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Abstract. We establish the saddle point property of the focusing selfsimilar
solution of a free boundary problem for the heat equation with free boundary
conditions given by u = 0 and ∂u

∂ν
= 1.

1. Introduction

In this note we consider a one-phase free boundary problem (FBP) for the heat
equation

ut = ∆u, u = u(x, t), x = (x1, . . . , xN ) ∈ Ωt, t > 0,(1.1)

where

∆ =
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
N

,

and Ωt is a domain in RN, with (free) boundary Γt. A typical free boundary
condition one encounters in combustion models [12] is that at the free boundary
both u and the outward normal derivative ∂u

∂ν are prescribed constants, e.g.

u = q > 0 and
∂u

∂ν
= 1 on Γt.(1.2)

Wellposedness of this free boundary problem and related problems is studied in
[2, 3, 9, 10]. In the radial case uniqueness results are established in [9].

Problem (1.1)(1.2) admits both travelling fronts as well as selfsimilar focusing.
In one dimension the travelling wave solution is given by

u(x, t) = q exp(
qx + t

q2
), Ωt = {qx+ t < 0}, Γt = {qx+ t = 0}.

(1.3)

This solution is invariant under translations and may be seen as an equilibrium in
the travelling wave variables ξ = x + ct, τ = t, with speed c = 1/q. The stability
properties of such travelling waves have been studied from a global point of view
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in the one-dimensional case in [10]. In [5] two of the authors have developed with
A. Lunardi a new method based on the elimination of the front and the reformu-
lation of the problem as a fully nonlinear equation in a suitable Banach space.
The method turns out to be quite efficient for multidimensional stability problems
[6, 7, 8].

If one considers scalings instead of translations, one easily finds the radially
symmetric selfsimilar solution

u(x, t) = q +
√
T − t f(η) , η =

|x|√
T − t

,(1.4)

with f(η) satisfying

f ′′(η) +
N − 1
η

f ′(η) +
1
2
f =

1
2
ηf ′ for 0 ≤ η ≤ b ;(1.5)

f ′(0) = f(b) = 0 , f ′(b) = 1 .(1.6)

This uniquely determines the value of b > 0 for which exactly one solution f of
(1.5)(1.6) with f < 0 on [0, b) exists, and yields a similarity solution of (1.1)(1.2)
which “focuses” in the origin at t = T , the domain being given by

Ωt = {|x|2 < b2(T − t)}.(1.7)

For this focusing solution a global stability analysis has been done in the radial
case, see [11] for N = 1 and [9] for N > 1. The result is that if the solution focuses
at time t = T , then, in the appropriate selfsimilar variables, the solution converges
to the selfsimilar solution given by (1.4).

In this note we adapt the methods in [5, 6] to linearize the free boundary problem
in its selfsimilar variables around the selfsimilar profile f and establish the existence
of a stable and unstable manifold. The unstable manifold is not empty, because
the free parameter T in (1.4) always leads to λ = 1 being an eigenvalue. This is
reminiscent of the travelling wave case, where, due to the translation invariance,
λ = 0 is always an eigenvalue. For the radial case we show that all the other
eigenvalues are negative. In one dimension, we also consider the nonradial, i.e. the
nonsymmetric case. Here we find that λ = 1

2 is also a positive eigenvalue. This
is because not only the focusing time, but also the focusing point is now a free
parameter. All the other eigenvalues are again negative.

We have restricted the analysis in this paper to radial solutions. This is a step-
ping stone for a stability analysis in the class of all solutions, radial and nonradial,
with clear extension to starshaped domains. This however requires new nontrivial
results about invariant manifolds in fully nonlinear parabolic problems [13] and will
be the subject of a forthcoming paper [4].

2. The linearization procedure in the radial case

From here on we assume without loss of generality that q = 0, and transform
the radial focusing problem to selfsimilar variables. Thus, if

Ωt = {r = |x| < ξ(t)}, u(x, t) = u(r, t),(2.1)

we set

r̃ =
r

(T − t)
1
2
, t̃ = − log(T − t), ũ(r̃, t̃) =

u(r, t)
(T − t)

1
2
, ξ̃(t̃) =

ξ(t)
(T − t)

1
2
.

(2.2)
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Omitting the tildes, we arrive at

ut = urr +
N − 1
r

ur − r

2
ur +

1
2
u, r < ξ(t),(2.3)

with (free) boundary conditions

ur(0, t) = u(ξ(t), t) = 0, ur(ξ(t), t) = 1.(2.4)

From [9] we know that Problem (2.3)(2.4) admits a unique stationary negative
equilibrium solution, namely the unique negative solution of (1.5)(1.6).

