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ABSTRACT
Motivation: To assess if two proteins will interact under physiological
conditions, information on the interaction free energy is needed.
Statistical learning techniques and docking methods for predicting
protein-protein interactions cannot quantitatively estimate binding free
energies. Full atomistic molecular simulation methods do have this
potential, but are completely unfeasible for large-scale applications in
terms of computational cost required. Here we investigate whether
applying coarse-grained (CG) molecular dynamics simulations is a
viable alternative for complexes of known structure.
Results: We calculate the free energy barrier with respect to the
bound state based on molecular dynamics simulations using both a
full atomistic and a CG force field for the TCR-pMHC complex and the
MP1-p14 scaffolding complex. We find that the free energy barriers
from the CG simulations are of similar accuracy as those from the
full atomistic ones, while achieving a speedup of over 500-fold. We
also observe that extensive sampling is extremely important to obtain
accurate free energy barriers, which is only within reach for the CG
models. Lastly, we show that the CG model preserves biological
relevance of the interactions: i) we observe a strong correlation
between evolutionary likelihood of mutations and the impact on the
free energy barrier with respect to the bound state; and ii) we
confirm the dominant role of the interface core in these interactions.
Our results therefore suggest that CG molecular simulations can
realistically be used for the accurate prediction of protein-protein
interaction strength.
Contact: k.a.feenstra@vu.nl

1 INTRODUCTION
Protein-protein interactions are at the heart of all processes in
life. In order to understand living systems beyond the genome,
comprehensive knowledge of protein-protein interactions (PPI) is
therefore essential. Experimental techniques (Sprinzak et al., 2003;
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Kastritis and Bonvin, 2010; Ezkurdia et al., 2009), prediction
from sequence (Ezkurdia et al., 2009), as well as protein-protein
docking methods (Kastritis and Bonvin, 2010; Pons et al., 2010)
all have their specific limitations. To assess the likelihood of two
proteins interacting under physiological interactions, we need to
know both the concentrations and the dissociation constant (or
binding free energy) of the proteins involved. Although it seems that
the identification of the interface region is rather successful (Lensink
and Wodak, 2010; Ofran and Rost, 2007), major open challenges are
the accurate determination of interaction strength (Schueler-Furman
et al., 2005; Kastritis and Bonvin, 2010; Pons et al., 2010), the
incorporation of protein flexibility (Schueler-Furman et al., 2005;
Wollacott et al., 2007; Tobi, 2010), and accounting for water and
small solute entropic effects (Schueler-Furman et al., 2005; Oshima
et al., 2011). Most importantly, Kastritis and Bonvin (2010) show
that there is a poor correlation between binding affinity and scores
for all nine commonly used docking algorithms they tested on 81
complexes with known binding affinity.

Molecular simulations using atomic pairwise interaction potentials
are much more accurate for estimating interaction strength than
docking scoring functions, though computationally much more
expensive (Tuncbag et al., 2009; Kastritis and Bonvin, 2010).
Nevertheless, an immediate bonus of molecular simulation is that
it addresses all three challenges mentioned above; interaction
strength, flexibility, and entropic effects. For biomolecular simu-
lation in general, the solvent (water) is the major obstacle to
improve computational efficiency due to the large number of wa-
ter molecules needed to solvate the protein. Many possible app-
roaches to overcome this problem exist (for recent reviews, see
Fennell and Dill, 2011; Dror et al., 2012). Among the fastest
available are the mean-field or implicit solvent methods, however
one of the main drawbacks is the lack of accurate estimation
of the solute entropy, especially in combination with charged
solutes (Homeyer and Gohlke, 2012). By lumping together small
molecules (e.g. water molecules) or molecular segments into ‘meta
particles’, coarse-grained (CG) force fields do retain the explicit
description of the system, including the solvent. Several CG models
for water are available, each with their particular strengths and
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weaknesses (Hadley and McCabe, 2012). Compared to atomistic
force fields, CG models provide increased computational efficiency
at sufficient levels of accuracy (Tuffery and Derreumaux, 2012).
For the calculation of molecular interactions, therefore, thermody-
namic integration based on atomistic simulations with explicit water
is both theoretically well founded and the most accurate solution
available to date (Wereszczynski and McCammon, 2012).

