% incorrect residue matching when sequences with 30% residue 
identity were aligned. The error rate quickly increased to 45% incorrect matches at 20% 
residue identity of the aligned sequences, and to 73% error at 15% sequence identity. Rost 
(1999) stressed the same point and reported even higher pairwise alignment error rates in the 
twilight zone (below 30% identity). These statistics clearly demonstrate that increasing the 
global weight for distant sequences is likely to lead to misalignment and error propagation 
during progressive multiple alignment. This is why the Praline pre-processing strategy tends to 
upweight 'trusted' sequences. For each sequence, a multiple alignment is created by stacking 
other sequences (master-slaves alignment) that score beyond a user-specified threshold after 
pair-wise alignment with the sequence considered: A low threshold would result in a pre-
processed alignment for each sequence comprising many or all other sequences (where the 
chance for alignment error is large), while higher thresholds would allow the information from 
fewer sequences into the alignment (with lesser alignment error). For each of the thus formed 
pre-processed alignments, a profile is constructed. The PRALINE method then performs 
progressive multiple alignment using the thus constructed pre-processed profiles. Each input 
sequence is now represented by its associated pre-processed profile, which incorporates 
knowledge about other 'trusted' sequences (in particular similar sequences) and comprises 
position-specific gap penalties. This enables increased matching of distant sequences and 
appropriate placement of gaps outside ungapped core regions during progressive alignment, 
thereby avoiding errors early on in the progressive alignment.  
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Bipartite alignment scheme 
The PRALINE bipartite strategy for TM proteins was implemented following the scheme devised 
for the alignment of soluble protein sequences for which 3-state secondary structure, i.e. 
α-helix, β-strand and coil, is delineated (Heringa,1999). The PRALINE-TM tool first predicts the 
TM topology for each input sequence, using the state-of-the-art TM topology predictor Phobius 
(Käll et al. 2004). Next, the profile-scoring scheme simply applies TM-specific substitution 
scores from the PHAT matrix to consistently predicted TM positions, during the progressive 
alignment stage of PRALINE. In Fig. 11.1 an overview of this bipartite alignment strategy as 
implemented in PRALINE-TM is given. An alternative way of looking at the bipartite alignment 
strategy is to consider the TM info to be appended to residue types, thereby effectively 
doubling the number of residue types and quadrupling the size of the substitution matrix.  
 

Figure 11.1 Overview of the PRALINE-TM bipartite alignment strategy. 
 
 
The current PRALINE profile-scoring scheme uses the following equation to score a pair of 
profile columns x and y: 
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where αi and βj are the frequencies with which residues i and j appear in columns x and y, 
respectively, and M(i,j) is the exchange weight for residues i and j provided by the selected 
substitution matrix M. By default profile columns are aligned using the BLOSUM62 matrix. Two 
profile columns will be matched using the PHAT matrix only in case each residue in the column 
is predicted to be member of a TM segment (see Fig 11.1). This is done to guarantee that 
inconsistently predicted positions do not negatively influence the alignment quality. As a result, 
and contrary to the STAM method (Shafrir and Guy 2004), PRALINE-TM potentially allows TM 
segments to be aligned to non-TM segments (Pirovano et al. 2008a). The BLOSUM62 and PHAT 
substitution matrices are normalized using their diagonal elements as described by Abagyan 
and Batalov (1997). The 'soft' bipartite scheme of Praline is less sensitive to errors in the 
delineation of the TM regions, as compared with 'hard' bipartite schemes such as adopted in 
the STAM method. In fact, in the latter hard approaches the exact definition of the TM segment 
is critical because TM segments can not be aligned with non-TM segments. Incorrectly 
delineated TM regions are likely to lead to misaligned TM and soluble segments, and no 
provision can be made for variable numbers of TM segments within families. 
 