In order to linearize (2.3)(2.4) around this equilibrium, we first make the front
steady by setting

z =
br

ξ(t)
, τ = t, ξ(t) = b(1 + s(τ)).(2.5)

Note that this change of coordinates is convenient for radial problems: z is a new
radial variable which varies from z = 0 to z = b. Next we set

u(r, t) = f(z) + s(τ)zf ′(z) + w(z, τ).(2.6)

This splitting is adapted from a similar trick in [5] for travelling waves. Observe
that r = z(1 + s), so that, in view of f(r) = f(z(1 + s)) = f(z) + szf ′(z) +O(s2),
this splitting is naturally induced by the change of coordinates. Denoting

∆zw = wzz +
N − 1
z

wz ,

this transforms (2.3) into

wτ (z, τ) = Lw(z, τ) + F1(z,∆zw(z, τ), s(τ)) + s′(τ)F2(z, zwz(z, τ), s(τ)),
(2.7)

where the linear part is given by

Lw = ∆zw − z

2
wz +

1
2
w,(2.8)

and the nonlinear terms are given by

F1(z,∆zw, s) = − s2

2(1 + s)2
(
zf ′(z)− f(z) + (s+ 2)z2f ′′(z)

)
−s(s+ 2)

(1 + s)2
∆zw, F2(z, zwz, s) =

1
1 + s

(
zwz + sz2f ′′(z)

)
.(2.9)

The free boundary conditions transform into

wz(0, τ) = 0, w(b, τ) = −bs(τ), wz(b, τ) = (
b

2
− N − 1

b
)w(b, τ).

(2.10)

From the second condition in (2.10) and (2.7) we derive that, taking z = b,

wτ (b, τ) = −bs′(τ) = Lw(b, τ) + F1(b,∆zw(b, τ),−w(b, τ)/b)

+s′(τ)F2(b, bwz(b, τ),−w(b, τ)/b),

whence

s′(τ) = −Lw(b, τ) + F1(b,∆zw(b, τ),−w(b, τ)/b)
b+ F2(b, wz(b, τ),−w(b, τ)/b)

,(2.11)
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so that (2.7) can be rewritten as the fully nonlinear equation

wτ (z, τ) = Lw(z, τ) + F(z, zwz(z, τ),∆zw(z, τ), w(b, τ), bwz(b, τ),∆zw(b, τ)),
(2.12)

with boundary condition

wz(0, τ) = 0, wz(b, τ) = (
b

2
− N − 1

b
)w(b, τ).(2.13)

Clearly formulas (2.9)-(2.11) define F as a smooth function of its arguments defined
in a neighbourhood of the z-axis. Moreover, F(z, 0, . . . , 0) = 0 and on the z-axis F
is quadratic with respect to the other variables. Also F is even in z.

3. Functional analytic framework

In this section we transform (2.12)(2.13) in an abstract evolution equation in a
suitable Banach space setting [13]. Let X = C0([0, b]). The realization L of L in
X with boundary conditions (2.13) has domain

D(L) = {ϕ ∈ C2([0, b]) : ϕz(0) = 0, ϕz(b) + (
N − 1
b

− b

2
)ϕ(b) = 0},

and the operator L is sectorial in X . The fact that L is sectorial can be seen as
follows: set z = |x| with x in N -dimensional Euclidean space (not to be confused
with the real variable x we used earlier) and consider L as the restriction of the
differential operator

L̃w = ∆w − 1
2
x · ∇w +

1
2
w,(3.1)

on the ball B with center at the origin and radius b, with boundary condition

B̃w =
∂w

∂ν
+ (

N − 1
b

− b

2
)w = 0 on ∂B.(3.2)

The realization L̃ of L̃ in X̃ = C0(B) with boundary condition B̃w = 0 has domain

D(L) = {ϕ ∈ ∩p≥1W
2,p(B) : L̃w ∈ X, B̃ϕ = 0 on ∂B},(3.3)

and is a standard example of a sectorial operator on X̃. Thus its restriction to the
closed subspace of radial functions in X̃ is also sectorial, and equivalently so is L
on X . Alternatively, one may establish directly in the “radial” z-variable that L
is sectorial. This is done in a slightly different case in [1]. Either way, we have
that the domain of L is given by D(L) in (3.3), and the nonlinear part F defines
an analytic map from a closed ball BR in D(L) with sufficiently small radius R
centered at the origin. Thus we have that

F : B ⊂ D(L) → X

is a smooth function, and F and its derivative vanish in the origin. Setting w(t) =
w(·, t), the problem may be written as

wt = Lw + F (w), with initial data w(0) = w0.(3.4)

By the theory for fully nonlinear equations (Chapter 8 in [13]) we then have that
for every T > 0 there exists R > 0 such that (3.4) has a unique solution defined on
[0, T ] for every w0 ∈ BR. To describe the saddle point property of the equilibrium
w = 0 we need the spectrum of L.
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4. The saddle point property

The spectral analysis of L leads us to the following eigenvalue problem:

φ′′ + (
N − 1
z

− z

2
)φ′ +

1
2
φ = λφ, φ′(0) = φ′(b)− (

b

2
− N − 1

b
)φ(b) = 0.