In this work, we investigate the option of addressing the high
computational cost of atomistic molecular simulations by the use
of a CG force field for such simulations. For this, we will use
the MARTINI CG protein force field for molecular dynamics
(MD) simulations (Marrink et al., 2007; Monticelli et al., 2008).
This force field was developed for CG simulations of biological
membrane-protein systems, and has recently been used to simulate
the spontaneous association of GPCR proteins in a lipid bilayer
(Periole et al., 2012). The MARTINI force field does not capture
structural rearrangements, such as changes in secondary structure.
We will assess its applicability and accuracy for the calculation
of interaction strengths for a pair of protein structures in a water
environment from constraint-force profiles.

By applying the MARTINI CG force field we first show that we
are able to estimate the free energy barrier with respect to the bound
state (∆Goff ) with similar accuracy compared to atomistic force
field calculations and in good agreement with experimental data, but
at more than 500-fold increased computational speed. For this we
selected two test cases: a TCR-pMHC and an MP1-p14 scaffolding
complex, both of which were previously studied with atomistic
models (respectively Cuendet and Michielin, 2008; Cui et al., 2008).
We then show that calculated contributions of surface residues
to the interaction strength are sensitive to changes in the amino
acid residues involved. Random mutations at the interface core
yield major changes in calculated interaction strengths, whereas
mutations at the partially solvated interface rim only yield minor
changes. Random mutations at the rest of the surface on average
hardly affect the interaction strength at all. Moreover, we find
that the evolutionarily most likely mutations, as assessed by
standard residue exchange propensities, at the interface core also
have a negligible influence on the interaction strength, whereas
evolutionarily unlikely mutations disrupt favourable protein-protein
interactions considerably. This behaviour with respect to mutations
is consistent with what we would expect from a biological point
of view. Finally, we discuss future implications of our finding that
the major contributions to the interaction strength within our CG
approach arise from the interface core.

2 METHODS

2.1 Software & force fields
The mutate model script in Modeller (Sali and Blundell, 1993) was used
to produce mutant structures. DSSP (Kabsch and Sander, 1983) and JOY
(Mizuguchi et al., 1998) were used to calculate the absolute and relative
solvent accessibility of residues, respectively. VMD (Humphrey et al., 1996)
was used to visualise the structures.

We used GROMACS 4.0.5 (Hess et al., 2008) for all MD simulations.
Atomistic simulations were performed using the GROMOS G43a1 force
field using the default time step (∆t=1 fs) (van Gunsteren et al., 1996). CG
simulations were performed using the MARTINI force field with the default
time step (∆t=20 fs) (Marrink et al., 2007). Coarse-graining (CG-ing) was

performed as previously described for the MARTINI model (Monticelli
et al., 2008). All 20 amino acids were mapped into four different bead types
with respect to their physicochemical properties (SI Fig. 1). The non-bonded
interactions between the CG solvent and solute particles were modelled by
truncated and shifted Lennard-Jones pair-potential with a cutoff radius of
1.2 nm (Marrink et al., 2007; Monticelli et al., 2008).

2.2 The potential of mean force
We use the potential of mean force (PMF) to describe the interaction strength
between two structures (Trzesniak et al., 2007). The centre of mass (COM)
separation r was chosen as the reaction coordinate along which the mean
force is measured. Integration of the mean force along this pathway results
in a free energy profile1 that can be used to derive the free energy barrier
with respect to the bound state ∆Goff . We first calculate the force Fmean as
a function of the reaction coordinate from constrained MD simulations,

Fmean(r) = −
〈
Fpull(r)

〉
NPT

=
1

2

〈(
~FB − ~FA

)
· ~ru
〉
NPT

(1)

where
〈
Fpull(r)

〉
denotes the average force required to keep the interaction

members at the constraint distance r, ~FA and ~FB the total forces acting
on the first and the second interaction member which arise from direct
interactions and interactions with explicitly simulated solvent, ~ru=~r/r

the unit vector connecting the two centres of mass, and angular brackets
〈· · · 〉NPT an average in the isothermal-isobaric ensemble.