Tree-based consistency iteration 
As a third and last step, the PRALINE-TM method employs an additional iterative strategy 
based on tree-dependent consistency iteration, which is similar to the tree-dependent strategy 
proposed by Hirosawa et al. (1995) and its implementation in the MUSCLE method (Edgar 
2004). In this scenario, each edge of the phylogenetic (guide) tree is used to divide the 
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alignment in two subalignments, which are successively realigned. The new alignment is 
retained only if an improved Sum-of-Pairs score is achieved. In the case of PRALINE-TM, this 
score is obtained by summing the substitution values of both the BLOSUM62 and PHAT matrix 
(depending on the TM topology of the amino acid pair). For the tree-based consistency 
strategy one iterative cycle implies that each edge of the tree is visited once. The maximum 
number of iterations is set to 20 by default to keep computations within bounds. 

 

Bipartite MSA compared to standard MSA 
It is important to know whether a bipartite scheme can improve alignment quality by including 
TM-specific information during the alignment procedure. Our recent work compares the 
PRALINE and (bipartite) PRALINE-TM strategies with three state-of-the-art TM topology 
predictors. The results are summarized in Table 11.2. and are based upon a standard 
progressive alignment strategy (which we refer to as "basic") to make a first comparison 
between an alignment method excluding and including the TM bipartite scheme. Accuracy is 
measured by comparing the alignment produced with the reference alignment. For BAliBASE, 
the BAliBASE ‘testing’ program is provided that implements two scoring schemes: the sum of 
pairs (SP) score measures the fraction of correctly aligned residue pairs while the total column 
(TC) score expresses the fraction of correctly aligned columns. The TC score is the stricter of 
the two. (Note the distinction with the Sum-of-Pairs scoring used during alignment, which is 
based on a sum of substitution scores as explained in the previous section.)  
 
 

METHOD SP score TC score 
PRALINE basic 0.646 0.231 
PRALINE-TM basic – HMMTOP 0.679 0.264 
PRALINE-TM basic – TMHMM 0.725 0.254 
PRALINE-TM basic – Phobius 0.737 0.268 

Table 11.2 Performance of the PRALINE and PRALINE-TM basic strategies (without pre-profiling) on 
reference set 7 of BAliBASE (at gap-open and gap-extension penalties of 15.0 and 1.0 for both the 
soluble and the transmembrane regions). 
 
 

 
Figure 11.2 Contributions of the PHAT matrix and the gap open penalty to the alignment quality. The 
PRALINE-TM — Phobius method is evaluated at different TM gap-open penalties. In the first analysis 
(BLOSUM62/PHAT) the PHAT matrix is applied to the transmembrane regions. In the two control analyses 
either BLOSUM62 (BLOSUM62/BLOSUM62) or PHAT (PHAT/PHAT) is applied to the entire sequence. In a) 
the average SP score is plotted, in b) the average TC score, as function of the TM gap open penalty. Note 
that PRALINE-TM here includes the preprocessing strategy. 
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A notable increase can be observed for all three TM predictors, albeit Phobius gives the best 
performance overall. Phobius has shown to be one of the most accurate TM topology predict-
tors, especially on sequences that also contain a signal peptide (Jones 2007; Käll et al. 2004). 
Independent contributions to the alignment quality coming from the PHAT matrix and TM 
specific gap-open penalties were also investigated. The results in Fig. 11.2 clearly show that 
the combination of BLOSUM62 / PHAT matrices yields optimal results, while using only 
BLOSUM62 or only PHAT does not, even when optimised gap penalties are used (Pirovano et 
al. 2008a). Using only BLOSUM62, a small improvement can also be obtained by optimizing 
the TM gap-open penalty; these influences however are much less pronounced than the use of 
the bipartite scheme. 
The most striking observation to be made from Table 11.2 and Fig. 11.2 is the positive effect 
on the alignment quality of the PHAT matrix applied to reliably predicted TM regions. In Table 
11.2 the results are shown at an arbitrary gap-open penalty of 15.0 and gap-extension penalty 
of 1.0 for both the soluble and the TM regions. Fig. 11.2 shows that the positive effect of using 
the PHAT matrix on TM regions is consistent over the whole range of gap-open penalties.  
 

