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Abstract

We study the stability of a planar travelling wave in the two-dimensional NEF-combustion model
when the reduced Lewis number is equal to zero. The functional analytic setting consists of spaces
of suitably exponentially weighted Hölder continuous functions. By exploiting the appearance of
the integrated Burgers’ equation in the equations for perturbations of the wave we avoid the usual
assumption that the perturbation must be localized in the lateral space coordinate.
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1 Introduction

In the 1980s Sivashinsky introduced and studied a two-dimensional thermo-diffusive model for flames in
gaseous mixtures. This model is based on the assumption that the diffusion coefficients of the gas and
the temperature are almost equal (Nearly Equidiffusional Flame theory), and on the assumption that the
activation energy Z is very large. With the combustion confined to a thin zone of order Z−1, this leads
to the following free boundary problem for the reduced temperature Θ, the reduced enthalpy S, and the
front φ:





∂Θ
∂t

= ∆Θ, t > 0, y ∈ R, η < φ(t, y),

Θ = 1, t > 0, y ∈ R, η ≥ φ(t, y),

∂S

∂t
= ∆S − λ∆Θ, t > 0, y ∈ R, η 6= φ(t, y),

[Θ] = [S] = 0, t > 0, y ∈ R,

[
∂Θ
∂n

]
= − exp(S),

[
∂S

∂n

]
= λ

[
∂Θ
∂n

]
, t > 0, y ∈ R,

(1.1)

where n denotes the outward normal to the surface η = φ(t, y). The differential equations for Θ and S
as well as the boundary conditions are coupled by a real parameter λ which is a dimensionless constant

∗Work partially supported by the research project “Analysis and control of deterministic and stochastic evolution equa-
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proportional to the reduced Lewis number. We refer the reader to the original paper by Sivashinsky [10]
for more details on the physical aspects of this model and to [3] for a more mathematical discussion of
(1.1).

For any λ ∈ R problem (1.1) admits a unique (up to translations) planar (i.e. independent of y)
travelling wave (TW) solution given by (t, η) 7→ (φ(t),Θ0

λ(η + t), S0
λ(η + t)), with

φ(t) = −t,

{
Θ0

λ(x) = exp(x), S0
λ(x) = λx exp(x), if x ≤ 0,

Θ0
λ(x) = 1, S0

λ(x) = 0, if x ≥ 0.
(1.2)

Stability/instability of this solution under two-dimensional perturbations is of physical relevance. The
formal study, made by Sivashinsky in [10], showed that there exists a critical value λc < 0 of λ, such that
the planar TW should be orbitally stable for λ ∈ (λc, 1) and orbitally unstable for λ < λc and for λ > 1.

The instability of the TW was proved in [3] with respect to small and sufficiently smooth perturbations
in the context of Hölder spaces. However, the role of the Kuramoto-Sivashinsky equation, derived in this
context by Sivashinsky for the description of cellular instabilities for λ ≥ 1, seems to remain out of the
reach of rigorous mathematical methods. We note that whereas in the unstable case the Kuramoto-
Sivashinsky equation is expected to play a role, in the stable case this role is played by the integrated
Burgers’ equation. In the context of bistable reaction-diffusion systems both cases are discussed on a
completely formal an heuristic level in [6].

Next, in [2] the first author, in a joint paper, proved stability of the TW in the case where λ = 0,
assuming to perturb only the temperature Θ. The quadratic term in the integrated Burgers’ equation
appearing in the leading order terms in the perturbation analysis is absorbed in the linear terms by means
of a Cole-Hopf bifurcation. Remarkably this makes the usual assumption that perturbations are localized
in the lateral y-direction redundant, which may be interpreted as an a posteriori validation of the role of
the integrated Burgers’ equation.

More recently, in [8] the second author, in a joint paper, showed stability of the TW for λ ∈ (λc, 1)
in the context of weighted Hölder spaces in a slightly different model where the nonlinear term exp(S) is
replaced by f(S) = 1 + S + O(Sk) for some k > 5. They assume that the weight function depends both
on η and y and do not use any explicit form of (part of) the quadratic terms. Here the analogy (of the
λ = 0 case) with [5] in the (diagonal) reaction-diffusion context should be noted, where the localization
assumption appears in a different form (in view of the use of Sobolev spaces). We emphasize that such
results do not fully generalize the one-dimensional results which allow perturbations converging to a
translate of the wave.

Here we generalize the result of [2] to the NEF model with λ = 0, allowing perturbations on Θ and
S as well. We prove that the TW solution is stable with respect to suitable weighted (in x only) smooth
perturbations.

To prove our stability results, we transform the problem (by suitable changes of coordinates and
unknowns) into an equivalent one of the form

{
Dtu(t, x, y) = Lu(t, x, y) + F(u(t, ·))(x, y), t ≥ 0, (x, y) ∈ R2

−

Bu(t, ·)(y) = G(u(t, ·))(y), t ≥ 0, y ∈ R,
(1.3)

set in the fixed space domain R2
− := R− × R, where L is a second order operator and B is a first order

boundary operator, both with constant coefficients. The nonlinear and nonlocal operators F and G are
quadratic near 0. Now, the problem of the stability of the TW for problem (1.1) is transformed into the
problem of the stability of the null solution to problem (1.3).

The realization L of the operator L in the space of all the bounded and continuous functions generates
an analytic semigroup and its spectrum consists of all the ω ∈ C such that Reω ≤ −(Imω)2. Hence the
spectrum of L is contained in the left half-plane and 0 is an accumulation point of eigenvalues. Hence
we are in a critical case of stability and we cannot invoke the linearized stability principle to prove our
stability results.

Working with a space X of weighted continuous functions (corresponding in our situation to an
exponential weight function in the x-variable) allows us to limit the continuous spectrum to the half-line
(−∞, 0], but hereby we remain in the critical case of stability. The key idea to overcome this difficulty
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consists in determining a suitable projection, which is not a spectral projection, but enjoys most of the
typical properties of a projection, namely we determine a projection P such that

‖Dα1
t Dα2

x Dα3
y (I − P )etL‖L(X) ≤ Me−ωt, ∀t ≥ 0 (1.4)

for some positive constant ω and for any multindex α = (α1, α2, α3), where by etL we denote the (analytic)
semigroup generated by the operator L. To construct the projection P we observe that the operator L
can be split into the sum of two operators L1 and L2 acting, respectively, on the x- and the y-variable,
which commute in the resolvent sense. Since 0 is a simple eigenvalue of L1, we can find out the spectral
projection P corresponding to the eigenvalue 0 of L1. Such a projection is readily seen to satisfy (1.4).
To carry out our construction of the projection P , it is essential that L can be split into the sum of two
operators commuting in the resolvent sense. As it is pointed out in the appendix, this is the case only
if λ = 0, where the system of differential equations in (1.1) and the operator L in (1.3) are in diagonal
form.

Splitting the solution u to the initial value problem for (1.3) along P (X) and (I − P )(X) we can
write u(t, x, y) = r(t, y)(ex, 0, 0) + w(t, x, y). This position allows us to decouple problem (1.3) into two
new problems for the pair (r,w). The differential equation in the first system is a nonlinear Burgers’
equation. The second system is set in the stable manifold (I−P )(X) where the semigroup satisfies (1.4).
What we expect is that w and its derivatives decay at least with polynomial rate at infinity, and this
is just the case. Hence the asymptotic behaviour of the solution to problem (1.1) is determined by the
behaviour near infinity of the solution to the Cauchy problem associated with the nonlinear Burgers’
equation. Such an equation contains the term r2

y which is critical for the stability. Performing a suitable
Cole-Hopf transformation allows us to eliminate this term. We get a new equation for the new unknown
q, namely a nonlinear heat equation whose solution exhibits the same decay estimates at infinity as the
linear heat equation does. Hence q stays bounded in R+ × R while its derivatives decay polynomially
when t approaches infinity.

Coming back to our original problem (1.1) we can conclude that the solution (Θ, S, φ), corresponding
to initial data close to the TW, exists globally in time and, in the coordinate system attached to the
front, Θ, S and φ stay bounded and sufficiently close to the TW, while their space- and time-derivatives
decay with polynomial rate at infinity.

2 Reduction to a fixed boundary problem

In this section we transform our problem into an equivalent one of the type (1.3). First of all we fix the
boundary by setting Θ1(t, x, y) = Θ(t, x + φ(t, y), y), S1(t, x, y) = S(t, x + φ(t, y), y). Moreover, we set
ϕ(t, y) = φ(t, y) + t. Easy computations show that the triplet (Θ1, S1, ϕ) solves the following problem:

Θ1
t + Θ1

x = ∆Θ1 + (ϕy)2Θ1
xx − 2ϕyΘ1

xy +
(
ϕt − ϕyy

)
Θ1

x, x < 0, (2.1)

Θ1 = 1, x ≥ 0, (2.2)

S1
t + S1

x = ∆S1 + (ϕy)2S1
xx +

(
ϕt − ϕyy

)
S1

x − 2ϕyS1
xy, x 6= 0, (2.3)

[Θ1] = [S1] = [S1
x] = 0, [Θ1

x] = −(1 + ϕ2
y)−1/2eS1

. (2.4)

Here [ · ] denotes the jump at x = 0, and ∆ = D2
x + D2

y. To decouple the system we argue as in [3]
introducing the new unknowns v and w defined by

(i) Θ1(t, x, y) = Θ0(x) + Θ0
x(x)ϕ(t, y) + v(t, x, y);

(ii) S1(t, x, y) = w(t, x, y),
(2.5)

where, here and throughout the paper we write Θ0 instead of Θ0
0 (see (1.2)).
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Performing the change of unknowns in (2.5), we get an equivalent problem for the triplet (v, w, ϕ).
But taking the jump of both sides of (2.5i) at x = 0, and recalling that [Θ1] = [S1] = 0, we get

ϕ(t, y) = −v(t, 0, y), ∀t > 0, ∀y ∈ R. (2.6)

Setting u = (v, w, h), where h(x, y) = w(−x, y) for any (x, y) ∈ R2

− := {(x, y) ∈ R2 : x ≤ 0}, and
replacing the unknown front by its expression in terms of u given by (2.6), we get the following problem
which is equivalent to (2.1)-(2.4):

{
ut(t, x, y) = Lu(t, x, y) + F0(u(t, ·))(x, y)− vt(t, 0, y)Ψ(u(t, ·))(x, y), t ≥ 0, (x, y) ∈ R2

−,

(Bu(t, ·))(y) = G(u(t, ·))(y), t ≥ 0, y ∈ R.
(2.7)

In (2.7) the second-order differential operator L, the boundary differential operator B = (B0, B1, B2) and
F0(u) = (f1(u), f2(u), f3(u)) are given, respectively, by

Lu = (∆v − vx, ∆w − wx,∆h + hx); (2.8)





B0u = w(0, ·)− h(0, ·),
B1u = wx(0, ·) + hx(0, ·),
B2u = v(0, ·) + h(0, ·)− vx(0, ·);

