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Abstract. We give a description of singularity formation in terms of energy quanta for 2-
dimensional radially symmetric equivariant harmonic map heat flows. Adapting Struwe’s energy
method we first establish a finite bubble tree result with a discrete multiple of energy quanta disap-
pearing in the singularity. We then use intersection-comparison arguments to show that the bubble
tree consists of a single bubble only and that there is a well defined scale RBHK(t) ↓ 0 in which the
solution converges to the standard harmonic map1.
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1. Introduction. We consider solutions of the equation

ut =
∂u

∂t
= ∆u+ u|∇u|2, (1.1)

where u(·, t) : D2 → S2 maps the unit disk in IR2 to the unit sphere in IR3. Here

|∇u|2 =
∑

j=1,2,3

((
∂uj
∂x

)2

+
(
∂uj
∂y

)2
)
.

It is well known ([8]) that, for given Dirichlet boundary conditions, smooth solutions
do not always exist for all times. In the much more general context of harmonic map
heat flow on a 2-dimensional Riemannian manifold, Struwe ([15]) has introduced an
energy approach to show that singularity formation is not described by the natural
parabolic selfsimilar scaling: if one zooms in along appropriate sequences, one iden-
tifies the spatial profile of a steady state, i.e. a harmonic map. In [14] and [10] it
was in fact shown that, in general, a bubble tree develops, the bubbles consisting of
harmonic maps with well defined energy quanta, the sum of which is precisely equal
to the energy lost in the singularity. For a recent list of references we refer to [12].

In the present paper we restrict ourselves to radially symmetric equivariant so-
lutions, which we recall and discuss in Section 1.1. It was shown in [19] that then a
bubble tree consists of at most one single bubble. Our purpose here is to show that
only one scale is needed to describe the singularity formation: if the solution becomes
singular at a finite time t = T , then there is a decreasing function R(t)→ 0 as t ↑ T ,
such that in terms of r

R(t) the solution converges to a nonconstant radially symmetric
harmonic map, which is unique modulo scaling and symmetry. It is the scale which
Van den Berg, Hulshof and King use in their formal analysis in [17], and we shall
indicate it by RBHK(t).

The result will be presented in a completely self-contained form, with a simplified
proof of the single bubble result. In a future paper we shall show that our methods can
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be adapted to establish similar results for general (not necessarily radially symmetric)
equivariant solutions. This more general class is of particular interest since formal
calculations in [18] suggest that, in this class, singularities do not occur generically.

We expect that our result will enable us to give a rigorous proof of the conjectured
blow-up rates based on the formal asymptotics in [17], and in particular the ”generic”
decay rate of RBHK(t):

RBHK(t) ∼ κ T − t
| ln(T − t)|2

.

This will also benefit the understanding of singularity formation in relation to non-
uniqueness phenomena exhibited in, see [4, 16], the phenomenon of reverse bubbling.
Although Freire [11] provided a seemingly natural uniqueness criterion for the heat
flow of harmonic maps on Riemann surfaces, many delicate questions about non-
uniqueness are still not settled. For flows on 3-dimensional domains uniqueness crite-
ria are not known at all, see for example [3, 6, 9, 13] for nonuniqueness phenomena.

1.1. Radially symmetric equivariant solutions. Using polar coordinates
(x, y) = (r cosφ, r sinφ) these are of the form

u(x, y, t) =

 sin θ(r, t) cosφ
sin θ(r, t) sinφ

cos θ(r, t)

 , (1.2)

with θ(r, t) satisfying

θt = θrr +
1
r
θr −

sin 2θ
2r2

, (1.3)

or, in terms of s = log r,

e2sθt = θss −
sin 2θ

2
. (1.4)

Note that

|ut|2 = θ2t , |ur|2 = θ2r , |uφ|2 = sin2 θ,

and that it makes good sense to reformulate the problem in terms of θ(r, t), where
in principle θ(r, t) is not limited to the range 0 ≤ θ ≤ π. We note that equivariant
solutions map the origin to one of the poles and that nontrivial radially symmetric
equivariant equilibria of (1.1) having one of the poles in their image can all be written
in the form θ = 2 arctan(qr) or π− θ = 2 arctan(qr). In rectangular coordinates these
equilibria read

u1 =
2qx

1 + q2(x2 + y2)
, u2 =

2qy
1 + q2(x2 + y2)

, u3 = ±1− q2(x2 + y2)
1 + q2(x2 + y2)

, (1.5)

and they are all smooth.

1.2. Singularity formation. For radially symmetric equivariant solutions we
impose time-independent radially symmetric equivariant Dirichlet boundary condi-
tions on the circle r2 = x2 + y2 = 1, given by a single value θ1 in the corresponding
condition for θ at r = 1:

θ(1, t) = θ1. (1.6)
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At t = 0 we impose smooth radially symmetric equivariant initial conditions equivalent
to

θ(r, 0) = θ0(r). (1.7)

where we assume without loss of generality that the usual compatibility conditions in
r = 1 are satisfied and that θ0(0) = 0.

By standard arguments there is (locally in time) a unique solution which is smooth
for t > 0. Assuming for simplicity of the discussion below that θ0(r) increases from 0
to θ1 as r runs from 0 to 1, it depends on θ1 how solutions will behave. If 0 < θ1 < π,
the initial values define a map u0 : D2 → S2 which covers only part of S2, and the
solution θ(r, t) is seen to exist as a smooth solution for all time t > 0, converging to

Θ(r; q) = 2 arctan(qr) (1.8)

as t → ∞, where q = tan θ1
2 . In particular θ(0, t) = 0 for all t > 0, since writing

θ(r, t) = rp(r, t), the function p(r, t) solves

pt = prr +
3
r
pr +

1
r2

(
p− sin 2rp

2r

)
, (1.9)

a semilinear parabolic equation in IR4, in which the unknown function is radially
symmetric and positive in r = 0. The (smooth) nonlinear term in (1.9) is incapable of
causing blow-up, thanks to the equilibria (1.8) which provide supersolutions by taking
q sufficiently large.

