
Design Issues for Qualitative Modelling of
Biological Cells with Petri Nets

Elzbieta Krepska, Nicola Bonzanni,
Anton Feenstra, Wan Fokkink, Thilo Kielmann,

Henri Bal, and Jaap Heringa

Department of Computer Science, Vrije Universiteit
De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
ekr@cs.vu.nl, {bonzanni,feenstra,wanf}@few.vu.nl,

{kielmann,bal,heringa}@cs.vu.nl

Abstract. Petri nets are a widely used formalism to qualitatively model
concurrent systems such as a biological cell. We present techniques for
modelling biological processes as Petri nets for further analyses and in-
silico experiments. Instead of extending the formalism with ,,colours” or
rates, as is most often done, we focus on preserving the simplicity of
the formalism and developing an execution semantics which resembles
biology – we apply a principle of maximal parallelism and introduce
the novel concept of bounded execution with overshooting. A number
of modelling solutions are demonstrated using the example of the well-
studied C. elegans vulval development process. Our model is still under
development, but first results, based on Monte Carlo simulations, are
promising.

1 Introduction

Systems biology [1] is a relatively new field of study which focuses on
interactions within and between biological systems. The knowledge about
those systems typically is presented in the form of descriptive text, illustrated
with diagrams that are often beset with arrows, colourful components and
comments. It is not only difficult to locate a particular piece of information,
but also to understand it, as there are often unknowns and ambiguities in
the description. This problem is inevitable when representing dynamical and
concurrent processes in a living cell as flat diagrams.

Furthermore, the amount of biological knowledge is increasing, and has
reached the point where the help of machines is becoming indispensable. What
is more, in vitro (laboratory) experiments tend to be expensive and slow
and are often infeasible, whereas in silico (computer) experiments could be
cheaper, faster and better reproducible. Realistic executable models of biological
systems can be used for predictions, preparation and elimination of unnecessary,
dangerous or unethical laboratory experiments. This approach would also be
applicable, for example, in drug design and testing [2].

Therefore, one of the major questions systems biology is currently trying
to answer, is how to represent biological knowledge concisely, unambiguously,
without omissions, with well-localised gaps and in a machine-processable way.

There are two typical approaches to cell modelling: the first uses systems of
differential equations and the second uses stochastic simulations, see for example
[3–5]. They are both quantitative and highly dependent on kinetic constants or
reaction rates which are approximate (Sackmann et al. [6] claim that often only
30-50% of data is known). Differential equations work only in cases when many
molecules of each protein species are present, and stochastic simulation works
only for ,,well-stirred” chemical soups. However, biological cells are far from
being ,,well-stirred” and examples abound where small amounts, or even single
molecules, are crucial to biological processes. In contract, cell interaction data
are available in large amounts [6,7]. Clearly, there is a need for qualitative rather
than quantitative modelling.

Petri nets are a well-established technique for modelling concurrent systems.
They are simple and powerful in expressing biological knowledge, e.g. binding,
signalling, concurrency, nondeterminism, timing. They are extensible and have
intuitive visualisation.

As a model organism we picked a well-described and relatively uncomplicated
worm, C. elegans, and the first phase of its well-studied vulval development
process [8]. Additionally, this process has discrete output, which makes it easier
to verify correctness of a model.

We started with a well-known basic approach to modelling biological systems
using Petri nets, described, for example, in [9]. Throughout the development
of our model, we set the following three objectives. (1) Resemble biology. (2)
Keep the model homogeneous and simple. (3) Comply to the standard Petri net
theory. (4) Keep the model qualitative while trying to reproduce the results of
laboratory experiments. These goals quite often conflict and it was necessary
to find a consensus between them. As a result, we place our work in-between
qualitative and quantitative approaches.

In this paper we present our experiences in modelling the C. elegans vulval
development process using Petri nets. Instead of extending the formalism with
,,colours” or rates, as is typically done, we focused on preserving the simplicity of
the formalism and changing the execution semantics. Rather than the traditional
interleaving execution, we use the maximal parallelism principle and introduce
a novel concept of bounded execution with overshooting.