(2.9)

f1(u) = (vy(0, ·))2(Θ0
xx − v(0, ·)Θ0

xxx + vxx

)
+ 2vy(0, ·)(− vy(0, ·)Θ0

xx + vxy

)

+vyy(0, ·)(− v(0, ·)Θ0
xx + vx

)
, (2.10)

f2(u) = (vy(0, ·))2wxx + 2vy(0, ·)wxy + vyy(0, ·)wx, (2.11)

f3(u) = (vy(0, ·))2hxx − 2vy(0, ·)hxy − vyy(0, ·)hx, (2.12)

while Ψ(u) and G(u) are defined by

Ψ(u) =
(− v(0, ·)Θ0

xx + vx, wx,−hx

)
(2.13)

and

G(u) = (0, 0, g(u)), g(u) = 1 + h(0, ·)− (1 + (vy(0, ·))2)−1/2eh(0,·). (2.14)

Problem (2.7) still contains the unknown vt(t, 0, y) in its right-hand side. However, evaluating the
first component of the differential equation in (2.7) at x = 0, we can get vt(t, 0, y) in terms of the space
derivatives of u, provided vx(t, 0, y)− v(t, 0, y) 6= −1. Thus, we finally get the following problem for u:





ut(t, x, y) = Lu(t, x, y) + F(u(t, ·))(x, y), t ≥ 0, (x, y) ∈ R2

−,

(Bu(t, ·))(y) = G(u(t, ·))(y), t ≥ 0, y ∈ R,
(2.15)

where

F(u(t, ·)) = F0(u(t, ·))− ∆v(t, 0, ·)− vx(t, 0, ·) + f1(u(t, ·))(0, ·)
1− v(t, 0, ·) + vx(t, 0, ·) Ψ(u(t, ·)), ∀t > 0. (2.16)

Note that the TW solution to the original problem corresponds to the null solution to (2.15) and the
solutions close to the TW correspond to small solutions to (2.15).
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3 The function spaces

In this section we introduce the Banach spaces we deal throughout this paper. For notation convenience
we use bold style to denote vector-valued functions. According to the notations of the previous sections, we
set R2

− := {(x, y) ∈ R2 : x < 0} and by R2

− we denote its closure in R2. Moreover, for any f : R2
− → R3, f =

(f1, g1, g2) we denote by f ] the function defined by f ](x, y) = (e−x/2f(x, y), e−x/2g1(x, y), ex/2g2(x, y)).

Definition 3.1. For any k ≥ 0 we define the function space Xk by

Xk =
{
f : R2

− → R3 : f ] ∈ Ck(R2

−)},

and we endow it with the norm ‖f‖Xk
= ‖f ]‖Ck(R2

−), f ∈ Xk.
Moreover, for any a, b ∈ R+ ∪ {+∞}, a < b, and any α ∈ (0, 1) we denote by Xα/2,α(a, b) and

X1+α/2,2+α(a, b), respectively, the Banach spaces

Xα/2,α(a, b) =
{
u : u(t, ·) ∈ Xα ∀t ∈ [a, b], sup

a<t<b
‖u(t, ·)‖Xα

< +∞,

u(·, x, y)∈ Cα/2([a, b]) ∀(x, y) ∈ R2

−, sup
(x,y)∈R2

−

‖u(·, x, y)‖Cα/2([a,b]) <+∞}
,

X1+α/2,2+α(a, b) = {u : Dα1
t Dα2

x Dα3
y u ∈ Xα/2,α(a, b) for 2α1 + α2 + α3 ≤ 2}.

They are normed by

‖u‖Xα/2,α(a,b) = sup
a<t<b

‖u(t, ·)‖Xα + sup
(x,y)∈R2

−

[u(·, x, y)]Cα/2([a,b]),

‖u‖X1+α/2,2+α(a,b) =
∑

2α1+α2+α3≤2

‖Dα1
t Dα2

x Dα3
y u‖Xα/2,α(a,b).

Definition 3.2. For any α ∈ (0, 1) and any a, b ∈ R+ ∪ {+∞}, a < b, C(j+α)/2,j+α([a, b]×R) (j = 1, 2)
denotes the usual parabolic Hölder space

C(j+α)/2,j+α([a, b]× R) =
{
ψ : ψ(t, ·) ∈ Cj+α(R), sup

t∈[a,b]

‖ψ(t, ·)‖Cj+α(R) < +∞,

ψ(·, y) ∈ C(j+α)/2([a, b]), sup
y∈R

‖ψ(·, y)‖C(j+α)/2([a,b]) < +∞}
,

endowed with the norm

‖ψ‖C(j+α)/2,j+α([a,b]×R) = sup
t∈[a,b]

‖ψ(t, ·)‖Cj+α(R) + sup
y∈R

[ψ(·, y)]C(j+α)/2([a,b]), j = 1, 2.

Definition 3.3. We denote by Xq the Banach space of all the functions q : R+ × R → R such that
t 7→ q(t, ·) is continuous in [0,+∞) with values in C2(R), is continuously differentiable with values in
C(R), bounded with values in C2+α(R) (α ∈ (0, 1)). t 7→ qt(t, ·), and t 7→ qyy(t, ·) are Hölder continuous
with exponent α/2 and with values in C(R); qt is bounded with values in Cα(R) and

‖q‖Xq = sup
t≥0

‖q(t, ·)‖C(R) + sup
t≥0

(1 + t)
(‖qt(t, ·)‖Cα(R) + ‖qyy(t, ·)‖Cα(R)

)

+ sup
0≤s<t

(1 + s)
(‖qt(t, ·)− qt(s, ·)‖C(R)

(t− s)α/2
+
‖qyy(t, ·)− qyy(s, ·)‖C(R)

(t− s)α/2

)
< +∞.

Moreover, we denote by Xw the space of all the functions w : R+ ×R2

− → R3 such that t 7→ w(t, ·) is
continuous in [0, +∞) with values in X2, is continuously differentiable with values in X0, bounded with
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values in X2+α; t 7→ Dtw and t 7→ w(t, ·) are Hölder continuous with exponent α/2 and with values in
X0 and X2, respectively, and

‖w‖Xw = sup
t≥0

(1 + t)
(‖w(t, ·)‖X2+α

+ ‖wt(t, ·)‖Xα

)

+ sup
0≤s<t

(1 + s)
(‖w(t, ·)−w(s, ·)‖X2

(t− s)α/2
+
‖Dtw(t, ·)−Dtw(s, ·)‖X0

(t− s)α/2

)
< +∞.

We conclude this section with the following lemma.

Lemma 3.4. Let q : R+ × R→ R be a continuous function such that

[[q]] := sup
t≥0

‖q(t, ·)‖C(R) + sup
t≥0

(1 + t)
(‖qyy(t, ·)‖Cα(R) + ‖qt(t, ·)‖Cα(R)

)
< +∞.

Then,
{

i) supt≥0(1 + t)1/2‖qy(t, ·)‖C(R) ≤ C[[q]];

ii) sup0≤s<t(1 + s)(t− s)−(2−j+α)/2‖Dj
yq(t, ·)−Dj

yq(s, ·)‖C(R) ≤ C[[q]], j = 1, 2.
(3.1)

If w : R+ × R− × R→ R is such that

[[w]] := sup
t≥0

(1 + t)
(‖w(t, ·)‖X2+α + ‖Dtw(t, ·)‖Xα

)
< +∞,

then

sup
0≤s<t

(1 + s)(t− s)−(2−j+α)/2‖w(t, ·)−w(s, ·)‖Xj ≤ C[[w]], j = 1, 2. (3.2)

Here C denotes a positive constant independent of q (resp. of w).

Proof. The proof is based on interpolation inequalities. Estimates (3.1i) and (3.1ii), for j = 1, have been
proved in [2, Lemma 2.5]. To prove (3.1ii), with j = 2, and (3.2) it suffices to argue as in the proof of
the quoted lemma, observing that, for any α ∈ (0, 1), there exists a positive constant C such that

‖f ′′‖C(R) ≤ C[f ]α/2
Cα(R)[f

′′]1−α/2
Cα(R) , ∀f ∈ C2+α(R)

and

‖u‖Xj ≤ C‖u‖(2−j+α)/2
Xα

‖u‖(j−α)/2
X2+α

, ∀u ∈ X2+α, j = 1, 2.

4 The fully nonlinear problem

This section, the main body of the paper, is devoted to prove that the null solution to problem (2.15) is
stable with respect to X2+α-perturbation. As we are going to show, we are in a critical case of stability,
since the spectrum of the realization L of L in X0 is contained in the left half-plane and contains 0 as
an accumulation point of eigenvalues. Hence, we cannot apply the linearized stability principle to prove
our stability results, since we cannot eliminate the eigenvalue 0 from the spectrum of L by a spectral
projection. Nevertheless we can define a suitable projection which is not a spectral projection P , but
enjoys most of the typical properties of a projection. In particular, see Theorem 4.3, the restriction of
etL to (I − P )(X0) gives rise to an (analytic) semigroup of negative type.

To get such a projection we observe that the operator L can be split into the sum of two operators L1

and L2 commuting in the resolvent set. 0 is a simple eigenvalue of L1. Hence, we can define a spectral
projection associated with it: this will be our projection P .
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4.1 The realization of L in weighted Hölder spaces

In this subsection we show that the realization L of the differential operator L in X0 generates an analytic
semigroup, we characterize its domain and spectrum, and the interpolation spaces of order α/2, 1/2 and
1 + α/2 (α ∈ (0, 1)). Finally we provide a suitable projection P satisfying (1.4).

To begin with, let us consider the following theorem which has been already proved, in a more general
context, in [7].

Theorem 4.1. The realization L of the operator L in X0 generates an analytic semigroup provided we
set

D(L) =
{
u ∈ X0 ∩

⋂
1<q<+∞

W 2,q
loc (R2

−), Lu ∈ X0, Bu(0, y) = 0 ∀y ∈ R
}

,

where the boundary differential operator B is given by (2.9). Its spectrum is given by σ(L) = (−∞, 0].
Moreover, for every α ∈ (0, 1) the set equalities

DL(α/2,∞) = {u ∈ Xα : B0u = 0 at x = 0},

DL(1 + α/2,∞) = {u ∈ X2+α : Bu = 0, B0Lu = 0 at x = 0},

hold, with equivalence of the respective norms. Finally,

{u ∈ X1 : B0u = 0 at x = 0} ⊂ DL(1/2,∞),

with continuous embedding.

Proof. See [7, Theorem A.2 & A.3].

As Theorem 4.1 shows we are in a critical case of stability, since the spectrum of L is contained in the
left half-plane and 0 is an accumulation point of eigenvalues. To construct a suitable projection satisfying
(1.4) we begin by splitting operator L into the sum of the two operators L1 : D(L1) ⊂ X0 → X0 and
L2 : D(L2) ⊂ X0 → X0 formally defined by L1u = (vxx−vx, wxx−wx, hxx+hx) and L2u = (vyy, wyy, hyy),
where

D(L1) = {u : Dj
xu ∈ X0 for j = 0, 1, 2, Bu = 0}, D(L2) = {u : Dj

yu ∈ X0 for j = 0, 1, 2}. (4.3)

Let us consider the following lemma.

