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Chapter 1
Introduction

This thesis describes a new tool for versatile, high-precision laser spec-
troscopy, the “Ramsey comb”. For its eventual realization, both a unique
laser amplifier system for producing high-energetic coherent pulse pairs
as well as the theoretical framework and analysis model had to be de-
veloped. In this introductory chapter, the broader framework and his-
torical perspective of the Ramsey-comb method are provided: Starting
from traditional Ramsey spectroscopy, we discuss the advent of optical
frequency combs (FCs) and its importance for optical metrology. The
need for amplification of FC lasers then leads to the novel method of
Ramsey-comb spectroscopy as a powerful and easily scalable alternative
to traditional direct FC spectroscopy.

1.1 Ramsey spectroscopy or the girl on the
swing

As the name suggests, Ramsey-comb spectroscopy is fundamentally based
on Norman Ramsey’s Nobel-prize-winning method of excitation with
separated oscillating fields [1–3]. As an intuitive example, let us con-
sider that the author would like to measure earth’s gravity with the help
of his little niece Lene, who is sitting on a swing (initially at rest). Giving
Lene a little push, she will start swinging back and forth at a frequency
which depends (neglecting friction etc.) exclusively on the length of the
swing’s rope and the gravity of earth. If after a certain time interval
Lene experiences a second push, it will depend on the current position
and direction of movement (i.e., the phase) of the swing, whether Lene
will swing even higher or whether her maximum height will be decreased.
By repeating the experiment at different time intervals between the two
pushes and comparing it with how high Lene is swinging after the second
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Figure 1.1: Schematic of possible measurement results (dots) for the max-
imum swing height as a function of time in between the two pushes (see text
for more details). (a) 15 measurements each 0.5 seconds apart. (b) Same as
in (a) but with the measurement series starting from 30 seconds after the first
push.

push, we can obtain a periodic signal as sketched in Fig. 1.1(a). From
this sinusoidal signal, we can then straightforwardly deduce the swing-
ing period and hence the frequency of swinging Lene. The longer time
span we cover (for the measurement in Fig. 1.1(a) only ∼2.5 periods
were recorded), the more accurate this determination will be. However,
instead of recording the maximum swinging height for times close to
zero, we could also measure the periodic signal at delays between the
pushes of, e.g., 30.0 s, 30.5 s, 31.0 s, and so on as shown in Fig. 1.1(b).
Because of the longer “lever arm” (11 periods), we can now determine
the frequency more precisely than before by extrapolating back to zero
time. With the help of the obtained swinging frequency, the length of
the swing’s rope and some High school physics knowledge describing the
motion of a pendulum we could then calculate earth’s gravity.

The girl on the swing is a greatly simplified yet instructive pic-
ture of Ramsey spectroscopy, a method developed to measure radio-
frequency (RF) resonances in nuclei. In its original implementation, the
two “pushes” were derived from two spatially separated microwave oscil-
lators, a concept which also paved the way to nowadays most accurately
defined physical unit, the second, based on the atomic cesium clock [4].
The initial Ramsey method was quickly extended to oscillating fields
separated in time rather than in space [5] as it was actually also the
case in the previous girl-on-the-swing example. This temporal version
enabled the extension of Ramsey’s method to the optical domain using
laser pulses [6–12]. All these pioneering optical measurements, however,
missed an essential ingredient for the absolute frequency determination:
Because the relative phase of the excitation pulses was unknown, the
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inter-pulse delay could not be calibrated absolutely, and hence only fre-
quency intervals could be measured.

1.2 Coherent pulse trains from optical
frequency combs

The problem of producing laser pulses with a controlled optical phase
was finally solved with the invention of the optical FC around the year
2000 by groups from JILA in Boulder [13, 14] and from the MPQ in
Munich [15]. The FCs were based on Kerr-lens mode-locked Ti:sapphire
oscillators, which shortly before had been introduced as suitable candi-
dates to produce highly regular trains of optical pulses [16, 17]. While the
stabilization of the inter-pulse delay had long been possible employing
standard RF electronics, these groups had now additionally developed
a method to measure and stabilize the optical (carrier-envelope) phase,
thus effectively downcounting optical frequencies (∼1014Hz) to RF fre-
quencies (∼106-109Hz); prior to this achievement, referencing optical fre-
quencies to RF standards had only been possible via elaborate frequency
chains [18, 19]. In 2005, John L. Hall and Theodor W. Hänsch shared
part of the Nobel prize in physics for pioneering this phase-stabilization
method [20, 21], which will be discussed in more detail in Sec. 2.4.1.