We define the constraint distance r as

r =
∣∣rCOM,A − rCOM,B

∣∣ and r ∈ {r1, r2, ..., rN} , (2)

where rCOM,i is the COM position of interaction member i and N is the
number of separation distances at which the Fmean values are calculated.
Three arbitrary separations are illustrated in Fig. 1C for MP1-p14.

We calculated the Fmean at 50 distances for the TCR-pMHC (where
5 nm≤r≤7.45 nm) and at 54 distances for MP1-p14 (2.16 nm≤r≤4.44 nm).
In cases where we simulated nearly identical starting conformations of a
particular structure for better sampling at distance r, we included these
Fmean values into the average of Fmean(r). After generating the force
profile Fmean(r) for the range of separations, we calculated the PMF by
numerically integrating the interpolated Fmean(r) as

PMF(r) = −
∫ r

0
dr′Fmean(r′) (3)

From this profile, the free energy barrier ∆Goff is obtained from the
difference between the minimum of PMF(r) at rmin and the maximum
PMF value at larger distances r > rmin:

−∆Goff = min [PMF(r)]−max [PMF(r > rmin)] (4)

Errors in the forces are estimated from the standard deviations of the
forces σFmean (r) across the set of replicate simulations at each distance
r, and errors in the PMF σPMF(r) are subsequently derived as follows:

σPMF(r) =

√∫ 0

r
dr′σ2

Fmean
(r′) (5)

2.3 Simulation setup
The wild-type (WT) X-ray structures of the TCR-pMHC (Garboczi
et al., 1996) and MP1-p14 (Kurzbauer et al., 2004) complexes, resolved
respectively at 2.6 Å and 1.9 Å, were taken from the Protein Data Bank
entries 1ao7 and 1vet. The TCR-pMHC structure contains 707 residues,
of the human A6 TCR in complex with the MHC-bound Tax nanopeptide.
The MP1-p14 complex contains 240 residues, of two structurally very
similar chains of low sequence similarity, with a large and shallow interface.

1 Strictly, the PMF is not a free energy profile as it does not correct for
standard conditions; this is covered in the Supporting Information.
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Equilibration procedure For the atomistic and CG simulations, a general
equilibration scheme was performed, which was identical for atomistic and
CG except where noted below. First, the structure was energy minimised
in vacuum, followed by the separation of the interacting proteins to the
constraint distance r along the reaction coordinate. These structures, for
each r, were solvated in a periodic cubic box with a size ensuring a
minimum distance between the proteins and the box edges to avoid self-
interactions with periodic images. For the atomistic simulations, the SPC
water model and a minimum distance of 1.2 nm were used. For the CG
simulations, MARTINI water was used with a 1.0 nm minimum distance.
Energy minimisation on the solvated system was performed first with
and then without position restraints. In the atomistic energy minimisation,
position restraints were first put on non-H atoms, followed by restraining
only Cα atoms. The system was neutralised by adding as many Na+ or Cl−

counter ions as needed for a total charge of zero. Then, another unrestrained
energy minimisation was performed. The neutralised and solvated structure
was simulated for 20 ps (atomistic) or 30 ps (CG) with position restraints
on the Cα atoms (atomistic) or whole structure (CG), to allow the solvent
to equilibrate around the solute. The temperature was set to T=303 K
using a Berendsen (Berendsen et al., 1984) (CG) or Nosé-Hoover (Cheng
and Merz, 1996) (atomistic) thermostat with τT=0.1 ps. The pressure
in atomistic simulations was set to P=1 bar using a Parrinello-Rahman
barostat (Parrinello and Rahman, 1981) with τP=0.5 ps. In CG simulations,
pressure was set to P=300 bar 2, using a Berendsen barostat (Berendsen
et al., 1984) with τP=0.5 ps. Temperature and pressure were equilibrated
for 0.1 ns (atomistic) or 0.2 ns (CG). The resulting conformations were used
in the production simulations without position restraints.

Atomistic production simulations. Atomistic production MD simulations
were performed for the WT TCR-pMHC (3 replicates) and MP1-p14 (10
replicates). Equilibration procedure and production runs were repeated for
each distance (Eq. 2). Each production simulation was run for 2 ns.