Lemma 4.2. Both the operators L1 and L2 are infinitesimal generators of analytic semigroups in X0

provided their domains are chosen as in (4.3); σ(L1) = (−∞,−1/4]∪{0} and σ(L2) = (−∞, 0]. Moreover,
for any f = (f, g, k) ∈ X0 it holds that

[R(ω,L1)f ]1 =
1√

1 + 4ω

(
a(f)eµ2x −

∫ x

0

eµ2tf(x− t, y)dt +
∫ 0

−∞
e−µ1tf(t + x, y)dt

)
,

[R(ω,L1)f ]2 =
1√

1 + 4ω

(
b(f)eµ2x −

∫ x

0

eµ2tg(x− t, y)dt +
∫ 0

−∞
e−µ1tg(t + x, y)dt

)
,

[R(ω,L1)f ]3 =
1√

1 + 4ω

(
c(f)e−µ1x −

∫ x

0

e−µ1tk(x− t, y)dt +
∫ 0

−∞
eµ2tk(t + x, y)dt

)
,

(4.4)

where, µj = 1
2 + (−1)j 1

2

√
1 + 4ω for j = 1, 2 and

a(f) =
1

µ2 − 1

(
µ2

∫ 0

−∞
e−µ1tf(t, y)dt +

∫ 0

−∞
e−µ1tg(t, y)dt +

∫ 0

−∞
eµ2tk(t, y)dt

)
, (4.5)
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b(f) =
∫ 0

−∞
eµ2tk(t, y)dt, c(f) =

∫ 0

−∞
e−µ1tg(t, y)dt. (4.6)

Finally, ω = 0 is a simple eigenvalue of L1; the corresponding eigenspace is spanned by the function
U0 = (Θ0, 0, 0) and the spectral projection associated with it is the operator P : X0 → X0 defined by
Pu = M(u)U0, where

M(u)(y) =
∫ 0

−∞
v(x, y)dx +

∫ 0

−∞
w(x, y)dx +

∫ 0

−∞
exh(x, y)dx, ∀y ∈ R. (4.7)

Proof. The proof being straightforward, is left to the reader.

We are now going to prove that, even if P is not a spectral projection associated with the operator L,
it enjoys most of typical properties of a projection. In particular, P commutes with etL, and (I − P )etL

decays with exponential rate as t tends to +∞. This property will play a crucial role in proving our
stability results.

Theorem 4.3. The operator P defined in Lemma 4.2 commutes with the semigroup etL. Moreover, for
any ε > 0 there exists a positive constant M := M(ε) such that

‖(I − P )etL‖L(X0) ≤ Me(−1/4+ε)t. (4.8)

In particular, (1.4) holds true for any space- and time-derivative of etL.

Proof. We begin the proof by observing that etL = etL1etL2 for any t ≥ 0. To check the previous property
we can limit ourselves to proving that all the assumptions of Da Prato-Grisvard’s Theorem (see [4]) are
satisfied. Hence, we need to check that L1 and L2 commute in the resolvent sense. Of course, thanks to
Lemma A.1, we can limit ourselves to showing that the relationship L2R(ω, L1)f = R(ω,L1)L2f holds
for any ω ∈ ρ(L1) and any f ∈ D(L2) and this follows immediately if we take (4.4)–(4.6) into account.

Now, recalling that P is the spectral projection associated with the simple eigenvalue ω = 0 of the
operator L1 we can write

Pu =
1

2πi

∫

γ

R(ω, L1)u dω, ∀u ∈ X0, (4.9)

where γ is a suitable closed and smooth curve around ω = 0 contained in ρ(L1), oriented counterclockwise.
Fix ω0 ∈ ρ(L2). Applying R(ω0, L2) to both sides of (4.9) and taking into account the fact that

L1 and L2 commute in the resolvent sense, we can easily show that P commutes with R(ω0, L2) and,
consequently it commutes with etL2 . This is enough for our aims. Indeed, etL = etL1etL2 for any t > 0.
Hence,

PetL = PetL1etL2 = etL1PetL2 = etL1etL2P = etLP,

so that P commutes with the semigroup etL. Moreover, since ω = 0 is an isolated simple eigenvalue of L1

and sup{Re ω : ω ∈ σ(L1), ω 6= 0} = −1/4, it follows that for any ε > 0 there exists a positive constant
M := M(ε) such that

‖(I − P )etL1‖L(X0) ≤ Me(ε−1/4)t, ∀t > 0.

Since etL2 is the heat semigroup, then ‖etL2‖L(X0) ≤ 1 for any t ≥ 0. Hence,

‖(I − P )etL‖L(X0) = ‖(I − P )etL1etL2‖L(X0) ≤ ‖(I − P )etL1‖L(X0)‖etL2‖L(X0) ≤ Me(ε−1/4)t,

for any t > 0, and (4.8) follows. Now observing that for any t > 0, LetL(I −P ) = LeLe(t−1)L(I −P ), we
easily deduce that LetL(I −P ) decays at least as e(ε−1/4)t as t tends to +∞. The same result holds true
for the function LnetL(I−P ) for any n ∈ N. Taking into account the characterization of the interpolation
spaces DL(α/2,∞) and DL(1 + α/2,∞) in Theorem 4.1, estimate (1.4) immediately follows.
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4.2 A suitable splitting of problem (2.15)

In this subsection we deal with the initial value problem u(0, ·) = u0 for the nonlinear problem (2.15).
To begin with, we split u along P (X0) and (I − P )(X0) as u = Pu + w := r(t, y)U0 + w. Then, we
determine the Cauchy problems satisfied by the pair (r,w). For this purpose we begin by observing that
Lu = LPu + Lw. Moreover, LPu = ryyU0 and

PLv = −(B2v)U0, ∀v ∈ (I − P )(X2) s.t. B0v = B1v = 0. (4.10)

Hence, r and w turn out to solve the following coupled Cauchy problems:

i)

{
rt = ryy −B2w + M(F(u)),

r(0, ·) = M(u0)
, ii)





Dtw = Lw + (B2w)U0 + (I − P )F(u),

Bw = G(u),

w(0, ·) = (I − P )u0,

(4.11)

where the linear operator M is defined in (4.7). Straightforward computations and the fact that Bu =
Bw = (0, 0, g(u)) show that

M(F(u)) =
(
ry + vy(0)

)2

(
eh(0)

√
1 + (ry + vy(0))2

− h(0) +
vx(0)− vxx(0)

1− v(0) + vx(0)

∫ 0

−∞
exh(x)dx

)

+ 2
(
ry + vy(0)

)(∫ 0

−∞
exhy(x)dx +

vy(0)− vxy(0)
1− v(0) + vx(0)

∫ 0

−∞
exh(x)dx

)

− vxx(0)− vx(0)
1− v(0) + vx(0)

∫ 0

−∞
exh(x)dx,

where, to shorten the notation, we simply wrote Dαv(x), Dαw(x) and Dαh(x) (|α| ≤ 2, x ≤ 0) instead
of Dαv(·, x, ·), Dαw(·, x, ·) and Dαh(·, x, ·).

Let us now consider the differential equation in (4.11i). Since, as it has been already pointed out,
B2w = g(u), we can write

rt(t, y) = ryy(t, y) + 1
2r2

y +H(r(t, ·),w(t, ·))(y), ∀y ∈ R, (4.12)

where H(r,w) is a nonlinear operator which is quadratic near (0,0). The second order terms in the
expression of H are both quadratic in the derivatives of w, and are given by the product of (∂j/∂yj)r
(j = 0, 1, 2) multiplied either by y-derivatives of v and h or by

∫ 0

−∞ exh(x)dx. Equation (4.12) exhibits a
critical growth at 0 due to the presence of the term 1

2r2
y. To skip the problems given by the nonlinearity,

we perform an Cole-Hopf transformation, namely we set q := er/2 − 1. Straightforward computations
show that the differential equation (4.12) transforms into the differential equation qt(t, y) = qyy(t, y) +
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H̃(q(t, ·),w(t, ·)) for the unknown (q,w), where

H̃(q,w) =
q + 1

2

(
2qy

q + 1
+ vy(0)

)2

×




eh(0)

√
1 +

(
2qy

q+1 + vy(0)
)2
− h(0)− 1 +

vx(0)− vxx(0)
1− v(0) + vx(0)

∫ 0

−∞
exh(x)dx




+ 2
(

qy +
q + 1

2
vy(0)

)(∫ 0

−∞
exhy(x)dx +

vy(0)− vxy(0)
1− v(0) + vx(0)

∫ 0

−∞
exh(x)dx

)

− (q + 1)
(
vxx(0)− vx(0)

)

2
(
1− v(0) + vx(0)

)
∫ 0

−∞
exh(x)dx +

q + 1
4

(vy(0))2 + qyvy(0)

+
q + 1

2
(
eh(0) − 1

)



1√
1 +

(
2qy

q+1 + vy(0)
)2
− 1


 +

q + 1
2

(
eh(0) − 1− h(0)

)

+
q + 1

2




1√
1 +

(
2qy

q+1 + vy(0)
)2
− 1 +

1
2

(
2qy

q + 1
+ vy(0)

)2


 .

(4.13)

Let us now observe that

K(q,w) := B2w + (I − P )F(u) := g̃(q,w)U0 + (I − P )(F(2 log(q + 1)U0 + w)), (4.14)

where

g̃(q,w) = 1 + h(0, ·)− eh(0)

√
1 +

(
2qy

q+1 + vy(0)
)2

; (4.15)

(I − P )F(2 log(q + 1)U0 + w)

=
(

2qy

q + 1
+ vy(0)

)2
[
wxx − vxx(0)− v(0) + 1

1− v(0) + vx(0)
w̃x +

(
1 +

vxx(0)− vx(0)
1− v(0) + vx(0)

v(0)
)

U0

−




eh(0)

√
1 +

(
2qy

q+1 + vy(0)
)2
− h(0)− vxx(0)− vx(0)

1− v(0) + vx(0)

∫ 0

−∞
exh(x)dx


U0




+2
(

2qy

q + 1
+ vy(0)

)[
w̃xy − vxy(0)− vy(0)

1− v(0) + vx(0)
w̃x − vy(0)− vxy(0)

1− v(0) + vx(0)

(∫ 0

−∞
exh(x)dx

)
U0

−
(∫ 0

−∞
exhy(x)dx

)
U0 +

v(0)vxy(0)− vy(0)(1 + vx(0))
1− v(0) + vx(0)

U0

]

− vxx(0)− vx(0)
1− v(0) + vx(0)

[
w̃x −

(
v(0) +

∫ 0

−∞
exh(x)dx

)
U0

]
,

(4.16)

and w̃ = (v, w,−h).
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Hence, the pair (q,w) turns out to solve the Cauchy problems

i)

{
qt = qyy + H̃(q,w),

q(0, ·) = exp(M(u0)/2)− 1
, ii)





Dtw = Lw +K(q,w),

Bw = G(u),

w(0, ·) = (I − P )u0,

(4.17)

where the nonlinear operators H̃ and K are given, respectively, by (4.13) and (4.14)–(4.16).