Our network is considerably larger than those typically published in papers
on modelling of biological cells using Petri nets – it has about 300 places and 300
transitions and approximately 950 edges. Our model is still under development,
but first results, based on Monte Carlo simulations, are promising. So far we are
able to correctly simulate 46 out of 48 experiments from [10].

The paper is organised as follows. Section 2 sketches the biological process
that we are modelling. Section 3 introduces general Petri net theory. Section
4 presents biological modelling methods and execution semantics. Section 5
describes good practices and techniques in modelling using Petri nets. Section

6 identifies problems we encountered while working on the model. Section 7
overviews related work. Section 8 discusses current results. Section 9 gives
conclusions and ideas about continuing this work in future.

2 C. elegans Vulval Development

C. elegans is a well-studied nematode (type of worm), living in soil and
about 1 mm long. It consists of about 1000 cells which are all numbered, and
their destinies at all stages of the development of the worm are well-described.
Six of those cells are called Vulval Precursor Cells and numbered P3.p, P4.p,
P5.p, P6.p, P7.p and P8.p. Those cells form a line. They participate in the
process of vulval development, depicted in Fig. 1.

P3.p P4.p P5.p P6.p P7.p P8.p

Fig. 1. Cells taking part in vulval development process.

Instructions providing all the information necessary for a living cell to grow
and function are present in the form of DNA molecules. The DNA contains
a number of genes which are templates for the production of proteins, the cell
building blocks. We say that a gene is wild-type (on) when the protein is normally
produced. It is knocked-out (off) when it is not produced, and it is over-expressed
when it is produced in excess. Proteins present in a cell may have two forms,
active and inactive. Typically, the protein must first be activated to participate in
reactions. Proteins may also influence other proteins or themselves. For instance,
processes of increasing or decreasing the production of a protein are called,
respectively, up- or downregulation. Certain proteins and their interactions are
grouped as pathways, ,,packages” with a coarse-grained function in a living cell.

The vulval development process consists of two interacting pathways. Their
significant genes are lin-12 and mpk-1. In this process, all cells have to arrive
at a decision which fate to choose: 1, 2 or 3. The cells that choose first fate
will divide and create the actual vulva. The cells that choose the second fate
become supporters of the vulva. The cells that choose the third fate will fuse
with the hypodermis, the ,,skin” of the worm. Before the process starts, all cells
are the same. Provided that all genes are produced normally, the process works
as follows (see Fig. 2). A special cell, called the Anchor Cell (AC), comes near
cell P6.p and induces a signal leading to first fate in P6.p. Then P6.p sends
signals to its sides (lateral signals) resulting in the second fate taken by P5.p

and P7.p. Remaining cells do not get any signal and eventually choose the third
fate. In case the genes were not produced normally, many other possible patterns
of fates can occur. Note that this is an extremely simplistic description. This and
much more information about C. elegans can be found in the Wormbook [8].

33 3 2 21

? ? ?? ? ?

P3.p P4.p P5.p P6.p P7.p P8.p

AC

Fig. 2. First stage of C. elegans vulval development process. The resulting wild-type
fate pattern is (3 3 2 1 2 3).

In this paper we use the following convention: genes are written in lowercase
and corresponding proteins in uppercase. The suffix PRO, for example in
LIN-12 PRO, denotes the production reaction and suffix DOWN denotes down-
regulation. A protein name containing cell number, for example LIN-12/P6.p,
denotes protein concentration within this particular cell.

3 Petri Nets

Petri nets [11, 12] are a formalism geared towards modelling and analysis
of concurrent systems. A Place-Transition (PT) Petri net is a quadruple
(P, T ,F ,m), where P is a set of places and T a set of transitions. F describes
weights of arcs which can connect places with transitions or transitions with
places. Each place holds zero or more tokens, which represent flow of control
through this place. The number of tokens in all places is called a marking of the
network, m:P → IN, and represents its state.

Fig. 3. (a) Production of a protein SEM-5 in the presence of coding gene sem-5(wt).
(b) Synthesis of a complex AB from one A and two B.