Coarse-grained production simulations. CG production MD simulations
were performed for the WTs and in-silico mutants (20 replicates). Before
starting the CG equilibration procedure, the atomistic structure was first
energy minimised and then was coarse-grained using atom2cg (http:
//md.chem.rug.nl/cgmartini). The tertiary structure of the CG
complex was stabilised by generating distance restraints on the backbone
atoms (cf. Marrink et al., 2007). This equilibration procedure and the
production runs were repeated for each distance in Eq. 2. Production
simulations were run for 2 ns or 2µs as indicated.

2.4 Definition of different residue classes
The relative and absolute solvent accessible surface area (SASA) of the
residues were calculated in the monomer (e.g. TCR) and dimer form (e.g.
TCR-pMHC). Subsequently, residues that have <7% of their side chain
accessible to the solvent in both forms were defined as protein core. Residues
that have>7% of their side chain exposed to the solvent in the monomer and
<7% in the dimer were defined as interface core. Residues that have >7%

of their side chain accessible to the solvent in both forms were defined as
interface rim if there was a difference of at least 1 Å2 in their absolute SASA
between two forms. Residues that do not fall into one of the above groups
were called surface (S) residues. The outer interface rim class is composed
of the closest surface residue neighbours of interface rim residues located on
the same monomer. The number of outer rim residues identified in a complex
is the same as the number of rim residues.

2.5 In silico mutations & statistical analysis
To probe the biological relevance of the CG calculations, we introduce
mutations guided by the BLOSUM62 substitution matrix (Henikoff and

2 The high pressure in the CG simulations was applied to ensure the
bulk MARTINI CG water is in the fluid region of the phase diagram. We
determined the MARTINI CG water phase diagram from separate Gibbs
ensemble simulations (Frenkel and Smit, 2002).

Henikoff, 1992), in the MP1-p14 complex. We mutated all 23 interface core
residues to the amino acid with the highest substitution score (other than
itself) to obtain the evolutionarily most likely mutant (see SI Table 6). In
a separate set of mutations, we mutated the interface core to the lowest-
scoring substitutions to obtain the least likely mutant (see SI Table 6). We
performed 20 replicate simulations for both mutants, each starting from
slightly different starting conformations. Next, we also made all 23 × 19
possible interface core mutants, and simulated each 10 times.

To further probe biological relevance, we compare the effects of random
mutations at different locations at and around the interface for both the MP1-
p14 and the TCR-pMHC complex. We created 20 compositionally different
interface core mutants where all n interface core residues (see SI Table 2)
were substituted with randomly chosen amino acids. Then, we created 20
different interface rim mutants by randomly substituting n interface rim
residues with random amino acids. Next, we obtain 20 outer interface rim
mutants by randomly substituting the n non-interface neighbours of the
interface rim. We calculated the PPI for each of these mutants only once
rather than multiple replicates. Differences in the free energy barrier ∆∆G

were statistically tested with a two-sided Mann-Whitney test, separately for
every mutant and for the WT.

Finally, we made specific interface mutations in a homologue of the TCR-
MHC complex described by Wu et al. (2002). We chose the 7 mutants with
the largest measured ∆∆Gs: in the β chain Q64A, E69A and A73G, and in
the peptide K99R, T102N, T102S and the double mutant Y97F/T102S.

3 RESULTS
Calculation of free energy barrier with respect to the
bound state
In order to obtain the free energy barriers to compare atomistic and
CG results, we calculate the potential of mean force (PMF, Fig. 1C
& D). This can be derived from the mean force Fmean (Eq. 1)
required to constrain interaction members (e.g. TCR and pMHC)
at a number of centre of mass separation distances (Fig. 1A & B).

Several immediate observations can be draw from Fig. 1. First,
force profiles obtained by the atomistic and the CG model are in
reasonable agreement for both complexes (Fig. 1A & B). Second,
at a given separation distance r, simulations of nearly identical
starting conformations (identical symbols in Fig. 1A & B on the
distance r) yield a distribution of force values in both atomistic and
CG simulations rather than converging to some value. Last, these
distributions overlap closely for distances larger than ∼2.75 nm
(Fig. 1A) and ∼5.5 nm (Fig. 1B), but diverge at shorter distances.