4.3 Optimal regularity for the linear problem

We devote this section to proving optimal Schauder estimates for the solution to the linearized problem
associated with system (4.17), namely with the problems

i)

{
qt = qyy + ϕ,

q(0, ·) = q0

, ii)





Dtw = Lw + f ,

Bw = (0, 0, ψ),

w(0, ·) = w0

. (4.18)

Problem (4.18i) has been partly already considered in [2, Theorem 2.6]. Note that the asymptotic
estimates of the solution to problem (4.17) are crucial to prove our stability results. However, since not
all the estimates we need are contained in the quoted theorem, we go into details.

Theorem 4.4. Let ϕ : R+ × R→ R satisfy

[[ϕ]]0 = sup
t≥0

(1 + t1+α/2)‖ϕ(t, ·)‖Cα(R) + sup
0≤s<t

(1 + s)
‖ϕ(t, ·)− ϕ(s, ·)‖C(R)

(t− s)α/2
< +∞, (4.19)

for some α ∈ (0, 1). Further, assume that q0 ∈ C2+α(R). Then, problem (4.18i) admits a unique bounded
strict solution q, which belongs to Xq (see Definition 3.3) and satisfies the following estimate:

‖q‖Xq + sup
s≥0

(1 + s)
‖qy(t, ·)− qy(s, ·)‖C(R)

(t− s)(1+α)/2
≤ C

(‖q0‖C2+α(R) + [[ϕ]]0
)
, (4.20)

for some positive constant C, independent of (q0, ϕ).

Proof. Throughout the proof, we denote by Cj (j ∈ N) positive constants independent of the data and t.
As is well-known (see e.g. [9, Theorems 4.3.1 & 4.3.8]), our assumptions guarantee that problem (4.18i)

admits a unique strict solution q ∈ C1+α/2([0, T ];C(R)) ∩B([0, T ];C2+α(R)) ∩Cα/2([0, T ];C2(R)), such
that qt ∈ B([0, T ];Cα(R)) for any T > 0. The solution q is given by the variation-of-constants formula

q(t, ·) = T (t)q0 +
∫ t

0

T (t− s)ϕ(s, ·)ds, ∀t ∈ [0, T ],

where T (t) is the Gauss-Weierstrass semigroup, i.e.

(T (t)g)(y) =
1√
4πt

∫

R
e−|y−z|2/4tg(z)dz, ∀t > 0, y ∈ R,

for any g ∈ C(R). Moreover, there exists a positive constant C1 such that

‖q‖B([0,1];C2+α(R)) + ‖qt‖B([0,1];Cα(R)) + ‖qt‖Cα/2([0,1];C(R)) + ‖qyy‖Cα/2([0,1];C(R))

≤ C1‖ϕ‖B([0,1];Cα(R)).
(4.21)

It is also well known that for any β ∈ [0, 1) and any k ∈ N there exist positive constants Cβ,k such
that

‖Dk
yT (t)g‖C(R) ≤ Cβ,kt−(k−β)/2‖g‖Cβ(R), ∀t > 0, ∀g ∈ Cβ(R). (4.22)
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It immediately follows that T (·)q0 belongs to B([0, +∞); C2+α(R))∩C1([0, +∞); C(R)) and there exists
a positive constant C2 such that

sup
t≥0

‖T (t)q0‖C(R) + sup
t≥0

(1 + t)‖DyyT (t)q0‖Cα(R) ≤ C2‖q0‖C2+α(R). (4.23)

Let us now consider the convolution term q1(t, ·) =
∫ t

0
T (t − s)ϕ(s, ·)ds and let us estimate q1 for

t > 1. From (4.22) we immediately deduce that

‖q1(t, ·)‖C(R) ≤ sup
r≥0

(1 + r1+α/2)‖ϕ(r, ·)‖C(R)

∫ +∞

0

(1 + s1+α/2)−1ds, ∀t > 1, (4.24)

since C0,0 = 1.
As far as the second order space derivative of q1 is concerned, we observe that

‖D2
yq1(t, ·)‖C(R) ≤

∥∥∥∥∥
∫ t/2

0

D2
yT (t− s)ϕ(s, ·)ds

∥∥∥∥∥
C(R)

+

∥∥∥∥∥
∫ t

t/2

D2
yT (t− s)ϕ(s, ·)ds

∥∥∥∥∥
C(R)

≤ C0,2 sup
r≥0

(1 + r1+α/2)‖ϕ(r, ·)‖C(R)

∫ t/2

0

1
1 + s1+α/2

1
t− s

ds

+ Cα,2 sup
r≥0

(1 + r1+α/2)‖ϕ(r, ·)‖Cα(R)

∫ t

t/2

1
1 + s1+α/2

1
(t− s)1−α/2

ds

≤ C3 sup
r≥0

(1 + r1+α/2)‖ϕ(r, ·)‖C(R)t
−1, ∀t > 1.

(4.25)

Moreover,

‖ξ1−α/2D2
yT (ξ)D2

yq1(t, ·)‖C(R) = ξ1−α/2

∥∥∥∥
∫ t

0

D4
yT (t + ξ − s)ϕ(s, ·)ds

∥∥∥∥
C(R)

≤ Cα,4 sup
r≥0

(1 + r1+α/2)‖ϕ(r, ·)‖Cα(R)

∫ t/2

0

ξ1−α/2

(t + ξ − s)2−α/2

ds

1 + s1+α/2

+ Cα,4 sup
r≥0

(1 + r1+α/2)‖ϕ(r, ·)‖Cα(R)

∫ t

t/2

ξ1−α/2

(t + ξ − s)2−α/2

ds

1 + s1+α/2
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≤ Cα,4 sup
r≥0

(1 + r1+α/2)‖ϕ(r, ·)‖Cα(R)(t/2)−(2−α/2)

∫ +∞

0

ds

1 + s1+α/2

+ Cα,4 sup
r≥0

(1 + r1+α/2)‖ϕ(r, ·)‖Cα(R)(t/2)−(1+α/2)

∫ +∞

0

ds

(1 + s)2−α/2

≤ C4t
−(1+α/2) sup

r≥0
(1 + r1+α/2)‖ϕ(r, ·)‖Cα(R), ∀ξ ∈ (0, 1).

Hence,

sup
ξ∈(0,1)

‖ξ1−α/2D2
yT (ξ)D2

yq1(t, ·)‖C(R) ≤ C4t
−(1+α/2) sup

r≥0
(1 + r1+α/2)‖ϕ(r, ·)‖Cα(R), ∀t > 1. (4.26)

Since f ∈ Cα(R) if and only if f ∈ C(R) and [[f ]]Cα(R) := supξ∈(0,1) ‖ξ1−α/2D2
yT (ξ)f‖C(R) < +∞,

and the usual norm of Cα(R) is equivalent to the norm ‖ · ‖C(R) + [[ · ]]Cα(R), from (4.25) and (4.26) we
immediately deduce that

sup
t≥1

(1 + t)‖D2
yq1(t, ·)‖Cα(R) ≤ C5

(‖q0‖C2+α(R) + [[ϕ]]0
)
. (4.27)

Taking (4.21), (4.23), (4.24), (4.27) and Lemma A.3 into account, we can now easily show that

sup
t≥0

‖q(t, ·)‖C(R) + sup
t≥0

(1 + t)‖qyy(t, ·)‖Cα(R) ≤ C6

(‖q0‖C2+α(R) + [[ϕ]]0
)
. (4.28)

Moreover, since qt(t, ·) = qyy(t, ·) + ϕ(t, ·), from (4.28) and our assumptions on ϕ, we easily deduce that

sup
t≥0

(1 + t)‖Dtq(t, ·)‖Cα(R) ≤ C7

(‖q0‖C2+α(R) + [[ϕ]]0
)
. (4.29)

From (4.28), (4.29) and Lemma 3.4 we immediately deduce that Dj
yq ∈ C(2−j+α)/2([0, +∞); C(R))

for j = 1, 2 and there exists a positive constant C8 such that

sup
0≤s<t

(1 + s)

(
‖Dj

yq(t, ·)−Dj
yq(s, ·)‖C(R)

(t− s)(2−j+α)/2
+
‖Dtq(t, ·)−Dtq(s, ·)‖C(R)

(t− s)α/2

)
≤ C8

(‖u0‖C2+α(R) + [[ϕ]]0
)
,

(4.30)

for j = 1, 2. Now, (4.20) follows from (4.28)–(4.30).

We now pass to consider problem (4.18ii). For this purpose we prove the following lemma which
provides us a suitable lifting operator mapping Ck(R) into Xk+1 for any k ≥ 0.

Lemma 4.5. There exists a lifting operator N ∈ L(Ck(R), Xk+1) for any k ≥ 0, such that

i) BNψ = (0, 0, ψ), for any ψ ∈ C(R);

ii) PNψ = 0, for any ψ ∈ C(R);

iii) PLNψ = −ψU0, for any ψ ∈ C1(R).

Proof. Let N be the linear operator defined by

Nψ = xη(x)
∫

R
ϕ(ξ)ψ(y + ξx)dξ, ∀ψ ∈ C(R),

where η is any smooth function satisfying η(x) = 1 for any x ∈ [−1, 0] and η(x) = 0 for any x ≤ −2, while
ϕ is any smooth even function compactly supported in (−1, 1) such that 0 ≤ ϕ(x) ≤ 1 for any x ∈ R and
with ‖ϕ‖L1(R) = 1. As is immediately seen, N ∈ L(Ck(R), Ck+1,](R2

−)) for any k ≥ 0, where Ck+1,](R2

−)
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denotes the set of all the continuous functions f : R2

− → R such that (x, y) 7→ e−x/2f(x, y) is bounded.
Moreover, (Nψ)(0, ·) = 0 and (DxNψ)(0, ·) = ψ.

Define N0 by setting

Nψ = (I − P )(−Nψ, 0, 0), ∀ψ ∈ C(R).

It is immediate to check that N ∈ L(Ck(R), Xk+1) for any k ≥ 0. Moreover, by construction, N satisfies
both properties i and ii). Property iii) easily follows from i) and (4.10).

The solution to problem (4.18ii), under suitable assumptions on w0, f and ψ, is given by the following
formula, a variant of the Balakrishnan formula:

w(t, ·) = etLw0 +
∫ t

0

e(t−s)L
(
f(s, ·) + LNψ(s, ·))ds− L

∫ t

0

e(t−s)LNψ(s, ·)ds, ∀t > 0. (4.31)

To be more precise the following theorem holds.