An example of a Petri net is given in Fig. 3(b). Places are depicted as circles,
transitions as rectangles, arcs as arrows and tokens as dots. If no F-value is
given, it is 1.

Incoming arcs at a transition represent its requirements and outgoing arcs
represent token production. A transition is enabled when all of the requirements
are met. An enabled transition can fire: consume all required tokens and produce
new tokens. The interleaving execution semantics of a Petri net is defined as

follows: in each step select randomly one enabled transition, fire it, repeat.1

If there are no more enabled transitions left, the network deadlocks. This
semantics describes totally asynchronous behaviour, i.e. all possible interleavings
of transitions.

4 Modelling Biology

Below we present a method to represent biological knowledge as Petri nets.
We illustrate it with three examples of typical biological modelling problems.
We also introduce the design of our model and explain the adaptation of the
Petri net standard that we have developed.

4.1 Basic Translation

The translation of places and transitions into biological entities is straight-
forward. Places represent genes, protein species and complexes. However, we
have encountered many cases when we had to represent a single entity with
various characteristics as multiple places. For example, to differentiate between
active and inactive LIN-12 proteins, we used two places LIN-12 and LIN-12 ACT.
Transitions represent reactions or transfer of a signal. Arcs represent reaction
substrates and products. Firing of a transition is execution of a reaction:
consuming substrates and creating products.

4.2 Gene Expression

Figure 3(a) depicts a typical example of production of proteins from a gene.
In this case the ,,reaction” SEM-5 PRO produces proteins SEM-5 when the wild-
type gene sem-5(wt) is present. When the gene is not present, the ,,reaction”
does not take place.

4.3 Downregulation through Production Suppression

Figure 4 depicts downregulation of a protein LIN-12 through suppressing
the expression of a gene lin-12(wt). Normally, if MPK-1 is not present, the
reaction LIN-12 PRO is enabled and produces protein LIN-12, similarly to the
previous example. However, when MPK-1 is present, the reaction LIN-12 DOWN is
enabled and has 0.5 chance of firing compared to LIN-12 PRO, so the production
of LIN-12 will halve.

1 In this paper, by random selection we mean that the choice is non-deterministic and
all possible choices have equal probability to be selected.

Fig. 4. MPK-1 downregulates LIN-12 by
suppression of lin-12(wt) gene.

Fig. 5. MPK-1 degradation of LIN-12

through endocytosis and upregulation of
a lateral signal by MPK-1.

4.4 Downregulation through Product Removal

Figure 5 illustrates two processes. The first process is another model for
decreasing the level of LIN-12 by MPK-1 – the degradation through endocytosis.
Here the produced LIN-12 is removed, while in the previous example its
production was reduced. Normally, if MPK-1 is not present, the level of LIN-12

does not change. However, when levels of LIN-12 and MPK-1 are high enough
(≥ 3), the reaction LIN-12 DOWN can execute and decrease the concentration of
LIN-12. The second process is sending a lateral signal. When a high (≥ 5) level
of concentration of MPK-1 is present, a lateral signal can be initiated.

4.5 Concentration Levels

The number of tokens in our model does not represent directly the number
of molecules of proteins. In the Petri net model, we interpret it in two ways.
In case of a gene: 0–not present and 1–present. And in case of a protein:
0–not present and 1-2, 3-4 and 5-6 – low, medium and high concentrations.
The rationale behind this approach is to abstract away from unknown absolute
molecule concentration levels, in order to keep the model qualitative.

4.6 Maximal Parallelism

The interleaving semantics of Petri nets describes asynchronous behaviour,
cf. Sect. 3. However, this is not realistic for biological cells, where all reactions can
happen in parallel. Thus, in our model we use the maximal parallelism execution
semantics, which can be summarised informally as execute greedily as many
transitions as possible in one step. In this semantics, a step S is a multi-set of
transitions, i.e. a transition can occur multiple times in S. A maximally parallel
step is a step that leaves no enabled transitions in the net. A maximally parallel
step is enabled if executed transitions are enabled with the required multiplicity.

In case more than one maximally parallel step is possible, the one to execute in
a simulation is selected randomly. Figure 6 illustrates an example network and
possible maximally parallel steps. The maximal parallelism principle for Petri
nets is described for example in [13].