If π < θ1 < 2π, the initial values define a map u0 : D2 → S2 which covers part
of S2 twice, while there are no radially symmetric equivariant equilibria available
satisfying the boundary condition θ(1, t) = θ1 with θ = 0 in r = 0. It was first
suggested in [8] that consequently there must exist a minimal 0 < T < ∞ such that
as t ↑ T , θr(0, t) blows up. In fact they showed this for a subsolution, which allowed
them to establish that the part of the solution which runs from θ = 0 to θ = π
(as r runs from r = 0 to some r = S(t) > 0) disappears. In terms of the map
u(·, t) : D2 → S2, a sphere bubbles off. For the remaining part of the solution the
scenario is, in terms θ(r, t)− π, basically the same as that for θ(r, t) in the case that
0 < θ1 < π. The solution may be continued globally for t > T with θ(0, t) = π,
converging to π+ 2 arctan(qr), with q = tan θ1−π

2 , or, alternatively, with θ(0, t) = 2π,
converging to 2π−2 arctan(q1r), with q1 = tan 2π−θ1

2 if one uses the above mentioned
reverse bubbling scenarios suggested by Topping. We emphasize that the assumption
of radial symmetry forces the solution curve r → u(r, t), as long as it is smooth, to
pass through the South Pole if it does so for t = 0. In the general (not necessarily
radially symmetric) equivariant case this is no longer true.

This jump behaviour of radially symmetric solutions was studied in more detail
in [17, 1, 2, 19], using matched asymptotic expansions and intersection-comparison
techniques, but in the case of finite time blow-up, the peculiar nonselfsimilar blow-up
rates calculated in [17] have not been proved yet.

In the radially symmetric equivariant setting with θ(0, t) = 0 for t < T , several
definitions of singularity formation as t ↑ T have been used:

(i) blow up of θr(0, t) at time T ;
(ii) S(t)→ 0 as t→ T ;
(iii) concentration of a positive amount of energy in the origin.
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The equivalence of (i) and (iii) already follows from [15]. We clarify the equivalence
between these three definitions, basing the analysis primarily on (iii), but in the end
it will be (i) that defines the scale RBHK(t) (see [17]) in which we conclude. This is
one of the 3 scales that we use. The second scale is defined by θ(R(t), t) = π

3 and the
third scale is R 1

2
(t), the radius of the ball in which the total energy equals half an

energy quantum. We recall that under the appropriate boundary conditions such as
the ones we impose, the harmonic map heat flow is a gradient flow for the energy

1
2

∫
D2
|∇u|2, (1.10)

and the energy drop in a singularity, i.e. the negative jump in (1.10), is known to be
equal to the total energy 4π of the equilibria in (1.8) on the whole of IR2, as follows
by combining [14] and [19]. In Section 2 we outline a self-contained direct proof of
the Struwe-Qing-Ding-Tian bubble tree result. Using the quite different arguments
of intersection-comparison theory, we give a simple proof of the single bubble result
in [19] and establish that RBHK(t) is in fact a scale:

RBHK(t) :=
2

θr(0, t)
↓ 0 as t ↑ T.

In a future paper we shall concentrate on the single bubble tree issue for equivari-
ant solutions, without the assumption of radial symmetry, refining the self-contained
approach of the present paper.

2. Energy proof of the bubble tree result revisited. We write the energy
as

E(r) = E(r;u) = E(r; θ) =
1
2

∫ r

0

(
rθ2r +

1
r

sin2 θ

)
dr, (2.1)

in which we omit the factor 2π corresponding to integration with respect to φ. For
t < T and any r1 ≤ 1, the energy equality reads

E(r1; θ(·, t)) +
∫ t

0

∫ r1

0

θ2t rdrdt = E(r1; θ0) + r1

∫ t

0

θt(r, t)θr(r, t)dt, (2.2)

where the second term in the right hand side of (2.2) vanishes if r1 = 1, implying∫ T

0

∫ 1

0

θ2t rdrdt ≤ E(1; θ0), (2.3)

and, for all 0 < t < T , ∫ 1

0

(
rθ2r +

sin2 θ

r

)
dr ≤ 2E(1; θ0). (2.4)

Note that the integral in (2.3) is invariant under parabolic scalings of r and t, and
that the integral in (2.4) is invariant under scalings of r. We have

E(r; Θ(·; q)) = 1− cos Θ(r; q) =
2q2r2

1 + q2r2
→ 2 = E(∞; Θ(·; q)), (2.5)
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as r →∞. The limit 2 is the energy quantum which will disappear in a singularity. It
is useful to observe, see for example Lemma 20 in [5], that, for any smooth function
θ : [a, b]→ IR, ∫ b

a

(
rθ2r +

1
r

sin2 θ

)
dr ≥ | cos θ(a)− cos θ(b)|, (2.6)

with equality achieved by the stationary profiles nπ ±Θ(·; q) only (n ∈ IZ, q > 0).

2.1. Energy concentration. We assume that for 0 ≤ t < T the smooth solu-
tion θ(r, t) defines a smooth solution u = u(x, y, t) such that the center of the disk
is mapped to the North Pole, i.e. θ(0, t) = 0, for which, as t ↑ T , the energy concen-
trates. In view of the fact that, away from r = 0, (1.3) is a one-dimensional semi-linear
uniformly parabolic equation for θ(r, t), with a bounded smooth nonlinearity, we are
greatly helped by the observation that consequently the solution is smooth in every
point

(r, t) ∈ [0, 1]× [0, T ]\{(0, T )}.

We thus observe that energy concentration is in fact only possible at the origin, and
equivalent to

E(1; θ(·, T )) +
∫ T

0

∫ 1

0

θ2t rdrdt < E(1; θ0), (2.7)

meaning

ε̄ = E(1; θ(·, T−))− E(1; θ(·, T )) > 0.

In view of the smoothness for r > 0 it follows that for all ε < ε̄ and all 0 ≤ t < T the
minimal value r = Rε(t) for which

E(Rε(t); θ(·, t)) = ε, (2.8)

is well defined and must satisfy, since ε < ε̄,

lim
t↑T

Rε(t) = 0. (2.9)

For now we assume that Er > 0 at r = Rε(t) so that r = Rε(t) is a smooth level
curve of E(r, t). In fact Er is nonnegative and can only be zero if sin θ = θr = 0,
a situation which we will exclude as a byproduct of our reasoning for the ε’s under
consideration. Moreover, the intersection-comparison arguments in Section 3 imply
an eventual lower bound of the form rθr ≥ sin θ to the left of the first intersection of
θ with π.