Next we calculated the average mean force at each distance to
obtain the force profiles F atom

mean(r), in blue, and FCG
mean(r), in green

in Fig. 1A & B. We calculated the PMF by numerically integrating
the interpolated Fmean(r) cf. Eq. 3 (Fig. 1C & D). The free energy
barrier can now simply be obtained from the well-depth of the PMF,
cf. Eq. 4. The resulting PMFs shown in Fig. 1C & D for both
complexes provide a comparison between the free energy minima
calculated from the atomistic and the CG simulations, as well as
with the experimentally determined interaction strengths.

For the MP1-p14 complex, atomistic and CG simulations
yielded free energy barriers ∆Goff=132 and 104 kJ mol−1

respectively, both overestimating the reported experimental
∆Goff=91 kJ mol−1 (Kurzbauer et al., 2004). For the TCR-
pMHC complex, atomistic and CG simulations yielded free energy
barriers ∆Goff=101 and 80 kJ mol−1 respectively, very close to
the experimental values ∆Goff=79.5 kJ mol−1 (Ding et al., 1999)
and ∆Goff=78.6 kJ mol−1 (Davis-Harrison et al., 2007). See
SI Table 1 for further details. Note that a very small correction
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Fig. 1. The mean force profile and the PMF from atomistic and CG calculations. (Top) Identical symbols at a given distance are calculations of the
mean force from simulations that differ slightly in their starting conformations. Blue and green lines describe the means of these values at each distance,
respectively for atomistic and CG simulations. (Bottom) Potential of mean force describing the free energy of dissociation. Distances more than 1Å below the
PMF minimum are not shown. Blue and green lines describe the PMF obtained by atomistic and CG simulations, respectively. The corresponding free energy
profiles are shown in SI Fig. 3. Stars show experimentally determined ∆Goff and equilibrium distances in the native crystal structures. Error bars are based
on standard deviations in the mean force cf. Eq. 5. (A & C) MP1-p14 and (B & D) TCR-pMHC complex.

must be made to the free energy barrier (Gilson et al., 1997) which
amounts to ∼4 kJ mol−1, see SI for a detailed calculation. In order
to probe the effect of sampling of the rotational degrees of freedom,
for the MP1-p14 complex we also calculated the PMF based on a
triplicate set of long 2µs CG simulations. SI Fig. 4 shows ordering
is present in the short (2 ns) simulations, as well as at close distances
in the long (2µs) simulations, however this ordering disappears
at farther distances (>4 nm) in the long simulations, indicating
a strongly improved rotational sampling. We found a negligible
change in the ∆Goff as a result of this improved sampling.

Besides interaction strength, Fig. 1C & D present a comparison
between the experimentally reported PPI equilibrium distance (the
separation distance in X-ray structure) and the corresponding value
from simulations (the distance at the PMF minimum). We see
that the experimental distances were slightly underestimated by the
atomistic PMF in both cases, while the CG PMF appears to yield
distances closer to the crystal structure, especially in the case of
TCR-pMHC interaction.

Computational speed-up
The running time of atomistic MD simulations for MP1-p14 at the
longest COM separation distance r=4.44 nm was 284 CPU-hours.
CG-ing reduced the running time at this distance to 0.5 CPUh,
yielding a 568-fold speed-up. Shorter separations are progressively

faster, but show similar speed-ups. In the case of the TCR-pMHC,
this was 1 333 and 2.5 CPUh, respectively, for a speed-up of 533-
fold. In total, we invested well over 300 000 CPUh in the atomistic
simulations, over the three and 10 replicate calculations for the
TCR-pMHC and MP1-p14 complexes, respectively. In contrast, the
CG simulations for the 456 different mutants (10 or 20 replicates
each), only required about 100 000 CPUh. The 2µs CG simulations
(three replicates) required an additional 64 000 CPUh.

Evolutionary likelihood of mutations and the free energy
To obtain a simple, though biologically relevant test case, we
substituted interface core residues in MP1-p14 according to
BLOSUM62 (Henikoff and Henikoff, 1992). We define two sets of
mutations; one where each residue is mutated into the evolutionarily
most distant residue, and one where it is mutated into the closest
residue type (detailed substitutions in SI Table 6). One would expect
minimal distortion of the PMF from the closest substitutions, and
maximal distortion for the evolutionarily most distant substitutions.