Fig. 6. A network with exactly
three possible maximally parallel
steps: {t0× 5, t2× 2}, {t0× 3, t1, t2},
{t0× 1, t1× 2}.

Fig. 7. A bounded network with a
bound 6. Transition t0 cannot fire
because it would create 7 tokens in p1

and maximally 6 tokens are allowed.
Saturation in place p1 is not possible.

Efficient Implementation of Maximal Parallelism. In the implementation
of the maximally parallel execution of a Petri net, the key notion is a conflict.
We say that two transitions t and t′ are directly in conflict if they have a
common parent. They are in conflict if there exists a sequence of transitions
t= t1, t2, .., tk= t′ such that each pair (ti, ti+1) is directly in conflict. For example,
in Fig. 6 all three transitions are in conflict.

The computational cost of generating the next maximally parallel step is
at least Ω(exp(|T |)), as it involves verifying all subsets of T in the worst case,
i.e. when all transitions are in conflict. Fortunately, in our experience so far, in
nature the networks tend to be ,,sparse” and, as a result, this computational
cost has not been a bottleneck.

Algorithm 1 nextMaxStep(N : PetriNet)

1: S = ∅
2: D = generateConflicts(T)
3: for all d ∈ D do
4: Ad = backtrackAllMaxSteps(d)
5: sd = selectRandom(Ad)
6: S = S ∪ sd
7: end for
8: return S

Algorithm 1 shows how the next maximally parallel step is created in our
implementation. The algorithm proceeds in three stages. In the first stage, the

set of all transitions, T , is divided into a set of disjoint subsets of transitions in
conflict, D. Existence of enabled transitions in conflict implies that there exists
more than one possible step.

In the second stage, for each subset of transitions in conflict, d ∈ D, all
possible maximally parallel steps are generated using a simple backtracking
technique. The resulting step, sd, is then chosen randomly. Note that sd is
a multi-set of transitions that belong to d. In the third stage, the global
step is combined out of ,,local” steps: S =

⋃
d∈D sd. This can be done

because transitions that belong to different subsets in D are not in conflict.
In our implementation, the first stage of partitioning the network into disjoint
transitions sets in conflict is executed once, stored and used for creation of a
sequence of maximally parallel steps.

4.7 Bounded Execution

In our first attempt, the execution of the network was not bounded, as it
was designed to produce the output into infinity. However, it turned out that
numerous nodes reached a high number of tokens, e.g. 800, which was in practice
impossible to downregulate or degrade. Furthermore, such a high production of
certain proteins is not realistic, as in nature the cell would saturate with the
product, and the reaction would slow down or stop. Therefore we introduced
a bounded execution with a chosen bound N = 6, which means that a place
cannot contain more than N tokens.

4.8 Bounded Execution with Overshooting

Bounded execution suffers from two problems. First, it is not possible to
execute partial reactions, and therefore sometimes saturation cannot be reached
– see the example of a network in Fig. 7.

Second, the partition of transitions used for fast execution (see Sect. 4.6)
does not work anymore, as there are more conflicts and the entire network
becomes inter-dependent. To overcome both problems, we implemented bounded
execution with overshooting. Each transition can overshoot maximally once. In
other words, a reaction can produce if all products have at least one free token
slot in the output place. Consequently, given a place with n incoming arcs with
weights w1, . . . , wn, the maximal number of tokens in p is (N−1)+

∑n
i=1 wi.

5 Modelling Solutions

While creating the model of C. elegans vulval development process, we
developed a number of good practices and techniques for modelling biological
knowledge as Petri nets, without extending the formalism. Below we present
several of these techniques.