2.2. Parabolic scalings. Following Struwe we introduce, for given tk and Rk =
Rε(tk), i.e. with

E(Rk; θ(·, tk)) = ε (0 < ε < 2), (2.10)

scalings vk of θ defined by

vk(r, t) = θ(rRk, tk + tR2
k). (2.11)
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In the reasoning below we shall not use that r = Rε(t) is a smooth level curve, nor
that Er > 0 at r = Rε(tk). If we just pick r = Rε(t) to be a radius r for which
E(r, t) = ε, there is no real need to worry about Er = 0. At the end we shall exclude
Er(Rε(t), t) = 0 for t close to T , so that eventually r = Rε(t) is indeed a smooth level
curve, with Rε(t) uniquely defined by E(Rε(t), t) = ε.

The scalings vk also solve (1.3), rewritten as

vt = vrr +
1
r
vr −

sin 2v
2r2

. (2.12)

Note the correspondence between

Q = {(r, t) : 0 < r ≤ 1,−1 ≤ t ≤ 0}

and

Qk = {(r, t) : 0 < r ≤ Rk, tk −R2
k ≤ t ≤ tk}. (2.13)

as domains for vk and θ, whence

E(1; vk(·, 0)) = E(Rk; θ(·, tk)) = ε.

In other words, at t = 0 all vk have energy ε on the r-interval (0, 1]. We write (0, 1]
instead of [0, 1], to emphasize that energy may disappear in r = 0, the main point
being to exclude this from happening for the vk as k →∞.

2.3. Convergence to equilibria away from the origin. Since the original
solution θ is uniformly bounded, the scaled solutions vk are uniformly bounded on
Q. In fact, they are defined and uniformly bounded on every QSR = {(r, t) : 0 < r ≤
R,−S ≤ t ≤ 0} for k sufficiently large, depending on S and R. By standard Schauder
estimates and compactness arguments, vk is then bounded in the usual Hölder spaces
C2+α;1+α

2 (QSρ,R) on

QSρ,R = {(r, t) : ρ ≤ r ≤ R,−S ≤ t ≤ 0}

with arbitrary 0 < ρ < R and S > 0, and converges, along suitable subsequences of
arbitrary subsequences, to a smooth limit solution v̄. This limit solution is easily seen
to be defined for all r > 0 and all t ≤ 0. We also have, say for Q = Q1

0,1 and the
original Qk in (2.13), that∫∫

Q

v2
kt rdrdt =

∫∫
Qk

θ2t rdrdt→ 0 (2.14)

as k → ∞ whence v̄t = 0 on Q and, by obvious reasoning, also for all r > 0 and all
t ≤ 0. Thus v̄ is a stationary solution.

The limit v̄ may depend on the subsequence. It is our purpose to show that it is
in fact uniquely determined, that it has energy ε (not smaller) on the r-interval (0, 1]
and that v̄(r)→ 0 as r ↓ 0. As a consequence we then have

v̄(r) = ±2 arctan qr,
2q2

1 + q2
= ε. (2.15)

Both signs are possible (though not simultaneously for different convergent subse-
quences). We proceed to show that, on any domain QSρ,R, the sequence vk converges
to v̄ as k →∞.
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It will be convenient to set

Ek(t) = E(1; vk(·, t)) =
1
2

∫ 1

0

(
rvkr(r, t)2 +

1
r

sin2 vk(r, t)
)
dr, (2.16)

so that, writing (2.2) in differentiated form for vk,

Ek(0) = ε, E′k(t) = −
∫ 1

0

v2
kt rdr + vkt(1, t)vkr(1, t).

In view of (2.14) and the strong convergence to an equilibrium away from r = 0, this
implies that

Ek(t)→ ε (2.17)

as k → ∞, along the convergent subsequences under consideration, uniformly in
t ∈ [−1, 0]. We wish to show that, as a consequence of the way θ has been scaled to
vk, energy can no longer concentrate at r = 0, and that the limiting value vk(0, t) = 0
is preserved in the limit k → ∞. Since we already know that v̄ is time-independent,
it will be sufficient to do this for wk = vk(·, t′k) where t′k is a suitable sequence in the
t-interval [−1, 0].

2.4. Control near the origin. The behaviour near r = 0 can be controlled
using the Hamiltonian Hk defined by

2Hk = r2v2
kr − sin2 vk = v2

ks − sin2 vk, (2.18)

which satisfies

Hkr = r2vktvkr. (2.19)

Integrating (2.19) we find

|Hk| ≤
∫ r

0

|vktvkr|r2dr ≤ r

√∫ 1

0

rv2
kr dr

√∫ 1

0

rv2
kt dr. (2.20)

We see from (2.4) and (2.11) that in the right hand side of (2.20) the first square root is
uniformly bounded (in k and t ∈ [−1, 0]), while the square root of the integral involving
the t-derivative is square integrable over t ∈ [−1, 0], with the integral converging to
zero as k →∞.

2.5. Reduction to spatial variables only. Though we cannot make the right
hand side small uniformly in t ∈ [−1, 0], we can make it uniformly small on subsets
with measure close to one. In particular there exist −1 ≤ t′k ≤ 0 such that

wk = vk(·, t′k)

satisfies w2
ks − sin2 wk = o(exp(s)) as k →∞ (we remind that s = log r). We picture

this in the (w,w′)-phase plane for the equation

w′′ =
sin 2w

2
.
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With w and w′ also considered as coordinates from here on, the ensemble of stationary
solutions connecting neighbouring π-multiples is given by

N = {(w,w′) : w′2 = sin2 w}.

In particular the connecting orbit {(w,w′) : w′ = sinw, 0 < w < π} contains the
solutions (1.8), i.e. all the shifts of 2 arctan exp(s).

Clearly (wk, wks) is close to (w,w′) = (0, 0) for s → −∞. The key observation
now is that, once (wk, wks) is away from (w,w′) = (0, 0), it must stay close to one of
the graphs w′ = ± sinw, which correspond to the stationary solutions connecting the
poles, see (1.5). This forces (wk, wks) to make a large excursion along which the energy
contribution is well tractible, until it comes in the vincinity of either (w,w′) = (π, 0)
or (w,w′) = (−π, 0), which cannot happen for s ≤ 0 in view of the energy constraint
provided by (2.17) and (2.6).