Comparing PRALINE-TM with non-TM MSA methods 
Table 11.3 compares PRALINE-TM (gap-open penalty 15.0; TM gap-open penalty 16.5; pre-
profile cut-off 11.0) with other widely-used multiple alignment methods, which are designed 
for aligning soluble proteins. The default PRALINE method, i.e. ‘prepro’ without TM information, 
with optimised parameter settings over this dataset is included for reference (gap-open 
penalty 15.0; pre-profile cut-off 8.5). Generally, methods reach average SP scores about 10% 
lower than for soluble proteins (Pirovano 2010). All methods reach SP scores that are twice as 
high as corresponding TC scores. PRALINE-TM achieves the highest SP score for two datasets 
and the highest TC score for four datasets. Concerning the averages over all eight datasets, 
ProbCons slightly outperforms MAFFT and PRALINE-TM on the SP score. On the more critical 
TC score PRALINE-TM clearly scores best. ClustalW and MUSCLE score considerably lower on 
almost all datasets. The standard PRALINE method achieves a SP score comparable to 
ClustalW, but can be placed between MAFFT and ProbCons with respect to the TC score. 
Importantly, inclusion of TM information in PRALINE-TM improves overall SP and TC scores 
compared to standard PRALINE.  
 

SP score 
Set ClustalW MUSCLE MAFFT ProbCons PRALINE PRALINE-TM 
7tm 0.847 0.836 0.835 0.882 0.816 0.860 
acr 0.906 0.946 0.937 0.935 0.930 0.936 
dtd 0.786 0.855 0.844 0.877 0.824 0.863 
ion 0.354 0.520 0.509 0.527 0.346 0.543 
msl 0.864 0.870 0.845 0.849 0.813 0.874 
Nat 0.630 0.738 0.766 0.745 0.720 0.713 
photo 0.887 0.902 0.934 0.913 0.915 0.933 
ptga 0.461 0.551 0.729 0.716 0.404 0.683 
AVG. 0.717 0.777 0.800 0.806 0.721 0.801 
       
TC score 
Set ClustalW MUSCLE MAFFT ProbCons PRALINE PRALINE-TM 
7tm 0.410 0.340 0.320 0.410 0.310 0.430 
acr 0.580 0.670 0.620 0.670 0.690 0.620 
dtd 0.250 0.310 0.210 0.340 0.360 0.390 
ion 0.000 0.000 0.030 0.090 0.000 0.000 
msl 0.610 0.630 0.610 0.600 0.580 0.660 
Nat 0.020 0.130 0.120 0.180 0.220 0.140 
photo 0.490 0.460 0.550 0.490 0.570 0.730 
ptga 0.010 0.060 0.180 0.150 0.000 0.080 
AVG. 0.296 0.325 0.330 0.366 0.341 0.381 

Table 11.3 Comparison between PRALINE-TM and five widely-used multiple alignment methods. Indivi-
dual and average SP and TC scores are given; for each set the best scoring method is highlighted in bold. 
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It should be mentioned that the PRALINE and PRALINE-TM methods were optimized on the TM 
dataset, whereas the other methods were run at default settings. It is noteworthy in this 
respect that an increased pre-profile cut-off value of 11.0 for PRALINE-TM worked best, in 
contrast to the cut-off value of 8.5 that was found to be optimal for soluble protein sequences. 
The ‘tighter’ pre-profiles with fewer but more similar sequences yielded improved TM 
predictions, leading in turn to improved alignments. Concerning this training scenario, both 
MAFFT and ProbCons are relatively robust on TM sequences. Nonetheless, the results show 
clearly that a TM-based strategy can significantly improve the quality of TM protein sequence 
alignments, and should be considered a promising avenue for other applications as well. 
 