5.1 Reactions Ordering

The fragment of the network depicted in Fig. 5 represented both down-
regulation of LIN-12 by MPK-1 and sending a lateral signal (see Sect. 4.4).
Let us assume that only one token at a time flows into MPK-1. Note that the
downregulation of LIN-12 will take place before sending a lateral signal. This is
because whenever new tokens appear in MPK-1, they first reach the level 3. Only
when LIN-12 level drops to < 3 and blocks LIN-12 DOWN, can MPK-1 reach 5 and
initiate a lateral signal. The vulval development of C. elegans is initiated by the
Anchor Cell, as we described in Sect. 2. The P6.p cell receives a strong signal
from AC, while its adjacent cells P5.p and P7.p receive weaker signals and an
additional lateral signals from P6.p, see Fig. 8.

5.2 Modelling Signal Strength

At first we modelled a stronger signal naively – by sending more tokens:
3 instead of 1, as illustrated in Fig. 9. However, this did not work, as our
network, unbounded at that time, would just accumulate high concentrations
of certain proteins, and, as a result, there was no difference between weak and
strong signals. We increased the probability of production of LIN-3/P6.p with a
technique depicted in Fig. 10: using multiple transitions for LIN-3/P6.p. Now the
probability of executing LIN-3/P6.p is three times higher than the probability of
executing LIN-3/P5.p or LIN-3/P7.p. After applying this change, the pathway
behaved like a fast ,,pipeline”. Note that this way, spatial vicinity has been
translated in the model as the probability of execution.

AC

P3.p P4.p P5.p P6.p P7.p P8.p

Fig. 8. Anchor Cell initiates the vulval development process by sending stronger and
weaker signals.

5.3 Modelling Signal Strength Directly

The method presented in Fig. 10 worked so well that it gave us an idea of
directly implementing a transition attribute called strength, see Fig. 11. This
way we gained clarity in the graphical representation and, additionally, speedup
in the maximally parallel step computation, resulting from the reduction of the
number of subsets of transitions.

Fig. 9. A simple model for the Anchor
Cell signal. Signal strength is modelled
as higher production.

Fig. 10. A method to increase the
probability of transition execution.

The execution semantics needed to be adjusted: instead of randomly selecting
a maximally parallel step out of all generated possible steps, we compute a
probability that a maximally parallel step should be selected. This probability
is the sum of strengths of transitions in the step, normalised by the sum of
strengths of all transitions. For example, in Fig. 11, the probability that the
LIN-3/P6.p transition should be fired is 3

1+3+1 = 0.6. The realisation of this
idea was straightforward to implement.

5.4 Modelling Signal Slowdown

After we switched to modelling with saturation, we observed the following
phenomenon: the strong AC signalling pathway in the cell P6.p (see Sect. 5.2)
would stall, as most of the places were oversaturated. To overcome this problem
we used a method depicted in Fig. 12. In the first step, the transition LIN-3 PRO

executes. It results in production of LIN-3 down the pathway, but also puts
one token in the cycle. In the next two steps, the signal is not generated, but
the token continues cycling. After three steps, the signal is back in AC and the
process will repeat. Note that the cycle works as a delay or a buffer: the LIN-3

signal will be created every three steps.

By using this method, we reduced the number of tokens sent within the
signal, so that the pathway is able to handle the ,,bandwidth”.

5.5 Good Practice: One Token Moves

In our first attempts to prototype the system, we frequently manually
adjusted weights on the arcs. However, this introduced uncertainties and guessed
numbers into the model. Thus, we decided to abstract away from them and move
just one token wherever possible. (Note, however, that we kept the reaction
requirements. If a requirement is k tokens, then we move back k − 1 tokens.)

Fig. 11. Transition strength.
LIN-3/P6.p is three times stronger
than LIN-3/P5.p.

Fig. 12. A method to model signal
slowdown. In the first step, the AC signal
fires. Afterwards it signals every three
steps.

5.6 Unbounded Places

We found that in one important case the places should not be saturated,
namely in the environment of the cell. Note, however, that the presence of
unbounded places makes the analysis of the net, for example steady state
determination, more difficult.

5.7 Model Correctness

Deciding whether a model is correct is difficult and varies from case to case.
The C. elegans vulval development process has the advantage of discrete output,
and for verification we have used 48 experiments published by Fisher et al. [10].