Theorem 4.6. Let w0 ∈ (I − P )(X2+α), ψ ∈ C(1+α)/2,1+α([0, T ] × R) and f ∈ Xα/2,α(0, T ) (T > 0),
with f(t, ·) ∈ (I − P )(X0) for any t ∈ [0, T ], satisfy the compatibility conditions

Bw0(0, ·) = (0, 0, ψ(0, ·)), B0(Lw0(0, ·) + f(0, ·)) = 0. (4.32)

Then, problem (4.18ii) admits a unique solution w ∈ X1+α/2,2+α(0, T ) given by (4.31), where N is the
lifting operator in Lemma 4.5. Moreover, w(t, ·) ∈ (I − P )(X0) for any t ∈ [0, T ] and there exists a
positive constant C(T ) > 0, independent of the data, such that

‖w‖X1+α/2,2+α(0,T ) ≤ C(T )
(
‖w0‖X2+α + ‖f‖Xα/2,α(0,T ) + ‖ψ‖C(1+α)/2,1+α([0,T ]×R)

)
. (4.33)

Proof. The proof can be easily obtained by adapting the techniques of [7, Theorem 4.1].

Due to the particular nonlinearity H̃ we are considering, we can assume that f is split as f = g+ψU0

for suitable functions g and ψ.
The following theorem deals with the asymptotic behaviour of the function w in (4.31).

Theorem 4.7. Suppose that g ∈ Xα/2,α(0,∞) (α ∈ (0, 1)) is such that g(t, ·) ∈ (I − P )(Xα) for any
t ≥ 0 and

[[g]]1 := sup
t≥0

(1 + t)‖g(t, ·)‖Xα + sup
0≤s<t

(1 + s)
‖g(t, ·)− g(s, ·)‖X0

(t− s)α/2
< +∞. (4.34)

Further, assume that w0 ∈ (I − P )(X2+α) and ψ ∈ C(1+α)/2,1+α([0, +∞)× R) is such that

[[ψ]]2 = sup
t≥0

(1 + t)‖ψ(t, ·)‖C1+α(R)

+ sup
0≤s<t

(1 + s)
(‖ψ(t, ·)− ψ(s, ·)‖C(R)

(t− s)(1+α)/2
+
‖ψy(t, ·)− ψy(s, ·)‖C(R)

(t− s)α/2

)
< +∞

(4.35)

and

Bw0 = (0, 0, ψ(0, ·)), B0(Lw0 + g(0, ·)) = (−ψ, 0, 0). (4.36)

Then, problem (4.18ii) with f = g + ψU0 admits a unique solution w ∈ Xw given by (4.31). Moreover,
w(t, ·) ∈ (I − P )(X0) for any t ≥ 0 and

‖w‖Xw + sup
0≤s<t

(1 + s)
‖w(t, ·)−w(s, ·)‖X1

(t− s)(1+α)/2
≤ C

(‖w0‖X2+α + [[g]]1 + [[ψ]]2
)
. (4.37)

Before proving the theorem let us consider the following two lemmas.
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Lemma 4.8. Let Z be a Banach space, let A : D(A) ⊂ Z → Z be the generator of an analytic semigroup
of negative type in Z, and let u0 ∈ Z, f : [0, +∞) → Z be a α/2-Hölder continuous function such that

[[f ]]3 := sup
t≥0

(1 + t)‖f(t)‖Z + sup
0≤s<t

(1 + s)
‖f(t, ·)− f(s, ·)‖Z

(t− s)α/2
< +∞, (4.38)

with 0 < α < 1. Then, the function

u(t) = etAu0 +
∫ t

0

e(t−s)Af(s)ds (4.39)

is the unique classical solution of u′(t) = Au(t) + f(t) such that u(0) = u0; u′(t, ·) has values in
DA(α/2,∞) for any t > 0 and

sup
t≥1

(1 + t)
(‖u(t)‖D(A) + ‖u′(t)‖DA(α/2,∞)

)
+ sup

1≤s<t
(1 + s)

‖u′(t)− u′(s)‖Z

(t− s)α/2
≤ C (‖u0‖Z + [[f ]]3) . (4.40)

Finally, if u0 ∈ D(A) and Au0 + f(0) ∈ DA(α/2,∞), then u ∈ C1+α/2([0, 1];Z) ∩ Cα/2([0, 1]; D(A))
and u′ ∈ B([0, 1];DA(α/2,∞)). Moreover, there exists a positive constant C, independent of the data,
such that

‖u‖C1+α/2([0,1];Z) + ‖u‖Cα/2([0,1];D(A)) + ‖u′‖B([0,1];DA(α/2,∞))

≤ C
(‖u0‖D(A) + ‖Au0 + f(0)‖DA(α/2,∞) + ‖f‖Cα/2([0,1];Z)

)
.

(4.41)

Proof. It is well known (see e.g. [9, Theorem 4.3.8]) that, under our assumptions, formula (4.39) defines
the unique classical solution of the equation u′ = Au + f . Moreover, if u0 ∈ D(A) and Au0 + f(0) ∈
DA(α/2,∞), then u ∈ Cα/2([0, T ]; D(A)) ∩ C1+α/2([0, T ];Z) and u′ ∈ B([0, T ];DA(α/2,∞)) for any
T > 0, and (4.41) is satisfied. Hence, we can limit ourselves to dealing with the asymptotic behaviour of
u, simply by checking (4.40). For this purpose we observe that, etA being a semigroup of negative type,
there exist positive constants ω and Mk (k ∈ N) such that

tk‖AketA‖L(Z) ≤ Mke−ωt, ∀t > 0, k ∈ N. (4.42)

Taking (4.42) into account, it is now easy to show that the functions u1(t) = etAu0 and Au1 decay
exponentially at infinity. In particular, there exists a positive constant C such that

sup
t≥1

(1 + t)(‖u1(t)‖D(A) + ‖u′1(t)‖DA(α/2,∞)) + sup
1≤s<t

(1 + s)
‖u′1(t)− u′1(s)‖Z

(t− s)α/2
≤ C‖u0‖Z . (4.43)

Let us now consider the integral term u2(t) =
∫ t

0
e(t−s)Af(s)ds. As is easily seen

‖u2(t)‖Z ≤ sup
r≥0

(1 + r)‖f(r)‖Z

(∫ t/2

0

(1 + s)−1e−ω(t−s)ds +
∫ t

t/2

(1 + s)−1e−ω(t−s)ds

)

≤ sup
r≥0

(1 + r)‖f(r)‖Z

(
e−ωt/2

∫ t/2

0

(1 + s)−1ds + (1 + t/2)−1ω−1

)

≤ C(1 + t)−1 sup
r≥0

(1 + r)‖f(r)‖Z , ∀t > 0.

(4.44)

Similarly, since

u′2(t) =
∫ t

0

Ae(t−s)A
(
f(s)− f(t)

)
ds + etAf(t), ∀t > 0,

we easily deduce that

‖u′2‖Z ≤ M1 sup
0≤σ<τ

(1 + σ)
‖f(τ)− f(σ)‖Z

(τ − σ)α/2

∫ t

0

(1 + s)−1(t− s)α/2−1e−ω(t−s)ds + M0e
−ωt sup

t≥0
‖f(t)‖Z

≤ M1

(
(t/2)α/2e−ωt/2 + (1 + t/2)−1

∫ +∞

0

sα/2−1e−ωsds

)
[[f ]]3 + M0e

−ωt sup
t≥0

‖f(t)‖Z

≤ C(1 + t)−1[[f ]]3.
(4.45)
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Moreover, for any 0 ≤ s < t, it holds that

u′2(t)− u′2(s) =
∫ s

0

A
(
e(t−σ)A − e(s−σ)A

)(
f(σ)− f(s)

)
dσ +

(
etA − esA

)
f(s)

+ e(t−s)A
(
f(t)− f(s)

)
+

∫ t

s

Ae(t−σ)A
(
f(σ)− f(t)

)
dσ.

(4.46)

Let us now consider the first term in (4.46) and let us observe that
∥∥∥∥
∫ s

0

A
(
e(t−σ)A − e(s−σ)A

)(
f(σ)− f(s)

)
dσ

∥∥∥∥
Z

=
∥∥∥∥
∫ s

0

dσ

∫ t−σ

s−σ

A2eτA
(
f(σ)− f(s)

)
dτ

∥∥∥∥
Z

≤ M2 sup
0≤r1<r2

(1 + r1)
‖f(r2)− f(r1)‖Z

(r2 − r1)α/2

∫ s

0

(1 + σ)−1dσ

∫ t−σ

s−σ

τα/2−2e−ωτdτ

≤ M2[[f ]]3

(
e−ωs/2

∫ s/2

0

dσ

∫ t−σ

s−σ

τα/2−2dτ + (1 + s/2)−1

∫ s

s/2

dσ

∫ t−σ

s−σ

τα/2−2e−ωτdτ

)

≤ C[[f ]]3.

(4.47)

All the other terms are easily estimated and give estimates similar to (4.47). Hence, from (4.43) and
(4.47) we deduce that there exists a positive constant C such that

sup
1≤s<t

(1 + s)
‖u′(t)− u′(s)‖Z

(t− s)α/2
≤ C

(‖u0‖Z + [[f ]]3
)
. (4.48)

Finally, let us estimate the asymptotic behaviour of ‖u′(t)‖DA(α/2,∞). For this purpose, fix ξ ∈ (0, 1),
t ≥ 1, and observe that

ξ1−α/2‖AeξAu′2(t)‖Z ≤ ξ1−α/2

∥∥∥∥
∫ t

0

A2e(t+ξ−s)A
(
f(s)− f(t)

)
ds

∥∥∥∥
Z

+ ξ1−α/2‖Ae(t+ξ)Af(t)‖Z

≤ M2ξ
1−α/2 sup

0≤σ<τ
(1 + σ)

‖f(τ)− f(σ)‖Z

(τ − σ)α/2

∫ t

0

e−ω(t+ξ−s)(t− s)α/2

(t + ξ − s)2(1 + s)
ds

+ M1ξ
1−α/2 e−ω(ξ+t)

t + ξ
‖f(t)‖Z

≤ M2ξ
1−α/2[[f ]]3

(
tα/2e−ω(ξ+t/2)

(ξ + t/2)2

∫ t/2

0

ds

1 + s
+

1
1 + t/2

∫ t

t/2

ds

(t + ξ − s)2−α/2

)

+ M1ξ
1−α/2 e−ω(ξ+t)

t + ξ
‖f(t)‖Z .

(4.49)

Taking the supremum over all ξ ∈ (0, 1) of the first and the last side of (4.49) gives

sup
ξ∈(0,1)

ξ1−α/2‖AeξAu′2(t)‖Z ≤ C(1 + t)−1[[f ]]3.

Since ‖u′2(t)‖DA(α/2,∞) = ‖u2(t)‖Z + supξ∈(0,1) ξ1−α/2‖AeξAu′2(t)‖Z , we get

‖u′2(t)‖DA(α/2,∞) ≤ C(1 + t)−1[[f ]]3. (4.50)

The assertion now follows from (4.43)–(4.45), (4.48) and (4.50) and our assumptions on f , since u′ =
Au + f .
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Next we deal with the function

u(t, ·) = L

∫ t

0

e(t−s)LNψ(s, ·)ds, (4.51)

where N is the lifting operator defined in Lemma 4.5.