It is clear from results shown in Fig. 2A that when the inter-
face core composition was altered with the most similar amino
acids, change in the interaction strength remains insignificant
(∆∆Goff=7 kJ mol−1, p<.38; see SI Table 5 for detailed
significance values), whereas substitutions with the most dissimilar
amino acids have a strongly disruptive effect on the PPI
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Fig. 2. The PPI effects of different mutations at the MP1-p14 interface.
(A) PMF curves of the WT, the most similar and dissimilar mutants in black,
red and blue, respectively. Error bars are based on standard deviations in the
mean force cf. Eq. 5. (B) Box-plot of average ∆∆Goff per substitution type,
based on pairwise differences between single mutations at the interface core,
vs. the corresponding BLOSUM62 substitution score, with a correlation
R=−0.39 and significance p≤2.2 · 10−8.

that is highly significant (∆∆Goff=71.5 kJ mol−1, p<10−11;
see SI Table 5). However, we still observe a favourable
interaction (∆Goff=32±13 kJ mol−1) with the most dissimilar
mutant structure. Note, that the force field alone has no such
predictive value (see SI Fig. 7).

We have in addition considered all single mutations for each
of the 23 interface core residues for MP1-p14. Of all ∆∆Goffs
with respect to the WT, 16 are significant (p≤0.05 using Student’s
t-test with Hommel multiple testing correction; 121 at p≤0.05
with just t-test). This corresponds to a detection limit of about
∆∆Goff≥8 kJ mol−1. Fig. 2B compares ∆∆Goff between all
mutants (excluding the WT as the rest of the protein structure
is biased towards the WT amino acid) with the corresponding
BLOSUM62 scores, and shows that there is a strong correlation
between them, as expected. In a homologue of the TCR-pMHC
complex, we furthermore show that we can reproduce experimental
∆Goffs for interface mutations to within the accuracy of our
calculations (see SI Fig. 7).

The interface core dominates the interaction
Our final in-silico experiment with the CG model was aimed at
investigating the effective role of interface residues in the interaction
between two proteins. We first defined classes of residues based on
solvent accessible surface area and distance (Fig. 3, for definitions
see Methods, a summary is provided in SI Table 2).

We substituted the same number of residues from each class
with randomly chosen amino acids, and calculated the interaction

strength in the resulting mutant complexes. The resulting PMFs
shown in Fig. 4 indicate significant disruptive effects of mutations
at the interface core in both the MP1-p14 (p<10−8; see SI Table 3
for detailed significance values) and TCR-pMHC (p<2 · 10−4; see
SI Table 4), whereas mutations in the the interface rim appear to
have very little influence on the PMF compared to the WT. Note
that in both complexes mutations of outer rim sometimes yielded
enhanced interaction strengths.

4 DISCUSSION & CONCLUSION
In this paper, we have set out to answer the following questions.
First, can we use CG MD simulations to get the free energy barrier
with respect to the bound state for protein-protein interactions that
are of similar accuracy to those from atomistic MD simulations?
Second, what is the gain in speed and overall sampling for CG
versus atomistic? Lastly, can we get biologically relevant results
from the CG model, similar to what we expect to get from the
atomistic model (at much higher computational cost)?

Biological relevance
We have shown that by using the CG MARTINI force field,
we obtain free energy barriers that are at least as close to the
experimental values as those obtained using an atomistic force
field. Moreover, evolutionarily least likely mutations, according to
BLOSUM62 substitution propensities, at the interface core disrupt
binding, while the most likely mutations hardly influence binding.
It is important to note here that the residue similarities from large-
scale sequence comparisons, as captured in the BLOSUM62 matrix,
are independent of the MARTINI CG force field.

Likewise, mutations on the interface core have a much more
disruptive effect on the binding than those at the interface rim.
Mutations farther away from the interface have negligible effects.
This is consistent with findings that residues at the interface core in
general behave much like protein core, while interface rim residues
are more similar to those at the surface (e.g., Tuncbag et al.,
2009). These results show that the CG MARTINI force field is
sensitive to changes in the shape and physicochemical properties
of the interface, and suggest it is suitable for studying the effects of
biologically relevant structural changes in PPIs.