Since the semantics of execution is probabilistic, it is not enough to run
one simulation of the network. To verify its behaviour, we ran a Monte Carlo
simulation – average multiple runs, typically 3000. We used the DAS-3 cluster
[14] for that. For each simulation, we set up genes appropriately and execute the
network for a fixed number of steps.

Our observations show that protein concentrations reach ,,steady” levels after
a fixed number of steps. We we use these levels to determine cell fates and check
whether the output is correct. Our experience so far is that single runs of the
simulation are good representatives of average behaviour, that is to say standard
deviation of network behaviour is small.

5.8 Debugging Simulations

In our attempts to create a correct model of C. elegans vulval development,
we found two approaches to debugging Petri net simulation particularly
useful. First are the plots of protein concentration levels during a simulation,
averaged over various windows. Second, we use a backtracking technique. During
simulation we generate statistics about the average numbers of tokens in places,

firings of transitions and executed steps. The statistics aid us to manually go
,,backward” from output places, and trace which transitions were blocked, and
which places were oversaturated or depleted. This method typically reveals a
problem in the model, for example too strong downregulation or an incorrect
concentration level, and gives good hints as to why the execution did not work
as it was supposed to.

6 Problems Identified

While extensively working with large Petri nets we noted several disadvan-
tages of using this formalism for modelling biological cells.

6.1 Drawing tool

A major practical problem when creating the biological model is the lack of
a graphical tool supporting handling of large networks (by large we mean more
than 100 nodes). The most desirable features of such a tool are:

– Collective operations such as labelling, moving, hiding.
– Clever zooming, for instance zooming into a subset of the network.
– Adding new types of labels to nodes. For example, we needed to add label

strength to transitions, and we ended up using non-portable ways of doing
that.

– Support for the Petri Net Markup Language [15]. Using this standard turned
out very convenient, as we were able to switch drawing tools multiple times.

– Advanced visualisation of execution, allowing, for example, to view only the
selected nodes and switching of the viewing modes.

TINA [16] is the tool that we had best experiences with.

6.2 Modularity, compositionality

Another disadvantage of using Petri nets for biological modelling is that they
offer little support for modularity and compositionality. Our model consists of
six identical cells, and each cell consists of two pathways. Applying a modular
approach would be very useful in this case. Also, with the view of possibly
including several development stages of C. elegans in the future, applying a
modular approach would be indispensable.

6.3 Synchrony vs. asynchrony

Biology is neither totally synchronous nor totally asynchronous. For example,
a chemical reaction, i.e. creation of products and consumption of substrates,
can be thought of as immediate, synchronous. By contrast, sending a signal
to another cell is a typical asynchronous operation, like sending a letter. And
last but not least, time and quantities play an important role, meaning that

communications in different parts of a biological system tend to occur at the
same rate. A formalism to model biological systems should be able to express
such dependencies.

Petri net interleaving semantics models totally asynchronous behaviour
(cf. Sect. 3). We switched to a maximally parallel semantics (cf. Sect. 4.6), which
progresses in lockstep, i.e. it models synchronous behaviour. In our experience,
this way we achieve a much closer resemblance to biological cells.

However, we lost the possibility to model asynchronous communication.
An important open question is: how to introduce asynchrony into a lockstep?
Bounded asynchrony is discussed in [17], but has a disadvantage of incorporating
a global timer, and [18] focuses on coordination orchestration, which seems
heavy-weight for cell modelling.

7 Related Work

Petri nets were introduced by C. A. Petri in his dissertation in 1962 [11]. An
article by Murata [12] contains a good introduction to general Petri net theory.
Reddy was the first to use Petri nets for modelling of biochemical reactions. He
presented a basic translation of a biological narrative into a Petri net and an
analysis with invariants [9]. Since that time, numerous papers applying Petri nets
to biological modelling were published, for example [6,19–21]. All of these papers
use interleaving execution semantics and do not model saturation. Resulting nets
are also much smaller than ours. A different approach take Genrich et al. [2],
who create their network by querying biological databases, such as KEGG [22].
The amount of data is huge and the resulting network is at first gigantic, but
then simplified to only 8 medium-size pathways.