Lemma 4.9. Suppose that ψ ∈ C(1+α)/2,1+α([0, +∞)× R) (α ∈ (0, 1)) is such that

[[ψ]]4 = sup
t≥0

(1 + t)‖ψ(t, ·)‖C1+α(R) + sup
0≤s<t

(1 + s)
‖ψ(t, ·)− ψ(s, ·)‖C(R)

(t− s)(1+α)/2
.

Then, the function u given by (4.51) belongs to X1+α/2,2+α(1,∞). Moreover, there exists a positive
constant C, independent of ψ, such that

sup
t≥1

(1 + t)
(‖u(t, ·)‖X2+α + ‖Dtu(t, ·)‖Xα

)
+ sup

1≤s<t
(1 + s)

‖u(t, ·)− u(s, ·)‖X2

(t− s)α/2

+ sup
1≤s<t

(1 + s)
(‖u(t, ·)− u(s, ·)‖X1

(t− s)(1+α)/2
+
‖Dtu(t, ·)−Dtu(s, ·)‖X0

(t− s)α/2

)

≤ C[[ψ]]4.

(4.52)

Proof. Throughout the proof, we denote by Cj (j ∈ N) positive constants, independent of the data and t.
By assumptions ψ ∈ C(1+α)/2,1+α([0, +∞) × R). Hence, Nψ ∈ B([0, +∞), X2+α) (cf. Lemma 4.5).

Moreover, there exists a positive constant C1 such that

sup
t≥0

(1 + t)‖Nψ(t, ·)‖X2+α ≤ C1 sup
t≥0

(1 + t)‖ψ(t, ·)‖C1+α(R). (4.53)

From Lemma 4.5 we deduce that

(1 + s)‖Nψ(t, ·)−Nψ(s, ·)‖X1 ≤ C2(1 + s)‖ψ(t, ·)− ψ(s, ·)‖C(R) ≤ C2[[ψ]]4(t− s)(1+α)/2, (4.54)

for any 0 ≤ s < t and some positive constant C2. Hence, Nψ belongs to C(1+α)/2([0,+∞), X1).
Since

{
f ∈ (I − P )(X1) : B0f = 0 at x = 0} is continuously embedded in Z := (I − P )(DL(1/2,∞))

endowed with the norm of DL(1/2,∞), (cf. Theorem 4.1) and Nψ(t, ·) ∈ (I − P )(X0) for any t ≥ 0, it
follows that Nψ ∈ C(1+α)/2([0,+∞), Z). Moreover, from (4.53) and (4.54) we deduce that there exists a
positive constant C3 such that

sup
t≥0

‖Nψ(t, ·)‖DL(1/2,∞) + sup
0≤s<t

(1 + s)
‖Nψ(t, ·)−Nψ(s, ·)‖DL(1/2,∞)

(t− s)(1+α)/2
≤ C3[[ψ]]4. (4.55)

Let us observe that the function Nψ satisfies all the assumptions of Lemma 4.8 (see Lemma 4.5), and
the restriction of etL to Z defines an analytic semigroup of negative type (see Theorem 4.3) whose
generator is the part of L in Z. Hence, Lemma 4.8 and (4.55) imply that the function w(t, ·) =∫ t

0
e(t−s)LNψ(s, ·)ds belongs to Z for any t ≥ 0, and satisfies the following estimate:

sup
t≥1

(1 + t)
(‖Lw(t, ·)‖DL(1/2,∞) + ‖Dtw(t, ·)‖DL(1+α/2,∞)

) ≤ C4[[ψ]]4. (4.56)

Let us prove that Lw ∈ C1+α/2([1,+∞); X0). For this purpose, we begin by observing that Lw
is differentiable with respect to time and Dt(Lw)(t, ·) = LDtw(t, ·) for any t ≥ 0. Indeed, since
B([0, +∞); DL(1 + α/2,∞)) ⊂ C([0, +∞); D(L)), then

Lw(t, ·)− Lw(s, ·) =
∫ t

s

LDtw(σ, ·)dσ, ∀t, s ≥ 0.

Consequently, Lw is differentiable with respect to t in [0,+∞) and DtLw = LDtw. Hence, we can write

LDtw(t, ·) =
∫ t

0

L2e(t−s)L
(Nψ(s, ·)−Nψ(t, ·))ds + LetLNψ(t, ·). (4.57)
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We fix now, and for the rest of the proof, a positive constant ω ∈ (0, 1/4). Then, by (4.3) we know
that there exist positive constants Mk (k ∈ N) such that

sup
t>0

tk−1/2‖LketL(I − P )‖L(DL(1/2,∞),X0) ≤ Mke−ωt.

From (4.57) it immediately follows

‖DtLw(t, ·)‖X0 ≤
∫ t

0

‖L2e(t−s)L
(Nψ(s, ·)−Nψ(t, ·))‖X0ds + ‖LetLNψ(t, ·)‖X0

≤ M2 sup
0≤σ<τ

(1 + σ)
‖ψ(τ, ·)− ψ(σ, ·)‖C(R)

(τ − σ)(1+α)/2

∫ t

0

(1 + s)−1(t− s)−1+α/2e−ω(t−s)ds

+ 2M1t
−3/2e−ωt‖ψ(t, ·)‖C(R)

≤ M2[[ψ]]4

(
e−ωt/2

∫ t

0

sα/2−1ds + (t/2)−1

∫ t

0

sα/2−1e−ωsds

)
+ 2M1t

−1‖ψ(t, ·)‖C(R)

≤ C5t
−1[[ψ]]4,

(4.58)

for any t ≥ 1. Moreover,

‖DtLw(t, ·)−DtLw(s, ·)‖X0

≤
∥∥∥∥
∫ s

0

L2
(
e(t−σ)L − e(s−σ)L

)(Nψ(σ, ·)−Nψ(s, ·))dσ

∥∥∥∥
X0

+
∥∥L

(
etL − esL

)Nψ(s, ·)∥∥
X0

+
∥∥∥∥
∫ t

s

L2e(t−σ)L
(Nψ(σ, ·)−Nψ(t, ·))dσ

∥∥∥∥
X0

+ ‖Le(t−s)L
(Nψ(t, ·)−Nψ(s, ·))‖X0

≤ C6[[ψ]]4

(∫ s

0

(s− σ)(1+α)/2

1 + σ
dσ

∫ t−σ

s−σ

e−ωτ

τ5/2
dτ +

∫ t

s

σ−3/2e−ωσdσ

+
∫ t

s

e−ω(t−σ)

(t− σ)1−α/2

1
1 + σ

dσ +
1

1 + s
‖Le(t−s)L‖L(DL(1/2,∞),X0)(t− s)(1+α)/2

)

≤ C7[[ψ]]4

(∫ s

0

e−ω(s−σ)

1 + σ
dσ

∫ t−σ

s−σ

1
τ2−α/2

dτ +
1

1 + s

∫ t

s

e−ω(t−σ)

(t− σ)1−α/2
dσ

+
(

e−ωs

s(1+α)/2
+

1
s + 1

)
(t− s)α/2

)

≤ C8[[ψ]]4

(
e−ωs/2

∫ s/2

0

dσ

∫ t−σ

s−σ

1
τ2−α/2

dτ +
1

1 + s

∫ s

s/2

dσ

∫ t−σ

s−σ

1
τ2−α/2

dτ

+e−ωs(t− s)α/2 +
1

1 + s
(t− s)α/2

)

≤ C9[[ψ]]4(1 + s)−1(t− s)α/2.

(4.59)

for any 0 ≤ s < t. Observing that u = Lw, (4.56), (4.58) and (4.59) imply that Dtu ∈ B([0, +∞), Xα)∩
Cα/2([0,+∞); X0) and

(1 + t) sup
t≥1

‖Dtu(t, ·)‖Xα + sup
1≤s<t

(1 + s)
‖Dtu(t, ·)−Dtu(s, ·)‖X0

(t− s)α/2
≤ C10[[ψ]]4, ∀t ≥ 1. (4.60)

Since u +Nψ = Dtw ∈ B([0, +∞), DL(1 + α/2,∞)) (see (4.56)) and Nψ ∈ B([0, +∞), X2+α) (see
(4.53)), we easily deduce that u ∈ B([0, +∞), X2+α) and there exists a positive constant C11 such that

sup
t≥1

(1 + t)‖u(t, ·)‖X2+α ≤ C11[[ψ]]4. (4.61)
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Now, taking (4.56), (4.60), (4.61) and applying Lemma 3.4 to the function v defined by v(t, ·) =
u(t + 1, ·) for any t ≥ 0, we easily get (4.52). The proof is now complete.

We can now prove Theorem 4.7.

Proof of Theorem 4.7. The proof follows from Theorem 4.6 and Lemmas 4.8, 4.9 and A.3. Indeed,
our assumptions on the triplet (u0,g, ψ), the compatibility conditions in (4.36) and Theorem 4.6 imply
that problem (4.18ii) admits a unique solution w which belongs to X1+α/2,2+α(0, T ) for any T > 0 and
satisfies (4.33).

Let us recall that the solution to problem (4.18ii) can be split as w = w1 + w2, where

w1(t, ·) := etLu0 +
∫ t

0

e(t−s)L
(
g(s, ·) + ψ(s, ·)U0 + LNψ(s, ·))ds,

w2(t, ·) := −L

∫ t

0

e(t−s)LNψ(s, ·)ds, ∀t ≥ 0.

Throughout the rest of the proof, we denote by Cj (j ∈ N) positive constants, independent of the data
and t.

Due to Lemma 4.5iii and (4.53), the function t 7→ g(t, ·)+ψ(t, ·)U0+LNψ(t, ·) belongs to (I−P )(X0)
for any t ≥ 0. Moreover, it satisfies condition (4.38). To check it, we begin by observing that

sup
0≤s<t

(1 + s)
‖ψ(t, ·)− ψ(s, ·)‖C(R)

(t− s)α/2
< 2[[ψ]]2 (4.62)

and this follows easily observing that

‖ψ(t, ·)− ψ(s, ·)‖C(R) ≤ (1 + s)−1[[ψ]]2(t− s)(1+α)/2 ≤ (1 + s)−1[[ψ]]2(t− s)α/2,

if 0 ≤ s < t and t ≤ s + 1, while

‖ψ(t, ·)− ψ(s, ·)‖C(R) ≤
(‖ψ(t, ·)‖C(R) + ‖ψ(s, ·)‖C(R)

)
(t− s)α/2 ≤ 2(1 + s)−1[[ψ]]2(t− s)α/2,

if 0 ≤ s < t and t > s + 1.
Now, taking (4.35), (4.62) and Lemma 4.5 into account, we easily deduce

‖Nψ(t, ·)−Nψ(s, ·)‖X2 ≤ C1‖ψ(t, ·)− ψ(s, ·)‖C1(R) ≤ 2C1[[ψ]]2(1 + s)−1(t− s)α/2, ∀0 ≤ s < t. (4.63)

Hence, from (4.53), (4.62) and (4.63) we get

[[ψU0 + LNψ]]3 ≤ C2[[ψ]]2. (4.64)

Applying Lemma 4.8 with X = (I − P )(X0), A = L|(I−P ), f = g + ψU0 + LNψ, u0 = w0, and
taking into account the characterization of the interpolation space DL(α/2,∞) given in Theorem 4.1,
and (4.64), we get

sup
t≥1

(1 + t)
(‖w1(t, ·)‖D(L) + ‖Dtw1(t, ·)‖Xα

)
+ sup

1≤s<t
(1 + s)

‖Dtw1(t, ·)−Dtw1(s, ·)‖X0

(t− s)α/2

≤ C3

(‖w0‖X0 + [[g]]1 + [[ψ]]2
)
.