(4.1)

By standard Sturm-Liouville type theory, (4.1) has a sequence

λ1 > λ2 > λ3 > λ4 > . . . ↓ −∞(4.2)

of simple eigenvalues which together form the spectrum of L. The corresponding
eigenfunctions are denoted by

φ1, φ2, φ3, φ4, . . . ,(4.3)

where φn has precisely n− 1 sign changes. It is easily checked that

λ1 = 1, φ1(z) = f ′′(z) +
N − 1
z

f ′(z).(4.4)

Now f solves (4.1) with λ = 0, but with the “wrong” boundary condition f(b) = 0.
We claim that consequently λ2 < 0. Indeed, every eigenfunction is a multiple of the
solution of the ODE in (4.1) with φ(0) = 1 and φ′(0) = 0. In view of the positivity
of −f and f(b) = 0, this solution cannot have a sign change before z = b if λ ≥ 0.
Since φ2 must have a sign change, our claim follows.

Let P and I − P be the spectral projections of L with respect to, respectively,
{λ1} and {λ2, λ3, λ4, . . . }. Then P (X) and (I − P )(D) are the linear unstable
manifold and the linear stable manifold of w = 0. In view of F being smooth on a
neighbourhood of w = 0 in D(L), we may apply Theorem 9.1.4 in [13] to conclude
that for every k ≥ 1 there exist R > 0 and Ck-maps

ϕ : BR ∩ P (X) → (I − P )(D) and ψ : BR ∩ (I − P )(D) → P (X),
(4.5)

with ϕ, ϕ′, ψ and ψ′ vanishing in the origin, such that the local unstable and stable
manifolds of w = 0 are given by the graphs of ϕ and ψ.

The unstable manifold contains solutions which, in terms of the original variables,
do not focus at t = T but at some other time value. The stable manifold contains
solutions which converge exponentially to w = 0. For u and ξ in (2.3) this means
that u(r, t) → f(r) and ξ(t) → b, with exponential decay rates. In terms of the
original variables (2.1), we have for the free boundary that

ξ(t) = b(T − t)
1
2 +O(T − t)

1
2+µ,

for every µ < λ2.

5. A one-dimensional FBP

We now consider the case that

Ωt = {ξ−(t) < x < ξ+(t)},(5.1)

so that, after

x̃ =
x

(T − t)
1
2
, t̃ = − log(T − t), ũ(x̃, t̃) =

u(x, t)
(T − t)

1
2
, ξ̃±(t̃) =

ξ±(t)
(T − t)

1
2
,

(5.2)
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omitting the tildes, we arrive at

ut = uxx − x

2
ux +

1
2
u, ξ−(t) < x < ξ+(t)(5.3)

with (free) boundary conditions

u(ξ±(t), t) = 0, ux(ξ±(t), t) = ±1.(5.4)

We set

z =
x− µ(τ)
1 + s(τ)

, τ = t, ξ±(t) = µ(τ) ± b(1 + s(τ)),

u(x, t) = f(z) + (s(τ)z + µ(τ))f ′(z) + w(z, τ).(5.5)

This transforms (5.3) into

wτ (z, τ) = Lw(z, τ) + F1(z, wzz(z, τ), wz(z, τ), s(τ), µ(τ))

+ s′(τ)F2(z, zwz(z, τ), s(τ), µ(τ))(5.6)

+ µ′(τ)F3(z, wz(z, τ), s(τ), µ(τ)),

where F1, F2 and F3 contain also terms with µ. The linear part is again Lw =
wzz − z

2wz + 1
2w. The boundary conditions become

wz(±b, τ) = ± b
2
w(±b, τ),(5.7)

with µ and s being given by

µ(τ) =
−w(b, τ) + w(b, τ)

2
and s(τ) = −−w(b, τ) + w(b, τ)

2b
.

As before we obtain a fully nonlinear equation wτ (z, τ) = Lw(z, τ) + F , where

F = F(z, wz, wzz, w(b, τ), wz(b, τ), wzz(b, τ), w(−b, τ), wz(−b, τ), wzz(−b, τ)).
With X = C0([−b, b]), D(L) = {ϕ ∈ C2([−b, b]) : ϕ′(±b) = ± b

2ϕ(±b)}, the
realization L of L is again sectorial, and its spectrum consists of the eigenvalues of

φ′′ − z

2
φ′ +

1
2
φ = λφ, φ′(±b) = ± b

2
φ(±b).

Besides λ1 = 1 with φ1(z) = f ′′(z), we also have λ2 = 1
2 with φ2(z) = f ′(z). The

other eigenvalues are again all negative. The unstable manifold consists of solutions
focusing at another point or another time in the original (x, t)-variables. For the
solutions in the stable manifold we obtain as before that

ξ±(t) = ±b(T − t)
1
2 +O(T − t)

1
2+µ,

for every µ < λ3.
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