Many extensions to Petri nets have been developed and used in modelling of
biological systems: Coloured Petri Nets (tokens have colours) [2], Stochastic Petri
Nets (transitions have rates) [21,23], Timed Petri Nets (transitions have delays)
[20], Hybrid Petri Nets (places can be continuous) [24], Functional Petri Nets
(transitions have functions) [25], and Hybrid Functional Petri Nets (everything
mixed) [26]. There is also a recurring approach of representing a biological
pathway in logic and translating it automatically into a Petri net [6, 27, 28].
The reader may find recent survey papers concerning modelling of biological
systems in [7, 26,29].

The most common way of validation of Petri net models of biological systems
are simulations and comparing the evolution of concentration levels or reached
steady state to data in the literature, e.g. [20]. More advanced structural analysis
involves determining invariants or checking for deadlocks [9, 19] and model
checking, e.g. [28].

Besides Petri nets, there are numerous formalisms to model and analyse
biological pathways, such as process calculi, Boolean networks, statecharts, REO.
The reader might consult [18, 26, 30]. It is still not clear though which of those
techniques are best suited for biological modelling.

8 Current Results

At the time of writing this article, our model is still under development.
Our network is considerably larger than those typically published in papers on
modelling of biological cells using Petri nets – it has about 300 places and 300
transitions and approximately 950 edges. We localised a lot of the necessary
biological information in the literature, for example [8, 31,32].

First results look promising. We developed an implementation of the
execution method, and are able to correctly repeat 46 out of 48 experiments
from [10], using Monte Carlo simulations.

9 Conclusions

In this paper we presented the technique of modelling biological cells as
distributed systems represented by Petri nets. We base our findings on the
C. elegans vulval development model that we have built. We propose to model
with the basic Petri net formalism, which is easy to understand and visualise, and
to adapt its execution semantics to resemble biology. Our execution semantics
is based on the maximal parallelism principle (execute in parallel as much as
possible) and bounded execution with overshooting (saturation).

Petri net models that we use are both qualitative and quantitative. Qualita-
tive – because network structure represents static knowledge about interactions
within a cell. Quantitative – because places and transitions can contain or
require multiple tokens and we exploit this to express different signal strengths
and concentration levels. For instance, we can express that one protein is
produced five times faster than another protein, or that a concentration level
for downregulation has been reached.

There is currently a need for executable biological models, but no consensus
on what is the best biological modelling language [30]. In our experience so far,
quantitative Petri nets with maximal parallelism and bounded execution could
be a good choice. They very naturally feature concurrency, nondeterminism,
synchronisation and visualisation, they allow to model systems that resemble
the actual behaviour of biological cells, and a Monte Carlo simulator can be
implemented efficiently.

In the near future we intend to work on issues such as modularity, synchrony
versus asynchrony, system robustness, steady states, and model checking.

References

[1] Alon, U.: An Introduction to Systems Biology: Design Principles of Biological
Circuits. Chapman & Hall/CRC (2006)

[2] Genrich, H., Küffner, R., Voss, K.: Executable Petri net models for the analysis
of metabolic pathways. International Journal on Software Tools for Technology
Transfer (STTT) 3(4) (2001) 394–404

[3] E-Cell: http://www.e-cell.org

[4] Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The
Journal of Physical Chemistry 81(25) (1977) 2340–2361

[5] Srivastava, R., You, L., Summers, J., Yin, J.: Stochastic vs. deterministic modeling
of intracellular viral kinetics. Journal of Theoretical Biology 218(3) (2002) 309–21

[6] Sackmann, A., Heiner, M., Koch, I.: Application of Petri net based analysis
techniques to signal transduction pathways. BMC Bioinformatics 7 (2006) 482+

[7] Chaouiya, C.: Petri net modelling of biological networks. Briefings in
Bioinformatics 8(4) (2007) 210–219

[8] Wormbook: http://www.wormbook.org
[9] Reddy, V., Mavrovouniotis, M., Liebman, M.: Qualitative analysis of biochemical

reaction system. Computers in Biology and Medicine 26(1) (1996) 9–24
[10] Fisher, J., Piterman, N., Hajnal, A., Henzinger, T.A.: Predictive modeling of

signaling crosstalk during C. elegans vulval development. PLoS Computational
Biology 3(5) (2007) e92+