Benchmarking transmembrane alignments  
Due to the underrepresentation of solved crystal TM structures in the PDB database, it is a 
difficult task to assess the quality of TM protein sequence alignments based on structural 
comparisons. To date, out of the many alignment benchmarks available for standard proteins, 
only BAliBASE (Bahr et al. 2001) has devoted a special reference set to TM proteins, ref7. This 
set contains 8 accurately aligned TM families and consists of in total 435 sequences with an 
average length of 567 residues. The number of TM α-helices per sequence varies from 2 to 14.  
For BAliBASE the SP and TC scores explained above are used. Other general benchmark sets 
use different names (the PREFAB ‘Q score’ and SABmark fD score are equivalent to the SP 
score), or different scores (SABmark fM score is the total number of correctly aligned pairs 
from the test alignment, and is also stricter than the SP score). It is however not trivial to 
select the biologically most meaningful scoring scheme, as even gold-standard structure 
derived alignments can show high variability (Pirovano et al. 2008b). In particular, this can be 
a serious problem for the strongly variable TM loop regions. 
Despite the efforts that are being made to cover a significant part of the TM structure space 
(i.e. by taking families that display different evolutionary distances and a different number of 
TM helices), the number of sequences is rather low for robust testing of alignment methods. 
Particularly, only 15% of TM proteins in the PDB are porin-like β-barrel TM protein structures 
(Tusnády et al. 2005), so that a general benchmark set for β-TM alignments is currently lack-
ing. Moreover, for a number of benchmark sequences the TM segments are determined from 
structure prediction, leading to a circular problem between TM alignment construction and 
prediction. The scarcity of reference data creates a problem for optimizing any MSA technique 
for TM proteins, as overfitting of variables is unavoidable on such small and biased datasets. 
The HOMEP dataset of homologous membrane proteins (Forrest et al. 2006) provides an 
alternative possibility for evaluating TM alignment accuracy. The set consists of 36 TM proteins 
with solved crystal structures which can be grouped into 11 SCOP families of similar topology. 
By making pairwise structural superpositions within the families a set of 94 homologous 
comparative models has been compiled. For each pair of structures the TM location is 
determined both manually and using TMDET (Tusnády et al. 2005). This set has been the basis 
for the comparison of different sequence alignment algorithms as applied to membrane 
proteins by Forrest et al. (2006).  
Another way of testing the quality of TM alignments may also be to indirectly test the perfor-
mance of TM prediction methods. It should be stressed that many of these use multiple align-
ments as an input for deriving prediction rules and paradoxically the quality of the alignment 
turns out to be a crucial factor here (Cserzö et al. 1994, 1997; Käll et al. 2005; Jones 2007). A 
scenario thus could be to select TM sequences for which corresponding crystal structures are 
available and retrieve for each of them homologous sequences using PSI-BLAST (Altschul et al. 
1997). Subsequently, these sequence sets can be aligned by the competing alignment 
methods and serve as input for a TM prediction method. The prediction quality can be assessed 
using information on TM segment topologies and locations derived from the crystal structures, 
as routinely done for TM prediction method comparison (e.g. Nugent and Jones 2009).  
 

Defining TM regions 
A related and important issue is the definition of the membrane-bound region of the protein 
itself. In addition to the membrane-bound region, that strictly consists of the membrane-
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exposed ‘TM region’ residues, the notion of membrane-spanning region (MSR) is often used 
(e.g., Möller et al. 2001; Forrest et al. 2006). The MSR is the secondary structure element, 
mostly α-helix but also β-strand, that crosses the membrane and potentially extends far 
outside the membrane region proper. The TM region therefore is a subset of the MSR. A 
definition based on X-ray crystallography data is also possible, provided sufficient electron 
density is observed that can be associated to the lipid region (Fyfe et al. 2001). Other 
experimental methods include proteolytic cleavage and chemical probe methods (e.g., 
Jennings 1989, for a review). In general, however, the boundaries of the lipid-associated 
region cannot be determined unambiguously (Möller et al. 2001). 
The common method for defining the membrane-bound region of the protein is by evaluation 
of the periodicity of hydrophobicity and conservation along the sequence, for example the 
TMDET method and corresponding PDB_TM database (Tusnády et al. 2005). Buried residues, 
i.e. in the protein core, are on average as hydrophobic as membrane-exposed residues, but 
considerably more conserved (e.g., Donnelly et al. 1993). In addition, the membrane-
associated regions are anchored transversally in the membrane by strongly conserved polar 
and/or positive residues that flank the hydrophobic region on either side. Propensity tables for 
core and headgroup region location of amino acids, but also neural nets or hidden-Markov 
models, are commonly used to identify or predict TM regions (Sonnhammer et al. 1998). 
Interesting, for optimal training of a HMM-based model the gold-standard TM region definition 
used has to be adjusted; all segments were shortened on both ends by three residues, and the 
new ‘optimal’ segment boundary determined by the model itself (Sonnhammer et al. 1998; 
Krogh et al. 2001). Likewise, for evaluation of the performance of TM prediction methods 
generally an overlap of between five and ten residues from the predicted TM segments with 
the 21 residues average length of the membrane-spanning region is considered a successful 
prediction (Möller et al. 2001; Käll et al. 2004; Jones 2007).  
What therefore commonly remains undefined in the description of the TM prediction methods is 
whether it is the core-headgroup boundary, or the headgroup-solvent boundary that is actually 
predicted. For accurate TM MSA it is these boundaries that are of crucial importance to the 
successful selection of appropriate substitution matrices for the different regions. Moreover, 
the determination of the substitution scores depends critically on a well-defined demarcation of 
the regions of different composition and conservation patterns, especially since relatively little 
sequence data is available on which these scores can be based. 
 