2.6. No relevant energy contribution near the poles. To force (wk, wks)
to actually move away from (w,w′) = (0, 0), we use an estimate which excludes
significant energy contributions near 0 and multiples of π, formulated in terms of

e
(a)
k (t) =

1
2

∫
| sin vk(r,t)|≤| sin a|

(
rvkr(r, t)2 +

1
r

sin2 vk(r, t)
)
dr. (2.21)

With (2.21) the energy (2.16) splits up as

Ek(t) = e
(a)
k (t) + E

(a)
k (t). (2.22)

To estimate e
(a)
k (t) we test (2.12) with fa(v), where fa is the unique continuous

piecewise linear odd π-periodic function with

fa(v) = v (|v| ≤ a); f ′a(v) = − 2a
π − 2a

(a < v < π − a). (2.23)

Integrating by parts we obtain for vk, setting

B = Bk,a,t = {0 < r ≤ 1 : | sin vk(r, t)| ≤ | sin a|}, G = (0, 1]\B

and omitting subscripts k, that∫
B

v2
r rdr +

∫ 1

0

fa(v) sin 2v
2r

rdr =
2a

π−2a

∫
G

v2
r rdr + [fa(v)vr r]10 −

∫ 1

0

fa(v)vt rdr.

(2.24)
The first and second term in the right hand side are O(a), uniformly in k and t, while
the third term is estimated as∣∣∣∣∫ 1

0

fa(v)vt rdr
∣∣∣∣ ≤

√∫ 1

0

|fa(v)|2 rdr

√∫ 1

0

v2
t rdr,

and therefore O(a) in L2(−1, 0). Note that fa(v) sin 2v ∼ 2 sin2 v for small sin v. We
therefore have that, with the same t′k as above,

e
(a)
k = e

(a)
k (t′k) =

1
2

∫
| sin vk(r,t′k)|≤| sin a|

(
rvkr(r, t′k)2 +

1
r

sin2 vk(r, t′k)
)
dr = O(a),

uniformly in k. The fact that we may use the same t′k is due to the uniform bound-
edness of

∫ 1

0
v2
kr rdr and the smallness of

∫ 1

−1

∫ 1

0
v2
kt rdr dt as k →∞.
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2.7. Convergence with conservation of energy. In view of the above rea-
soning we continue the argument with wk, its energy

Ek =
1
2

∫ 0

−∞
(w2

ks + sin2 wk)ds (2.25)

satisfying

Ek → ε, Ek = E
(a)
k + e

(a)
k , (2.26)

with

e
(a)
k =

1
2

∫
| sinwk|≤| sin a|

(w2
ks + sin2 wk)ds = O(a) (2.27)

uniformly in k, and, since

w2
ks − sin2 wk = o(exp(s)) (2.28)

as k → ∞, it follows, in addition to (wk, wks) → (0, 0) as s → −∞, that for every
δ > 0 we have

(wk, wks) ∈ Nδ = {(w,w′) : |w′2 − sin2 w| < δ}

for k sufficiently large.
Choosing 0 < a << ε, and then δ sufficiently small, we have, with

Nδ,a = {(w,w′) : |w′2 − sin2 w| < δ, | sinw| < sin a} = ∪n=∞
n=−∞N

n
δ,a,

where

Nn
δ,a = {(w,w′) : |w′2 − sin2 w| < δ, |w − nπ| < a},

that the boundary ∂N0
δ,a of N0

δ,a consists of 4 vertical parts and 4 curved parts. The
vertical parts are identified by the signs of w = ±a and w′.

For k sufficiently large, the curve traced out by (wk, wks) lies in N0
δ,a for s in a

neighbourhood of −∞ and, in view of (2.26), must leave N0
δ,a, the point of exit lying

either on the right upper vertical part (w = a, w′ > 0) or on the left lower vertical
part (w = −a, w′ < 0) of ∂N0

δ,a.
Suppose we are in the first case. Then, for some k-dependent s-value s0(k) < 0,

we have that wk = a, wks > 0, and (wk, wks) is trapped in

M1,+
δ,a = {(w,w′) : |w′2 − sin2 w| < δ, a < w < π − a, w′ > 0},

until it leaves this set through a point with w = π − a and w′ > 0. It is forced to do
so for some finite s = s̄0(k), because while in M1,+

δ,a , the derivative w′k(s) is positive
and bounded away from zero. Note that s̄0(k) > 0, because s̄0(k) ≤ 0 is impossible,
the energy Ek being too small to allow wk to go from a to π − a, see (2.6). Thus
s = s̄0(k) corresponds to some r > 1. Since we can choose δ as small as we like, by
taking k large (depending on δ), it follows that wks − sinwk can be made uniformly
small on the s-interval [s0(k), s̄0(k)], so that wk, as a function of s, becomes C1-close
to a possibly k-dependent shift w(s) = 2 arctan exp(s + Sk) of 2 arctan exp(s). Since
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we control Ek, this shift is controlled and we claim that wk becomes C1-close to w̄
defined by w̄(s) = 2 arctan exp(s+ sε) where sε is given by, see (2.5),

ε = 1− cos 2 arctan exp(sε) =
2 exp(2sε)

1 + exp(2sε)
.

Equivalently, Sk → sε. A larger limit for Sk is impossible in view of (2.6) and a smaller
limit is excluded by (2.26), since we may take a arbitrarily small. We conclude that,
in terms of r,

wk = wk(r)→ w̄(r) = Θ(r, qε) = 2 arctan qεr, qε =
√

ε

2− ε
(2.29)

The second case is similar. If (wk, wks) leaves N0
δ,a through a point of exit lying

in the left lower part (w = −a, w′ < 0), then, for some s = s0(k) < 0, we have that
wk = −a, wks < 0, and (wk, wks) is trapped in

M1,−
δ,a = {(w,w′) : |w′2 − sin2 w| < δ, −π + a < w < −a, w′ < 0},

until it leaves this set through w = −π + a with w′ < 0. By identical reasoning, it
then follows that

wk = wk(r)→ w̄(r) = −Θ(r, qε) = −2 arctan qεr. (2.30)

2.8. Convergence of the scaled profiles. Returning to the sequence vk de-
fined by (2.11) we observe that with (2.29) and (2.30) we have identified the only two
possible limits, in particular also for all possible convergent subsequences of arbitrary
sequences of real numbers

θ(Rε(tk), tk) = vk(1, 0), (2.31)

so that we may conclude that for any sequence tk ↑ T there is a further subsequence
such that

θ(Rε(tk), tk)→ ±2 arctan qε.