(4.65)

Since Dtw1 = Lw1 + g + ψU0 + LNψ and g + ψU0 + LNψ ∈ B([0,+∞); Xα) with

sup
t≥0

(1 + t)‖g(t, ·) + ψ(t, ·)U0 + LNψ(t, ·)‖Xα ≤ C4

(
[[g]]1 + [[ψ]]2

)
,

we easily deduce that

sup
t≥1

(1 + t)‖Lw1(t, ·)‖Xα ≤ C5

(‖w0‖X0 + [[g]]1 + [[ψ]]2
)
. (4.66)
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From the Schauder estimate in [1] and from (4.65) and (4.66) it easily follows that w1 belongs to
B([0, +∞); X2+α) and

sup
t≥1

(1 + t)‖w1(t, ·)‖X2+α ≤ C6

(‖w0‖X0 + [[g]]1 + [[ψ]]2
)
. (4.67)

Now, applying Lemma 3.4 to the function u(t, ·) = w(t + 1, ·) and taking (4.65) and (4.67) into
account, we get

sup
1≤s<t

(1 + s)
‖w1(t, ·)−w1(s, ·)‖X2

(t− s)α/2
+ sup

1≤s<t
(1 + s)

‖w1(t, ·)−w1(s, ·)‖X1

(t− s)(1+α)/2
≤C7

(‖w0‖X0 + [[g]]1 + [[ψ]]2
)
.

(4.68)

As far as the term w2 is concerned, we observe that the assumptions of Lemma 4.9 are satisfied by ψ.
Hence, from (4.33) (with T = 1), (4.52) (applied to the function w2), (4.65), (4.67), (4.68) and Lemma
A.3, we deduce that w belongs to Xw and satisfies (4.37).

4.4 Stability results

This subsection is devoted to proving that the null solution to problem (2.15) is stable with respect to
smooth and sufficiently small perturbations. Theorem 4.7 provides us an useful tool in order to prove
our stability result. As it has already been pointed out, we can limit ourselves to dealing with problems
(4.17i) and (4.17ii) where H̃, K and G are given, respectively, by (4.13), (4.14)-(4.16) and (2.14).

We solve system (4.17) by a fixed-point argument. Indeed, any sufficiently smooth solution to system
(4.17) is a fixed-point of the operator Γ(q,w) = (Γ1(q,w), Γ2(q,w)) defined by

Γ1(q,w)(t, ·) = T (t)
(
exp(M(u0)/2)− 1

)
+

∫ t

0

T (t− s)H̃(q(s, ·),w(s, ·))ds, t ≥ 0,

Γ2(q,w)(t, ·) = etL(I − P )u0 +
∫ t

0

e(t−s)L
(K(q(s, ·),w(s, ·)) + LN g̃(q(s, ·),w(s, ·))ds

− L

∫ t

0

e(t−s)LN g̃(q(s, ·),w(s, ·))ds, t ≥ 0.

(4.69)

Let us introduce the Banach space where we are going to solve the fixed-point equation for (q,w). For
this purpose, we denote by Xq,w the Banach space of all the pairs (q,w) ∈ Xq × Xw such that w(t, ·) ∈
(I − P )(X0) for any t ≥ 0 (see Definition 3.3), endowed with the norm ‖(q,w)‖Xq,w = ‖q‖Xq + ‖w‖Xw ,
and we denote by B(0, ρ) its closed ball with center at (0,0) and radius ρ.

The main result of this subsection is the following theorem.

Theorem 4.10. Suppose that q0 ∈ C2+α(R), w0 ∈ (I − P )(X2+α) satisfy the compatibility conditions

Bw0 = G (w0 + 2 log(q0 + 1)U0) , B0L(w0 +K(q0,w0)) = 0. (4.70)

Then, there are positive constants ρ0 and ρ such that, if

‖q0‖C2+α(R) + ‖w0‖X2+α ≤ ρ0,

problem (4.17) admits a unique solution (q,w) ∈ B(0, ρ) satisfying (q(0, ·),w0(0, ·)) = (q0,w0). More-
over, there exists a positive constant C, independent of (q,w), such that

‖(q,w)‖Xq,w + sup
0≤s<t

(1 + s)
(‖qy(t, ·)− qt(s, ·)‖C(R)

(t− s)(1+α)/2
+
‖w(t, ·)−w(s, ·)‖X1

(t− s)(1+α)/2

)

≤ C
(‖q0‖C2+α(R) + ‖w0‖X2+α

)
.

(4.71)
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Proof. Let us prove that the operator Γ defined by (4.69) is a contraction mapping in the space

B(0, (q0,w0), ρ) := {(q,w) ∈ B(0, ρ) : (q(0, ·),w(0, ·)) = (q0,w0)} ,

provided ρ0 and ρ are sufficiently small. For this purpose let us estimate the function g̃, H̃ and K. We
begin with the function g̃ (see (4.15)). Let us observe that, taking Lemma 3.4 into account, one can
easily show that there exists a positive constant C, independent of q, such that

sup
s≥0

(1 + s)j/2
(‖Dj

yq(s, ·)‖Cα(R) + ‖Dj
yq‖C(i+α)/2([s,+∞);C(R))

) ≤ C‖q‖Xq , ∀0 ≤ i, j ≤ 1.

Since g̃ is a product of functions belonging to C(1+α)/2,1+α([0,+∞)× R), we easily deduce that, if ρ
is taken sufficiently small so that both 1+q and 1−v(0)+vx(0) do never vanish for (q,w) ∈ B(0, ρ) (e.g.
ρ ≤ 1/2), then g̃(q,w) ∈ C(1+α)/2,1+α([0,+∞) × R). Moreover, long but straightforward computations
and the fact that g̃ is quadratic near 0 show that there exists a positive and continuous function K1

vanishing at 0 such that

[[g̃(q2,w2)− g̃(q1,w1)]]2 ≤ K1(ρ)‖(q2,w2)− (q1,w1)‖Xq,w , (4.72)

for any (qj ,wj) ∈ B(0, ρ), (j = 1, 2).
We now consider the operator H̃ (see (4.13)). All the terms in the definition of H̃ belong to

C([0, +∞); Cα(R)) ∩ Cα/2([0, +∞); C(R)) for any (q,w) ∈ B(0, ρ) for a sufficiently small ρ, since they
are products of functions belonging to such spaces. Moreover,

sup
t≥0

(1 + t)3/2‖H̃(q2(t, ·),w2(t, ·))− H̃(q1(t, ·),w1(t, ·))‖Cα(R)

+ sup
s≥0

(1 + s)3/2[H̃(q2,w2)− H̃(q1,w1)]Cα/2([s,+∞);C(R)) ≤ K2(ρ)‖(q2,w2)− (q1,w1)‖Xq,w ,

for any (qj ,wj) ∈ B(0, ρ) (j = 1, 2) and some positive and continuous function K2 vanishing at 0. In
particular, we get

[[H̃(q2,w2)− H̃(q1,w1)]]0 ≤ K2(ρ)‖(q2,w2)− (q1,w1)‖Xq,w , (4.73)

(see (4.19)).
Similarly, for any (q,w) ∈ B(0, ρ) the function K(q,w) defined by the right-hand side of (4.16) belongs

to Cα/2([0, +∞); C(R)) ∩C([0, +∞); Cα(R)). Moreover,

[[K(q2,w2)−K(q1,w1)]]1 ≤ K3(ρ)‖(q2,w2)− (q1,w1)‖Xq,w , (4.74)

for any (qj ,wj) ∈ B(0, ρ) (j = 1, 2) (see (4.34)) and some positive and continuous function K3 going to
0 as ρ tends to 0.

Let us now observe that, since g̃(0,0) = 0, H̃(0,0) = K̃(0,0) = 0, from (4.72)–(4.74) we deduce

[[H̃(q,w)]]0 + [[K̃(q,w)]]1 + [[g̃(q,w)]]2 ≤
(
K1(ρ) + K2(ρ) + K3(ρ)

)‖(q,w)‖Xq,w , (4.75)

for any (q,w) ∈ B(0, ρ).
Now, taking Theorems 4.4, 4.7 and all the above estimates into account, we easily deduce that, if ρ is

sufficiently small, then Γ(q,w) ∈ Xq,w for any (q,w) ∈ B(0, (q0,w0), ρ) (observe that the compatibility
conditions in Theorem 4.6 are satisfied by virtue of (4.70), since (q(0, ·),w(0, ·)) = (q0,w0)).

Moreover, from (4.20), (4.37), (4.75) we immediately deduce that

‖Γ(q,w)‖Xq,w ≤ C
(‖q0‖C2+α(R) + ‖w0‖X2+α + K4(ρ)‖(q,w)‖Xq,w

)
,

for some constant C, independent of (q0,w0) and some positive and continuous function K4 vanishing at
zero.
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Similarly, since, for any (q1,w1), (q2,w2) ∈ B(0, (q0,w0), ρ) the function Γ(q2,w2)− Γ(q1,w1) turns
out to be a solution to system (4.17) (with (H̃(q,w), K̃(q,w), g̃(q,w), q0,w0) replaced by (H̃(q2,w2) −
H̃(q1,w1), K̃(q2,w2)−K̃(q1,w1), g̃(q2,w2)− g̃(q1,w1), 0,0)), from (4.20), (4.37), (4.72)–(4.74), we deduce

‖Γ(q2,w2)− Γ(q1,w1)‖Xq,w ≤ K5(ρ)‖(q2,w2)− (q1,w1)‖Xq,w ,

for some positive and continuous function K5 vanishing at zero.
Choose now a pair (ρ, ρ0) solution to the system of inequalities





C(ρ0 + K4(ρ)ρ
) ≤ ρ,

K5(ρ) ≤ 1
2 ,

0 < ρ0 ≤ ρ ≤ 1
2 .

Then Γ turns out to be a 1/2-contraction mapping in B(0, (q0,w0), ρ) and, consequently, the fixed-point
equation Γ(q,w) = (q,w) admits a unique solution (q,w) ∈ B(0, (q0,w0), ρ) solving system (4.17).
Estimate (4.71) now follows easily.