Applications for TM multiple alignments 
Multiple sequence alignment is used for various problems wherein accurate alignments 
between two or more proteins are required. For transmembrane proteins, there are in 
particular many applications that require accurate profiles of multiple homologous sequences. 
For example, prediction of TM regions, TM topology (e.g. Jones 2007) and binding sites of TM 
proteins (Bordner 2009) all require accurate multiple sequence alignments; advances in MSA 
techniques for TM proteins may therefore also benefit these applications.  
Due to the lack of experimentally solved TM structures homology modelling is a particularly 
important application. MSA techniques may help to improve the alignment quality necessary 
for accurate modelling by adding information from other homologous sequences. Forrest et al. 
(2006) give a particularly helpful review on the homology modelling of TM proteins. They find 
that in general techniques developed for soluble proteins may also be used for TM proteins, al-
though a slight drop in accuracy is observed as compared to soluble proteins. Surprisingly, the 
TM regions of the proteins are more accurately modelled than the interconnecting loops; this 
may be explained by the larger (structural) conservation of the TM regions, as they form the 
core of the TM domains. The transferability of methods developed for soluble proteins to TM 
proteins, such as secondary structure prediction, may be explained by the similar hydrophobic 
environment of buried regions in soluble proteins, and lipid exposed region in TM domains. 
 

Homology searches of TM proteins 
Alignments between (multiple) proteins are used for two distinct purposes: (1) to decide if two 
proteins are evolutionary related, a homology search; or (2) to determine the most accurate 
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alignment between (a set of) evolutionary related proteins. The latter problem is usually 
addressed with multiple sequence alignment techniques. The two problems are strongly 
related, therefore techniques improving the alignment quality may also improve database 
search specificity and vice versa. For example, it has been shown that the PHAT substitution 
matrix, originally developed to improve homology searches, can also substantially improve the 
quality of multiple sequence alignments (Pirovano and Heringa 2008). This is not surprising as 
both problems are heavily dependent on substitution rates between amino acids. On a similar 
note, profiles created by homology searches may be used to improve multiple sequence 
alignment (Simossis et al 2005). 
Some particular issues have been observed for homology searches of membrane proteins; 
generally methods developed for soluble protein are used, such as PSI-BLAST (Altschul et al. 
1997) or HMMER (Eddy 1998). However, it has been noted that false positive rates may go up 
considerably as compared to database searches for soluble proteins. Homology searches for 
TM proteins in general protein databases using BLAST may be improved by employing TM 
specific substitution matrices (e.g. Ng et al. 2000; Müller et al. 2001; Jimenez-Morales et al. 
2008). The compositional bias of TM proteins may be overcome with corrections to scoring 
(Schäffer et al. 2001), or substitution matrices (Altschul et al. 2005). However, to our 
knowledge, it has not been verified whether such compositional bias corrections indeed 
improve homology searches for TM proteins. In addition, homology searches may be improved 
by adding information about the predicted TM regions and their topology; this information is in 
particular valuable for the search of more remote homologs (Bernsel et al. 2008). 
 

Current Bottlenecks 
A few significant problems concerning MSA method development are holding back progress in 
accurate alignment of TM proteins: 

1. Benchmark sets are limited in quantity and quality, and are severely biased towards TM 
helices. This limits tuning of method parameters, accurate determination of substitution 
rates and proper cross-validated testing of the MSA methods. 