Since θ(Rε(t), t) is a bounded function of t, this implies that

lim
t↑T

θ(Rε(t), t) = ±2 arctan qε, (2.32)

meaning that the limit in (2.32) exists, and that either of the two values is possible.
We now conclude that eventually

Er(Rε(t), t) > 0, (2.33)

so that Rε(t) is smooth. Finally, reapplying the Schauder/compactness arguments
above with the knowledge in (2.32) and (2.33) we conclude that

θ(rRε(t), t)→ ±2 arctan qεr (2.34)

as t ↑ T in Cm([ρ,R]) for every m ∈ IN and every 0 < ρ < R <∞.
10



2.9. Improved convergence and equivalence of scales. In this subsection
we show that the convergence in the inner scale, see (2.34) above, is in fact in Ck([0, R])
for every R > 0, i.e., uniform near r = 0. This immediately implies that

lim
t↑T

θr(0, t) = ±∞,

(the divergent limit exists as either +∞ or −∞). Energy concentration as t→ T thus
implies the unboundedness of θr(0, t) = p(0, t), where p(r, t) is the radially symmetric
solution of the semilinear parabolic equation (1.9) in IR4, in the which the singularity
in r = 0 has been removed.

Let us continue under the assumption that (2.34) holds with a plus sign. So far
we have scaled the spatial variable using the energy level curves, see (2.8), which differ
from the level curves of the polar angle θ. For the equilibria they coincide in view
of the relation between energy and polar angle given by (2.5). As a consequence of
(2.34) they are asymptotic to one another as t ↑ T . To be precise, we will establish
the uniform convergence near r = 0 noting that, say with ε = 1

2 , we may use (2.34) to
conclude that for t < T close to T , the smooth level curve (R(t), t) is well defined by

θ(R(t), t) =
π

3
,

and satisfies

lim
t↑T

R(t)
R 1

2
(t)

= 1, i.e. R(t) ∼ R 1
2
(t).

Switching from R 1
2
(t) to R(t), and scaling accordingly,

v(r, t) = θ(rR(t), t)→ 2 arctan
r√
3

(2.35)

as t ↑ T in Cm([ρ,R]) for every m ∈ IN and every 0 < ρ < R < ∞. Note that this
implies that the energy of θ(·, t) between r = R(t) and r = R 1

2
(t) goes to zero, i.e.

E(R(t); θ(·, t))→ 1
2
.

We conclude that

RR′ = − R
θt
θr

∣∣∣∣
r=R

= −
R2θrr +Rθr − 1

2 sin 2θ
Rθr

∣∣∣∣
r=R

= −
vrr + vr − 1

2 sin 2v
vr

∣∣∣∣
r=1

→ 0

as t ↑ T . This can now be used in the equation for v, which reads, see also [17],

R(t)2vt = vrr +
1
r
vr −

sin 2v
2r2

+R(t)R′(t)rvr. (2.36)

Absorbing R2 in a new time variable τ and defining f = f(τ) by

dτ

dt
=

1
R(t)2

, Ṙ =
dR

dτ
, f =

Ṙ

R
= RR′,

we have τ ↑ ∞ as t ↑ T , simply because 0 < R→ 0 and (R2)′ → 0, and arrive at

vτ = vrr +
1
r
vr −

sin 2v
2r2

+ f(τ)rvr. (2.37)

11



The smooth coefficient f(τ) satisfies f(τ)→ 0 as τ ↑ ∞. As a function of r and τ the
scaled solution v(r, τ) satisfies of course the boundary condition v(1, τ) = π

3 , but in
addition we know that, as τ ↑ ∞,

v(r, τ)→ 2 arctan
r√
3
.

The convergence holds in every Cm([ρ, 1]) with m ∈ IN and 0 < ρ < 1. Extending
this result to convergence in Cm([0, 1]) will immediately imply that asymptotically
all three scales are the same:

RBHK(t) ∼ R(t) ∼ R 1
2
(t).

To extend this result to Cm([0, 1]), we remove the singularity by setting

v(r, τ) = rp(r, τ),

so that, see also (1.9), the equation for p becomes

pτ = prr +
3
r
pr + F (r, p) + f(τ)(rpr + p), F (r, p) =

1
r2

(p− sin 2rp
2r

), (2.38)

with boundary condition

p(1, τ) =
π

3
. (2.39)

As in (1.9) the nonlinear term F (r, p) in (2.38) is smooth since it expands as

F (r, p) =
2
3
p3 − 2

15
r2p5 + · · · .

By standard arguments (2.38,2.39) has a unique global classical smooth solution con-
verging in any Cm([0, 1]) as τ ↑ ∞, provided p(r, τ) is controled by a uniform a priori
bound. It remains to establish such a bound.

We already know that v(r, τ) is smooth with v(0, τ) = 0, and it is clear that
|v(r, τ)| is bounded by a constant which is asymptotically equal to π

3 , in view of the
obvious energy considerations, which also control v(r, τ) for small r. Certainly we
may then conclude that

|v(r, τ)| < π

2
, (2.40)

which, in the original variables, means that

|θ(r, t)| < π

2
for 0 ≤ r ≤ R(t), (2.41)

for all t sufficiently close to T . We choose such a t0 and then q with 2 arctan q > π
2

such that

−2 arctan
(

qr

R(t0)

)
≤ θ(r, t0) ≤ 2 arctan

(
qr

R(t0)

)
on [0, R(t0)]. (2.42)

Consider any t1 ∈ (t0, T ) with R(t1) ≤ R(t0). Then (2.42) may be replaced by

−2 arctan
(

qr

R(t1)

)
≤ θ(r, t0) ≤ 2 arctan

(
qr

R(t1)

)
on [0, R(t0)], (2.43)
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and clearly we have, for t0 ≤ t ≤ t1 that

−2 arctan
(

qr

R(t1)

)
≤ θ(r, t) ≤ 2 arctan

(
qr

R(t1)

)
in r = R(t0). (2.44)

Applying the comparison principle for smooth solutions of the original θ-equation
(1.3) on the rectangle [0, R(t0)]× [t0, t1], we conclude from (2.43,2.44) that

−2 arctan
(

qr

R(t1)

)
≤ θ(r, t1) ≤ 2 arctan

(
qr

R(t1)

)
for r ∈ [0, R(t0)]. (2.45)

In terms of v(r, τ), with τ0 and τ1 corresponding to t0 and t1, we conclude from (2.45)
that

−2 arctan qr ≤ v(r, τ1) ≤ 2 arctan qr for r ∈ [0, 1]. (2.46)

We only used that R(τ1) ≤ R(τ0) to prove (2.46). Since R(τ)→ 0 the desired a priori
bound has been established.