5 Concluding remarks

The results in Section 4 imply that there exist two positive constants ρ0 and ρ such that if u0 belongs
to B(0, ρ0) ⊂ X2+α and satisfies the compatibility conditions (4.32), then the initial value problem
u(0, ·) = u0 for problem (2.15) admits a unique globally defined solution u ∈ B(0, ρ) ⊂ X1+α/2,2+α(0,∞).
Moreover, there exists a positive constant C such that

(1 + t)α1+α3/2
(‖Dα1

t Dα2
x Dα3

y u‖Cα/2([t,+∞);X0) + ‖Dα1
t Dα2

x Dα3
y u(t, ·)‖X0

) ≤ C‖u0‖X2+α ,

for any t ≥ 0 and any 2α1 + α2 + α3 ≤ 2.
One can show that, if ρ0 is sufficiently small, then u is, actually, the unique solution in X1+α/2,2+α(0,∞)

to the initial value problem u(0, ·) = u0 for problem (2.15). To do this, the main step is to show that for
any t0 > 0 and any small u0 ∈ X2+α satisfying the due compatibility conditions at t = t0, the problem





Dtu(t, ·) = Lu(t, ·) + F(u(t, ·)), t ∈ [t0, t0 + δ],

Bu(t, ·) = G(u(t, ·)), t ∈ [t0, t0 + δ],

u(t0, ·) = u0,

is uniquely solvable in a large ball of X1+α/2,2+α(t0, t0 + δ) for some small δ > 0 (independent of t0). See
[7, Theorem 4.1] for more details.

Coming back to problem (2.1)-(2.4) the previous results ensure that the planar TW is stable with
respect to small and sufficiently smooth perturbations. In particular, the perturbed front φ stays bounded
and close to the front −t corresponding to the TW. Moreover, its derivatives decrease polynomially to
zero. To be more precise, there exists a positive constant C such that

‖Dα1
t Dα2

y

(
φ(t, ·) + t

)‖Cα(R) ≤
C

(1 + t)α1+α2/2
,

for any t ≥ 0 and any 2α1 + α2 ≤ 2. Moreover, the functions Θ1 and S1 stay close to Θ0 and 0,
respectively, and

‖Dα1
t Dα2

x Dα3
y

(
Θ1(t, ·)−Θ0

)‖Cα(R2
−) + ‖Dα1

t Dα2
x Dα3

y S1(t, ·)‖Cα(R2
−) + ‖Dα1

t Dα2
x Dα3

y S1(t, ·)‖Cα(R2
+)

≤ C

(1 + t)α1+α3/2
,

for any 2α1 + α2 + α3 ≤ 2, where R2
+ := R+ × R.
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A Additional tools

We begin this subsection with an abstract lemma which plays a crucial role in the proof of Theorem 4.1.

Lemma A.1. Let X be a Banach space, A : D(A) ⊂ X → X, B : D(B) ⊂ X → X be two closed
operators with non empty resolvent sets. Then A and B commute in the resolvent sense if and only if

R(ω, B)(D(A)) ⊂ D(A) and AR(ω, B)x = R(ω,B)Ax, ∀ω ∈ ρ(B), ∀x ∈ D(A). (A.1)

Proof. Let us assume that A and B commute in the resolvent sense and prove that condition (A.1) is
satisfied. Fix x ∈ D(A), σ ∈ ρ(A) and let y ∈ X such that x = R(σ,A)y. Then, for any ω ∈ ρ(B)

R(ω, B)Ax = R(ω,B)AR(σ,A)y = R(ω, B)(A− σI + σI)R(σ,A)y

= −R(ω, B)y + σR(ω, B)R(σ,A)y = −R(ω, B)y + σR(σ,A)R(ω, B)y

= (σR(σ,A)− I)R(ω, B)y = AR(σ,A)R(ω,B)y = AR(ω, B)R(σ,A)y

= AR(ω,B)x,

so that (A.1) is satisfied.
Conversely, let us prove that, if (A.1) holds, then A and B commute in the resolvent sense. Fix y ∈ X

and take σ ∈ ρ(A), ω ∈ ρ(B). Applying (A.1) to x = R(σ,A)y we get

AR(ω,B)R(σ,A)y = R(ω, B)AR(σ,A)y = R(ω, B)(A− σI + σI)R(σ,A)y

= −R(ω,B)y + σR(ω, B)R(σ,A)y.

Hence, (A− σI)R(ω, B)R(σ,A)y = −R(ω, B)y. Applying R(σ,A) to both sides of the previous equation
we get R(ω, B)R(σ,A)y = R(σ,A)R(ω, B)y so that A and B commute in the resolvent sense.

The technique we used, in the case λ = 0, to transform problem (1.1) into an equivalent one, which
is somewhat simpler to be studied, works as well in the case of problem (1.1) with λ 6= 0. We still get a
problem similar to (2.15), where now the operators L and B have to be replaced by the operators

Lu = (∆v − vx,∆w − wx − λ∆v,∆h + hx), Bu =




λv(0, ·)− w(0, ·) + h(0, ·)
λv(0, ·) + λvx(0, ·)− wx(0, ·)− hx(0, ·)

v(0, ·) + h(0, ·)− vx(0, ·)


 ,

where, as usual, we set u = (v, w, h).
The pair (L,B) generates an analytic semigroup in X0 for any λ ∈ R with domain still given by (4.3)

(see [7, Theorem A.2]). We still can decouple L into the sum of the two operators L1 and L2 defined by

L1u = (vxx − vx, wxx − wx − λvxx, hxx + hx), L2u = (vyy, wyy − λvyy, hyy),

with domains

D(L1) = {u : Dj
xu ∈ X0 for j = 0, 1, 2, Bu = 0}, D(L2) = {u : Dj

yu ∈ X0 for j = 0, 1, 2}.

Although these operators are generators of analytic semigroups in X0, they do not commute in the
resolvent sense due to the coupling between v and w induced by the parameter λ.

Theorem A.2. Suppose that λ 6= 0. Then, the operators L1 : D(L1) ⊂ X0 → X0 and L2 : D(L2) ⊂
X0 → X0 are generators of analytic semigroups in X0 not commuting in the resolvent sense.

Proof. Showing that Lj : D(Lj) ⊂ X0 → X0 (j = 1, 2) generates an analytic semigroup in X0 is an easy
exercise and, hence, it is left to the reader. In particular, straightforward computations show that for
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any ω ∈ ρ(L) and any λ ∈ R it holds that

[R(ω, L1)f ]1(x, y) =
1√

1 + 4ω

(∫ 0

−∞
e−µ1tf(t + x, y)dt +

∫ 0

x

eµ2tf(x− t, y)dt

)

+ a1e
x

∫ 0

−∞
e−µ1(t+x)g(t, y)dt + a1

∫ 0

−∞
eµ2(t+x)k(t, y)dt

+ a2e
x

∫ 0

−∞
te−µ1(t+x)f(t, y)dt + a3e

x

∫ 0

−∞
e−µ1(t+x)f(t, y)dt,

[R(ω, L1)f ]2(x, y) =
1√

1 + 4ω

∫ 0

−∞
e−µ1t

(
g − λDxx[R(ω, L1)f ]1

)
(t + x, y)dt

+
1√

1 + 4ω

∫ 0

x

eµ2t
(
g − λDxx[R(ω, L1)f ]1

)
(x− t, y)dt

+ a4e
x

∫ 0

−∞
e−µ1(t+x)g(t, y)dt + a5

∫ 0

−∞
eµ2(t+x)k(t, y)dt

+ a6e
x

∫ 0

−∞
te−µ1(t+x)f(t, y)dt + a7e

x

∫ 0

−∞
e−µ1(t+x)f(t, y)dt,

[R(ω, L1)f ]3(x, y) =
1√

1 + 4ω

(∫ 0

x

e−µ1tk(x− t, y)dt +
∫ 0

−∞
eµ2tk(t + x, y)dt

)

+ a8

∫ 0

−∞
e−µ1(t+x)f(t, y)dt + a9

∫ 0

−∞
te−µ1(t+x)f(t, y)dt

+ a10

∫ 0

−∞
e−µ1(t+x)g(t, y)dt + a11

∫ 0

−∞
et−µ1(t+x)k(t, y)dt,

for any (x, y) ∈ R2
− and suitable coefficients aj 6= 0 (j = 1, . . . , 11) depending on λ, where µj =

1
2 + (−1) 1

2

√
1 + 4ω for j = 1, 2, and f = (f, g, k).

An immediate computation shows that

R(ω, L1)L2f = R(ω, L1)
(
fyy − (0, λfyy, 0)

)
, L2R(ω, L1)f = R(ω, L1)fyy − λ(0, Dyy[R(ω,L1)f ]1, 0),

for any f ∈ D(L2). Hence, R(ω, L1)L2f = L2R(ω, L1)f if and only if

R(ω, L1)(0, fyy, 0) = (0, Dyy[R(ω, L1)f ]1, 0), (A.2)

Take f(x, y) = (0, exg̃(y), 0) for some smooth function g such that g̃yy does not vanish identically. Obvi-
ously f ∈ D(L2). Moreover, the derivative

Dyy[R(ω, L1)f ]1(x, y) = a1g̃
′′(y)

∫ 0

−∞
eµ2(t+x)dt, ∀(x, y) ∈ R2

−,

does not vanish identically. Hence, (A.2) is not satisfied and consequently, by virtue of Lemma A.1, L1

and L2 do not commute in the resolvent sense.

Lemma A.3. Let X be a Banach space and let f : [0, +∞) → X be such that f ∈ Cα([0, 1]; X) and

sup
1≤s<t

s
‖f(t)− f(s)‖X

(t− s)α
< +∞, (A.3)

for some α ∈ (0, 1). Then, f ∈ Cα([0,+∞); X) and

[f ]Cα([0,+∞);X) ≤ [f ]Cα([0,1];X) + sup
1≤s<t

s
‖f(t)− f(s)‖X

(t− s)α
. (A.4)
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In particular,

sup
0≤s<t

(1 + s)
‖f(t)− f(s)‖X

(t− s)α
≤ 2

(
[f ]Cα([0,1];X) + sup

1≤s<t
s
‖f(t)− f(s)‖X

(t− s)α

)
. (A.5)

Proof. Since f satisfies (A.3), then, in particular,

[f ]Cα([1,+∞)) ≤ sup
1≤s<t

s
‖f(t)− f(s)‖X

(t− s)α
.

Moreover, if s < 1 < t, then

‖f(t)− f(s)‖X ≤ ‖f(t)− f(1)‖X + ‖f(1)− f(s)‖X

≤ [f ]Cα([0,1];X)(1− s)α + sup
1≤r1<r2

r1
‖f(r2)− f(r1)‖X

(r2 − r1)α
(t− 1)α

≤
(

[f ]Cα([0,1];X) + sup
1≤r1<r2

r1
‖f(r2)− f(r1)‖X

(r2 − r1)α

)
(t− s)α

and (A.4), (A.5) easily follow.
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