2. Homology searches are known to yield relatively large numbers of false positives for TM 
proteins. It is unclear to what extent recent method developments have improved this 
issue. A thorough investigation of these false positive rates is necessary for current 
homology detection methods. Accurate homology detection, especially a low false 
positive rate, is crucial for generation of high quality profiles to guide alignment and TM 
topology prediction. 

3. The very definition of membrane regions remains highly ambiguous, both theoretically 
and practically. This poses potentially severe problems for accurate determination of 
substitution rates for the different regions (core, headgroup and soluble). The optimal 
performance of a TM alignment method depends on a strict correspondence of the 
regions on which the substitution matrices have been calculated, and the predicted 
regions used in the bipartite alignment scheme. 

 

Avenues for Improvement 
In contrast to the bottlenecks identified above, several feasible and practical adjustments are 
worth considering to improve alignment accuracy of TM proteins. We list them in approximate 
order of expected return on investment: 

1. Current TM-specific substitution matrices have been determined about a decade ago. 
The increase in experimental TM protein data will allow better estimates for the 
exchange parameters, in particular for the β-barrel TM regions. Moreover the current 
substitution matrices were developed specifically for accurate homology searches, 
which will not necessarily yield the best results for alignment methods. 

2. TM region prediction depends on accurate profiles, and is used in creating the TM 
multiple alignment. During the MSA procedure the profile quality progressively 
increases, which gives the opportunity to iteratively improve TM predictions and 
thereby the TM multiple alignment. 
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3. A known feature of TM loops is their flexibility and variation in length. The bipartite 
scheme implies separate gap penalty settings for the TM and non-TM regions, but does 
not distinguish between TM loops and non-TM domains. 

4. Particular features of the TM regions, such as the ‘positive inside’ rule, TM topology, 
location of the head groups which are also predicted by the TM prediction methods, are 
not explicitly used in current alignment schemes. For homology detection, inclusion of 
TM topology has significant positive effect (Bernsel et al. 2008). For example, penalties 
for misaligned regions may be included. 

5. A more fine-grained approach for region-specific substitution matrices, as well as 
misalignment penalties mentioned above, could be beneficial. Particularly, the amino 
acid composition and substitution rates of β-barrels are known to differ from current 
values for α-helical TM regions. Also (protein) buried versus lipid exposed TM residues 
show significantly different conservation patterns. Finally, the polar headgroup region 
imposes particular constraints on the amino acid composition. 

6. Apparently, allowing predicted TM regions to be aligned with non-TM regions is 
necessary for accurate alignment of TM proteins; either due to inaccuracies in the TM 
prediction, flexibility in the length or number of TM regions between homologs. To 
optimize the TM to non-TM alignment one needs to correct for the compositional bias 
between these regions, for example by non-symmetrical substitution matrices.  

7. Further method improvements might come from more balanced and comprehensive 
benchmarks, not only containing alignments, but for instance also including validation 
of TM prediction methods based on different alignment inputs (from different alignment 
strategies). 

 

Conclusions 
MSA methods, trained on soluble proteins, in general do a reasonable job at aligning TM 
protein sequences; we approximate a difference of 10% in accuracy. Alignment quality can be 
improved significantly using a transmembrane-specific substitution matrix and proper gap 
penalty settings, as shown by the PRALINE-TM example. In our view the improvement is 
mainly attributed by the fact that the bipartite scheme, using BLOSUM62 and PHAT, is applied 
in a flexible manner to undivided sequences during each step of the alignment procedure. 
Attempts where TM and soluble regions were aligned independently did not succeed in making 
significantly better alignments (Forrest et al. 2006). Strict gap penalty-settings for TM regions 
improve the overall performance, however, these effects should not be overestimated; the 
optimal TM gap-open penalty was only slightly higher than the standard penalty.  
Overall we conclude that TM-awareness is an important concept for optimizing multiple 
sequence alignment quality, yielding an increased performance of about 10%. However, none 
of the methods included here was able to align more than 40% of the reference alignment 
columns on average (TC score), so that further optimization remains a challenging task. 
Nevertheless, the difficulty of experimentally determining TM protein structures makes this a 
worthwhile effort. 
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