2.10. Equivalent descriptions of blow-up. In the previous subsection we
obtained, as a corollary of our improved convergence result in the inner energy scale,
that p(0, t) = θr(0, t) diverges to ±∞ if the energy concentrates. In particular this
implies that p(0, t) = θr(0, t) is unbounded as t ↑ T . It is not clear to us whether
the blow-up of θr was actually claimed or proved in [8], since such properties of a
subsolution do not necessarily carry over to a solution, in view of the blow-up times
being different.

For the opposite implication (blow-up of θr implies energy concentration) we
observe that an unbounded θr forces a first intersection with ±π, say S(t) defined by
θ(S(t), t) = ±π to satisfy

lim inf
t↑T

S(t) = 0. (2.47)

Otherwise |θ(r, t)| ≤ π in some rectangle [0, r0]× [t0, T ) and this allows a construction
of global super- en subsolutions θ̄ and θ and with θ̄(0, t) = π and θ(0, t) = −π, and
a subsequent barrier argument preventing blow-up of θr, see [7]. We conclude that
blow-up of θr implies (2.47) and hence energy concentration. Energy concentration
in turn implies that S(t) → 0 as t ↑ T along at least one subsequence, so all three
characterisations of singularity formulation are, in the end, equivalent. Using the real
analyticity of θ(r, T ) in r > 0, which may be established using arguments presented
to us by Angenent, one concludes that the lim inf in (2.47) may be replaced by a limit
symbol. Otherwise θ(·, T ) would be identically equal to π.

2.11. Scalings for larger energy drops. Clearly (2.34) implies that the energy
jump is at least equal to 2, the energy quantum defined by the function 2 arctan in
(1.8). Suppose it is larger. Denoting the previously used ε by ε0, we proceed with,
see (2.9, 2.10, 2.11), some R2+ε1(t) for which

E(R2+ε1(t); θ(·, t)) = 2 + ε1,

with 0 < ε1 < 2, and repeat the argument above. In fact we may carry out the
argument simultaneously for all j for which R2j+εj (t), with 0 < εj < 2 may be chosen
such that

E(R2j+εj (t); θ(·, t)) = 2j + εj

13



and satisfies R2j+εj (t)→ 0 as t ↑ T . Clearly j runs from j = 0 (the case treated above)
to some finite maximal j = J . Thus for any given sequence tk ↑ T and corresponding
R

(j)
k = R2j+εj (tk), we define v(j)

k by

v
(j)
k (r, t) = θ(rR(j)

k , tk + t(R(j)
k )2).

Provided R2(j−1)εj−1(t) << R2(j)+εj (t), the scalings

v
(0)
k , . . . v

(J)
k

will have nothing in common, except at t = 0, where v
(j)
k (r, 0) = θ(rR(j)

k , tk) will
contain v(j−1)

k (r, 0) = θ(rR(j−1)
k , tk) as an inner layer near r = 0. This determines the

line of reasoning below.

2.12. Compactness and reduction to spatial variables. We fix 0 ≤ j ≤ J .
At t = 0, the scalings v(j)

k have energy 2j + εj on the r-interval (0, 1]. Again the
sequence v(j)

k is bounded in the usual Hölder spaces and converges, along a suitable
subsequences of arbitrary subsequences, to a smooth stationary limit solution v̄(j)

defined for all r > 0 and all t ≤ 0, a limit which, a priori, may again depend on the
subsequence.

As before, the energy satisfies

E
(j)
k (t) = E(1; v(j)

k (·, t))→ 2j + εj

as k → ∞, along the same subsequences, uniformly in t ∈ [−1, 0]. Again we can
choose −1 ≤ t′k ≤ 0 such that w(j)

k = v
(j)
k (·, t′k) has (w(j)

k , w
(j)
ks ) ∈ Nδ for k sufficiently

large, with (w(j)
k , w

(j)
ks ) close to (w,w′) = (0, 0) for s→ −∞, and the energy

E
(j)
k = E

(j)
k (t′k) =

1
2

∫ 0

−∞
((w(j)

ks )2 + sin2 w
(j)
k )ds

satisfying

E
(j)
k → ε, E

(j)
k = E

(ja)
k + e

(ja)
k ,

with

e
(ja)
k =

1
2

∫
| sinwk|≤| sin a|

((w(j)
ks )2 + sin2 w

(j)
k )ds = O(a)

uniformly in k, and, as k →∞,

w2
ks − sin2 wk = o(exp(s)).

2.13. Convergence modulo logarithmic shifts. We recall that

Nn
δ,a = {(w,w′) : |w′2 − sin2 w| < δ, |w − nπ| < a},

and introduce

Mn,+
δ,a = {(w,w′) : |w′2 − sin2 w| < δ, (n− 1)π + a < w < nπ − a, w′ > 0},
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Mn,−
δ,a = {(w,w′) : |w′2 − sin2 w| < δ, −nπ + a < w < −(n− 1)π − a, w′ < 0},

trapping regions for each connecting orbits in the (w,w′)-phase plane.
With (all) 0 < εj < 2 already given, we may choose a > 0 as small as we like,

and having chosen a, we may subsequently choose δ > 0 as small as we like, as we
did above, so that in particular every boundary ∂N j