[11] Petri, C.A.: Kommunikation mit Automaten. Bonn: Institut für Instrumentelle
Mathematik, Schriften des IIM Nr. 2 (1962)

[12] Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4) (1989) 541–580

[13] Kleijn, J.H., Koutny, M., Rozenberg, G.: Towards a Petri net semantics for
membrane systems. In: Membrane Computing. Volume 3850 of Lecture Notes
in Computer Science., Springer (2005) 292–309

[14] DAS-3, D.A.S.: http://www.cs.vu.nl/das3
[15] Language, P.N.M.: http://www.informatik.hu-berlin.de/top/pnml
[16] TINA: http://www.laas.fr/tina
[17] Fisher, J., Henzinger, T.A., Mateescu, M., Piterman, N.: Bounded asynchrony:

A biologically inspired notion of concurrency. Technical report, MTC (2007)
[18] Clarke, D., Costa, D., Arbab, F.: Modelling coordination in biological systems. In:

International Symposium on Leveraging Applications of Formal Methods (ISoLA).
Volume 4313 of Lecture Notes in Computer Science., Springer (2004) 9–25

[19] Koch, I., Junker, B.H., Heiner, M.: Application of Petri net theory for
modelling and validation of the sucrose breakdown pathway in the potato tuber.
Bioinformatics 21(7) (2005) 1219–1226

[20] Li, C., Ge, Q.W., Nakata, M., Matsuno, H., Miyando, S.: Modelling and simulation
of signal transductions in an apoptosis pathway by using timed Petri nets. Journal
of Biosciences 32 (2007) 113–127

[21] Goss, P., Peccoud, J.: Quantitative modeling of stochastic systems in molecular
biology by using stochastic Petri nets. Proceedings of the National Academy of
Sciences of the United States of America (PNAS) 95(12) (1998) 6750–6755

[22] KEGG: http://www.genome.jp/kegg
[23] Srivastava, R., Peterson, M.S., Bentley, W.E.: Stochastic kinetic analysis of the

Escherichia coli stress circuit using σ-32-targeted antisense. Biotechnology and
Bioengineering 75(1) (2001) 120–129

[24] Matsuno, H., Doi, A., Nagasaki, M., Miyano, S.: Hybrid Petri net representation
of gene regulatory network. Proceedings of Pacific Symposium on Biocomputing
5 (2000) 341–352

[25] Hofestädt, R., Thelen, S.: Quantitative modeling of biochemical networks. In
Silico Biology 6 (1998) 39–53

[26] Matsuno, H., Li, C., Miyano, S.: Petri net based descriptions for systematic
understanding of biological pathways. IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Science E89-A(11) (2006) 3166–74

[27] Simao, E., Remy, E., Thieffry, D., Chaouiya, C.: Qualitative modelling of
regulated metabolic pathways: application to the tryptophan biosynthesis in
E. Coli. Bioinformatics 21(2) (2005) 190–196

[28] Steggles, L., Banks, R., Wipat, A.: Modelling and analysing genetic networks:
From Boolean networks to Petri nets. In: International Conference on
Computational Methods in Systems Biology (CMSB). Volume 4210 of Lecture
Notes in Bioinformatics., Springer (2006) 127–141

[29] Peleg, M., Rubin, D., Altman, R.B.: Using Petri net tools to study properties
and dynamics of biological systems. Journal of the American Medical Informatics
Association (JAMIA) 12(2) (2005) 181–199

[30] Fisher, J., Henzinger, T.A.: Executable cell biology. Nature Biotechnology 25(11)
(2007) 1239–1249

[31] Yoo, A.S., Bais, C., Greenwald, I.: Crosstalk between the EGFR and LIN-
12/Notch pathways in C. elegans vulval development. Science 303(5658) (2004)
663–666

[32] Shaye, D.D., Greenwald, I.: Endocytosis-mediated downregulation of LIN-
12/Notch upon Ras activation in Caenorhabditis elegans. Nature 420(6916) (2002)
686–690