Of note, we observe that even the evolutionarily least likely
mutations in the interface core still result in a minimum well in the
PPI PMF, which means that some (weak) affinity is retained. This
may be due to retained shape compatibility of the mutant interface
or due to favourable ‘supporting’ interactions of residues in the
interface rim. This could also explain our finding that least likely
mutations that are performed only on one side of the interface (see
SI Table 5) have much smaller disruptive effects on the binding.

We also noticed that some outer interface rim mutations
significantly lower the well depth; note that these residues
do not participate in the interaction in the wild-type complex.
This increased binding strength could be caused by additional
interactions that are introduced by these mutations. We found
that the most significantly increased binding strength occurred in
mutants with a higher net charge. This could mean that either
additional salt-bridges are contributing to the binding, or that
possibly (additional) counter-ions interact at the interface to increase
the binding strength. Alternatively, the interface rim is known to

5



May et al.

(A) (B)

(C) (D)

Fig. 3. Detailed view of the interface regions of interacting proteins. (A) MP1-p14 and (B) TCR-pMHC showing the interface core residues in blue,
interface rim in red and outer interface rim in green in VDW representation. The rest of the proteins is shown as cartoons. (C) and (D) show the interfaces
‘opened up’ by rotation outward by 90◦ around the vertical axes to expose the interacting ‘faces’ (same colouring as in (A) and (B)).
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Fig. 4. The effect of mutations in different regions of the interacting pairs. The interface core mutants are in blue, interface rim in red, outer interface rim
in green and the WT in black. Pale colours on the background are for each individual mutant and darker colours indicate the mean PMF for each mutant class.
(A) MP1-p14 and (B) TCR-pMHC complex. SI Fig. 5 shows corresponding plots with only one out of three residues mutated.

infer specificity through complementarity of shape and binding
properties (Guharoy and Chakrabarti, 2005), and is therefore not
tuned for optimal binding strength. Likewise, the interface as a
whole may not be evolutionarily optimised for binding affinity, as
other functional aspects are also likely to give selective advantages.
This means that there may in fact be ample room for optimisation
of the binding affinity in any particular naturally occurring protein-
protein interface.

Finally, we do see qualitative differences between the atomistic
and CG PMFs, although our set of two complexes does not allow
us to decide which one is in better agreement with experimental
dissociation constants. Underlying reasons for these differences
are likely related to the different parametrisation of short-range
interactions in these force fields. The difference between the
experimental and computed equilibrium distances can have a
number of explanations. The crystal structures represent vacuum

systems in which the protein structure is very rigid, whereas we
simulated systems of solvated ‘breathing’ proteins. Furthermore, the
MARTINI forcefield includes restraints on the tertiary structure of
the protein, while the unrestrained atomistic simulations will allow
larger deviations in the interface upon binding. This may explain
why equilibrium binding distance in the CG calculations is closer
to the crystal structure than the atomistic simulations. In any case, a
comparison of the experimental equilibrium COM distances to the
ones we computed is expected to yield differences.

Sampling is crucial
Surprisingly, for both complexes the CG model appears to be at
least as accurate in approximating the experimental value as the
atomistic model. Part of the reason for that could be better sampling
of the mean force for the CG model where the faster simula-
tions enabled us to perform 20 independent simulations for each
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separation distance, whereas only 3 (TCR-pMHC) or 10 (MP1-p14)
simulations could realistically be performed for the atomistic model.

We also find that, for a given separation distance, simulations
from slightly different starting conditions do not converge to quite
the same value of the constraint force (see Fig. 1A & B, ∗
and ◦ symbols) for both the CG and the atomistic models, and
this effect is strongest at short separation distances. We attribute
this observation to the complex potential energy surface at small
separation distances. Simulations of biomolecules starting from
nearly identical initial conditions are known to get trapped in local
minima (Luo et al., 2006). In general, this can be overcome as well
with sufficient sampling.

The reason we could perform so many more simulations for the
CG model is of course its increased computational efficiency, 500
to 600 times faster than the atomistic simulations. The primary
reason for this large computational gain is the reduction in particle
density, and the ensuing quadratic decrease in numbers of pairwise
interactions calculated. Moreover, the larger, heavier particles with
softer interaction potentials in the CG force-field allow much longer
integration time-steps without loss of accuracy than is possible with
the atomistic force field. We can therefore conclude that, for all
but very small-scale analyses, the amount of sampling required for
accurate determination of the ∆Goff barrier can only realistically be
achieved using coarse-grained models.