δ,a consists of 4 vertical parts,
each of which is identified by a choice of the signs in w − nπ = ±a and w′, and 4
curved parts. Since (w(j)

k , w
(j)
ks ) is close to (w,w′) = (0, 0) for s→ −∞, it starts off in

N0
δ,a. Copying the previous argument for (w(0)

k , w
(0)
ks ), it must either exit N0

δ,a entering

M1,+
δ,a at some s = s(j)0 (k) < 0, to later exit M1,+

δ,a and enter N1
δ,a at some s = s̄

(j)
0 (k),

or it must exit N0
δ,a entering M1,−

δ,a at some s = s(j)0 (k) < 0, to later exit M1,−
δ,a and

enter N−1
δ,a at some s = s̄

(j)
0 (k). Unless j = 0, we have in either case that s̄(j)0 (k) < 0

for k sufficiently large, because otherwise we would have that lim infk→∞E
(j)
k ≤ 2,

contradicting the definition of E(j)
k . For the same reason we have that, in the first

case, (w(j)
k , w

(j)
ks ) must exit N1

δ,a entering either M2,+
δ,a or M0,−

δ,a at some s = s(j)1 (k) < 0,

while in the second case, (w(j)
k , w

(j)
ks ) must exit N−1

δ,a entering either M0,+
δ,a or M2,−

δ,a at

some s = s(j)1 (k) < 0. Continuing the reasoning we obtain

s(j)0 (k) < s̄
(j)
0 (k) < s(j)1 (k) < · · · < 0 < s̄

(j)
j (k),

a sequence of exit and entrance values. Numbering i = 0, . . . , j, each s(j)i (k) is the
s-value at which (w(j)

k , w
(j)
ks ) exits N

ni,j
δ,a and each s̄

(j)
i (k) is the s-value at which

(w(j)
k , w

(j)
ks ) enters Nni+1,j

δ,a , with ni+1,j = ni,j ± 1. Only the last s-value s = s̄
(j)
j (k)

corresponds to some r > 1.
Since we can choose δ as small as we like, by taking k large (depending on δ), it

follows that, on each s-interval [si(k), s̄i(k)], either w(j)
ks − sinw(j)

k or w(j)
ks + sinw(j)

k

can be made uniformly small, so that on each of these s-intervals, modulo π, w(j)
k

becomes C1-close to a shift ±2 arctan exp(s+ Si,j,k) of ±2 arctan exp(s).

2.14. Convergence and conservation of energy for the outer layers. The
control on E

(j)
k forces that Si,j,k → −∞ as k → ∞ for i = 0, . . . , j − 1 and that

Sj,j,k → sεj , with, as before

εj = 1− cos 2 arctan exp(sεj ).

Thus in each scale the inner layers dissappear and only one outer layer survives, its
limit having precisely energy εj . Moreover, the shifts really differ in the sense that
also Si,j,k − Si−1,j,k → ∞ as k → ∞, because there are no multiple loop stationary
solutions. Independence of the choice of sequences and subsequences requires no
additional arguments than the ones already given for j = 0. Thus we conclude that

θ(rR2j+εj (t), t)→ mjπ + 2(−1)nj arctan qεjr (2.48)

as t ↑ T , uniformly on compact intervals [a, b] ⊂ IR+. The convergence in (2.48) is
easily seen to hold in every Ck([a, b])).

2.15. The bubble tree result. Since we already know from (2.34) that m0 = 0,
we conclude, a posteriori, with the observation that

mi = mi−1 + (−1)ni , (i = 1, . . . , j), (2.49)
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simplify because every violation of (2.49) would require at least another quantum.
This completes the proof of the bubble tree result.

3. Eventual monotonicity of the scaling RBHK(t). We first prove that there
exist α0 > 0 and t1 ∈ (0, T ) such that

θ(·, t) and Θ(·;α) have at most one intersection point in (0, S(t))
for all t1 < t < T and α > α0

(3.1)

and

θ(r, t) > Θ(r;α0) for all 0 < r ≤ S(t) and t1 < t < T. (3.2)

Indeed, let 0 < t̃ < T be such that 0 < S(t̃) = mint≤t̃ S(t). By the parabolic
boundary point lemma, θr(S(t̃), t̃) > 0 and hence there exists α0 > 0 such that θ(·, t̃)
and Θ(·;α) have one intersection point in (0, S(t̃)) if α ≥ α0. A simple intersection-
comparison argument shows that the number of intersection points of θ and Θ(·;α) in
(0, S(t̃)) to the left is nonincreasing in t, and (3.1) holds for any t1 ∈ [t̃, T ). Observe
that θr(0, t) ≤ Θ′(0;α0) as long as θ(t) and Θ(·;α0) have one intersection point in
(0, S(t)). Since θr(0, t)→∞ as t ↑ T (see Section 2.10), this implies that (3.2) holds
for some t1 ∈ (t̃, T ).

We define, for t1 < t < T ,

α(t) = sup{α ≥ α0 : θ(r, t) > Θ(r;α) for all 0 < r ≤ S(t)}.

Clearly α(t) <∞, θ(·, t) ≥ Θ(·;α(t)) in [0, S(t)] and

α(t) is nondecreasing in (t1, T ). (3.3)

We claim that

θr(0, t) = Θ′(0;α(t)). (3.4)

Arguing by contradiction we suppose that θr(0, t) > Θ′(0, α(t)). Then, by the defini-
tion of α(t), there exists r̃ ∈ (0, S(t)) such that θ(r̃, t) = Θ(r̃;α(t)). But then there
exists α̃ > α(t) (with α̃− α(t) sufficiently small) such that θ(·, t) and Θ(·, α̃) have at
least 2 intersection points, and we have found a contradiction.

Since RBHK(t)θr(0, t) = 2, it follows from (3.3) and (3.4) that

RBHK(t) is decreasing in (t1, T ).

We conclude this section with the result announced in Section 2.1:

rθr(r, t) ≥ sin(θ(r, t)) > 0 in (0, S(t)) if t1 < t < T. (3.5)

Since Θ(r;α) satisfies (3.5) with equality, this follows easily from (3.1) and (3.2).
Indeed, arguing by contradiction we suppose that rθr < sin θ at (r2, t2) for some
0 < r2 < S(t) and t1 < t < T . Choosing α > α0 such that (r2, t2) is an intersection
point of θ(·, t2) and Θ(·;α), there exists r3 ∈ (r2, S(t2)) such that θ(r3, t2) < Θ(r3, t2).
Since θ(S(t2), t2) = π > Θ(S(t2), t2), there exists a second intersection point of θ(·, t2)
and Θ(·;α), and we obtain a contradiction from (3.1).

Observe that (3.5) implies that

θr(·, t) > 0 in (0, S(t)) if t1 < t < T.
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4. Only a single jump. In this section we give a simple proof of the result in
[19] that in the radially symmetric setting only single jumps can occur. The proof is
based on the maximum principle, intersection numbers, barrier functions and a time
shift. We use the comparison principle for classical solutions which are continuous
down to r = 0, see [4].

Let T be the first blow-up time and assume, without loss of generality, that the
harmonic bubble which splits off in the first energy scaling connects θ = 0, the value
of θ at r = 0, to θ = π. This amounts to having a plus sign in (2.34), so the first lap
in the inner scale is from 0 to π. The main result in this section is then:

At most one energy quantum (of amount 2) can concentrate in the origin. (4.1)

In other words, bubble trees consist of single bubbles. The first lap is the final lap.
To prove this we will use the simple fact that, shifting the solution θ(r, t) a little

bit in time and adding or subtracting π, the following inequalities are immediate from
the comparison principle for all τ sufficiently small as soon as t ≥ τ :

θ(r, t− τ)− π ≤ θ(r, t) ≤ θ(r, t− τ) + π for all 0 < r ≤ 1 (4.2)

We use both inequalities in (4.2), beginning with the second, observing that θ(r, t)
is smooth in Q = [0, 1] × [0, T ] \ (0, T ), with θ(0, t) = 0 for 0 ≤ t < T . All r and t
below are restricted to this set Q. We claim that in view of the blow-up assumption
we must have

lim sup
(r,t)→(0,T )

θ(r, t) ≥ π, (4.3)

since θ(r, t) must achieve values larger than or equal to π near (r, t) = (0, T ). Other-
wise we can use, for sufficiently large values of α, Θ(r;α) as a supersolution and
prevent blow-up with a plus sign in (2.34) as t ↑ T . Now the second inequality in
(4.2) prevents a second inner scale lap from π to 2π while strict inequality in (4.3)
would force it, in view of the required inner scale energy then being larger than that
of a single quantum. Thus

lim sup
(r,t)→(0,T )

θ(r, t) = π. (4.4)

In view of (4.4), in our particular situation a second inner scale energy quantum
can only correspond to a second lap from π to 0, i.e. in the second energy scaling the
limit profile is π−2 arctan r . Arguing by contradiction we assume that such a second
lap exists. We observe that in view of the results in Section 2.9, the first two level
curves R1(t) and R2(t) for which θ(R1(t), t) = θ(R2(t), t) = π

2 are well-defined and
smooth for t close to T , and that θ(r, t) must achieve values larger than π in between.
Spatially scaling with R1(t) and R2(t), which converge to 0 both, the solution θ(·, t)
converges to, respectively, Θ(·; 1) and π − Θ(·; 1). We denote the spatially scaled
solutions by v1 and v2, so vi(r, t) = θ(rRi(t), t). This preparation facilitates the
reasoning below with intersections of θ(·, t) and χα defined by

χα(r) := π −Θ(r;α).

The latter are the equilibria connecting π to 0 in the original unscaled variable r.
The presence of the parameter α allows to use Sard’s Lemma and conclude that

for almost all α > 0 the set

Γα = {(r, t)| 0 < r ≤ 1, 0 < t < T, θ(r, t) = χα(r)}
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is smooth, meaning that in every point (r0, t0) of Γα we either have

θr(r0, t0)− χ′α(r0) 6= 0 or θr(r0, t0)− χ′α(r0) = 0 6= θt(r0, t0) = θrr(r0, t0)− χ′′α(r0)

(more precisely, Sard’s Lemma is applied to the function F (r, t) = r tan θ(r,t)
2 and Γα

is the level set F (r, t) = 1
α ). In the first case we can locally write Γα as a smooth

curve r = rα(t), while in the second case we have locally t = tα(r), with t′α(r0) = 0
and, in view of the comparison principle, t′′α(r0) < 0 (observe that t′′α(r0) 6= 0 since
θrr(r0, t0) 6= χ′′α(r0)), so that crossing t = t0 this part of Γα disappears.

Avoiding the boundary condition θ1, by excluding just one value of α for χα,
we thus have for almost all α > 0 that eventually there are a fixed finite number of
transversal intersections of θ(·, t) and χα in (0, 1). In particular a second intersection
r = zα(t), if it exists, defines a smooth curve defined on some nonempty open interval
(tα, T ).

Next we show that the second intersection must exist and pinpoint where it must
be situated. Given a t close to T for which v1(·, t) and v2(·, t) are already close
to Θ(·; 1) and χ1, we may choose such regular α as above so large that the first
intersection occurs for r < R1(t) at some level below π

2 . This intersection is unique
because θ(·, t) in monotone along its first lap from 0 to π, see Section 3. In particular
this requires α to be at least of order 1

R1(t)
. A second intersection r = zα(t) can

only occur for r > R2(t), because χα is decreasing and we savely can assume that
θ(r, t) > π

2 for r ∈ (R1(t), R2(t)). Here we rely again on the improved convergence
in Section 2.9 and Section 2.14. In fact, the second intersection must occur, because
otherwise there are no intersections for r > R1(t) so that in this r-range the solution
is bounded below by χα, a situation which, in view of the comparison principle, then
persists for all further t as long as t < T , preventing v2 from converging to χ1. Thus
we must a have a smooth second intersection curve r = zα(t) > R2(t) for almost every
α sufficiently large, defined on some interval (tα, T ).

Next we combine this information with the first inequality in (4.2) which we use
to find and fix a τ sufficiently small to ensure that

θ(r, t) ≥ θ(r, T − τ)− π = g(r), 0 < r ≤ 1, τ ≤ t < T. (4.5)

Here g(r) achieves strictly positive values, somewhere between r = R1(T − τ) and
r = R2(T − τ), say in r∗. In particular we may choose α so large that χα is below g
in r = r∗. Hence

θ(r∗, t) > g(r∗) > χα(r∗), τ ≤ t ≤ T.

Combining with the reasoning above this implies that for almost all α sufficiently
large the eventual curve r = zα(t) lies to the right of r∗. Again this prevents the
second θ-lap from π to 0 corresponding to v2 to concentrate near the origin and this
completes the proof that the second inner lap cannot occur.

Remark. It follows at once from (4.1) that

lim
r→0

θ(r, T ) = π and lim inf
(r,t)→(0,0) (t≤T )

θ(r, t) = 0.
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