Some further efficiency could possibly be gained by optimising
simulation parameters, particularly the integration time-step. For the
atomistic simulations, time steps of up to ∆t=5 or 6 fs may be used
with negligible loss of accuracy (Feenstra et al., 1999). A similar
speedup may likewise be achieved in the CG simulations.

One final challenge regarding the accurate calculation of the free
energy of binding in particular remains largely open: that of the
accurate estimation of loss of rotational entropy upon formation
of a protein complex (e.g. Tamura and Privalov, 1997; Yu et al.,
2001; Grunberg et al., 2006; Chang et al., 2008). In the results
presented here, at 2 ns sampling, the rotational entropy is not fully
sampled (see SI Fig. 4). For the free energy difference between the
bound state and the unbound state, this would result in a discrepancy
between the simulation and the experiment. However, at the top of
the barrier this error is expected to be much smaller (Cuendet and
Michielin, 2008); our 2µs simulations for the MP1-p14 complex
confirm that this effect can indeed be extremely small. Furthermore,
the correction is expected to be independent of the details of the
force field used, and therefore we can directly compare the results
between the atomistic and CG simulations.

It is interesting to note that we could use the increased efficiency
in the CG simulations to directly sample rotational degrees of
freedom, as indicated by the complete loss of orientational ordering
at 2µs and large separation distance (see SI Fig. 4). It is beyond
the scope of this work, but once sufficient sampling is established,
these results can be used to estimate directly the changes in entropy
during the bound to unbound transition in complexes like this one.

Limitations of the Approach
In this paper, we compared two force fields on two complexes
of known structure. We have shown that for these two complexes
the interaction profiles are highly similar when comparing the
atomistic force field to the coarse-grained MARTINI force field.
To claim generality of these findings, a larger test set may be

required. However, the computational requirement for the reference
simulations using the atomistic force field is prohibitive. Note as
well that none of the current methods in docking or simulation can
predict binding affinities without knowledge of the bound structure
(Kastritis and Bonvin, 2010).

The comparison has been made by assuming that conformations
in the free state as well as in the bound state are relatively stable.
For other complexes this may be different, for example when the
PPI involves ‘induced fit’ effects, especially for highly flexible
binding partners. It is unlikely that the methods proposed here will
be directly applicable to such cases. It should be emphasised that the
atomistic approach is equally unfeasible here, but in that case due
to limits in computational sampling. The in silico mutational study
presented here did not account for the possibility that mutations
might disrupt protein secondary structure, since these kinds of
structural rearrangements are not possible in the MARTINI model.

Future implications
Our results confirm the dominance of the interface region in
determining the protein-protein interaction for the two complexes.
This opens the possibility to restrict the simulated system to the
interface area and intervening water only. When only a limited
volume at the interface region is simulated, however, the number of
water molecules in that volume cannot be assumed constant during
force calculation. Rather, this system should be considered at a
constant chemical potential (µ) with fluctuating numbers of particles
(N ), i.e. the grand-canonical (GC) or µV T ensemble.

Traditionally, MD simulations are performed in the micro-
canonical (NPE), canonical (NV T ), or isothermal/isobaric
(NPT ) ensemble, as this simplifies calculations and the complexity
of the software required (Frenkel and Smit, 2002). We have recently
published a python library interface to the GROMACS simulation
engine (Pool et al., 2012) that enables simulation of a GC µV T
ensemble through a hybrid MD/Monte Carlo integration scheme.

The combined speedup achieved by coarse-graining and volume
restriction would be sufficient to incorporate the calculation of
binding free energies into a three-stage approach to PPI calculation
for genomic-scale application. First, non-interacting protein pairs
would be filtered out using cheap sequence-based methods (e.g.,
Ezkurdia et al., 2009). Second, docking will be used to find the most
likely binding interfaces (Pons et al., 2010; Lensink and Wodak,
2010). In a final step, binding energy calculation will then be used
to select the stable complexes (Pool and Bolhuis, 2010). While this
goal, for now, remains in the future it does seem only a few small
steps away.
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