The new possibility to produce long coherent pulse trains, or equiva-
lently, a set of precisely calibrated optical frequencies had a strong impact
on many areas of physics such as attosecond science [22], astronomy [23]
but above all the field of precision spectroscopy [24], leading, e.g., to fre-
quency measurements with up to 17 digit accuracy [25, 26]. Initially, the
FC was used as an “optical ruler” to calibrate the narrowband spectros-
copy lasers. However, only a few years later FC themselves were used to
perform direct FC spectroscopy [27, 28], which can be regarded as an ex-
tension of the Ramsey principle with multiple, simultaneous excitations
at regular time intervals. Since the FCs are typically based on pulsed
oscillators [29], this enables to perform high precision spectroscopy with
short (and therefore broadband) laser pulses.

1.2.1 More power for challenging spectroscopy targets

For many applications such as the spectroscopy on very weak transitions
or nonlinear wavelength conversion of the typically near-infrared FCs,
very high laser intensities are required, much more than what FC os-
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cillators can typically deliver. In particular, high-precision spectroscopy
in the (extreme) ultraviolet wavelength region has a wide range of ap-
plications such as searching for new forces beyond the standard model
by measuring electronic transitions in molecules [30], testing quantum
electrodynamics in He and He+ [31, 32], or paving the way for the next-
generation “nuclear” clocks [33, 34]. Consequently, there have been sub-
stantial experimental efforts for increasing the peak power of FC laser
pulses, including the amplification at full repetition rate [35, 36], ampli-
fication of a few selected pulses [37], and the employment of enhance-
ment resonators [38, 39]. With the last two methods enough peak power
has been generated for efficient high-harmonic generation of comb laser
pulses to the extreme ultraviolet wavelength region. In two pioneering
experiments, precision spectroscopy with a few MHz accuracy was per-
formed at 51 nm in He using two mJ-level amplified FC pulses [31],
and two years later at 82 nm in Ar using an enhancement resonator at
full repetition rate [40]. However, both methods have their drawbacks:
With selective amplification of two subsequent pulses only single transi-
tions could be probed and the phase of the pulses had to be constantly
monitored with high accuracy. Enhancement resonators, on the other
hand, are difficult to tune over a wide wavelength range and extraction
of upconverted light is rather inefficient. Therefore, we developed a uni-
versal and highly accurate novel form of Ramsey excitation, the “Ram-
sey comb”, which overcomes these limitations. It combines the highly
successful and easily scalable concept of Ramsey spectroscopy with the
referencing and tuning capabilities of FC lasers.

1.3 Less can be more: Ramsey-comb
spectroscopy

The Ramsey-comb method is based on the coherent amplification of se-
lected FC pulses. By picking only two pulses from the FC seed oscillator,
much higher peak powers can be reached as opposed to full repetition
rate amplification or even by employing cavity enhancement. However,
if only FC pulse pairs at fixed delays can be amplified as in [31] where
the selection was limited to two consecutive FC pulses, the method is
limited to traditional albeit high-precision Ramsey-like spectroscopy. In
particular, this means that only one isolated resonance can be recorded
at a time and the frequency determination is very sensitive to phase
shifts, e.g. during the amplification process. In [31], these phase shifts
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thus had to be constantly monitored to correct the spectroscopic signals
and together with the maximum FC pulse delay of ∼10 ns limited the
achievable accuracy.

Ramsey-comb spectroscopy circumvents these limitations by selec-
tively amplifying FC pulses at different pulse delays equal to multiples
of the FC repetition time. As a first consequence, this enables Ramsey-
like measurements with much higher accuracy because of the increased
inter-pulse delay of microseconds and more. In addition, the ability
of combining a series of Ramsey signals further enhances the versatil-
ity of the selective-amplification approach. As schematically depicted
in Fig. 1.2, multiple Ramsey-excitation signals can be combined to re-
cover not only the accuracy but also the resolution of the FC seed laser,
much as if the whole pulse train had been employed for the excitation.
However, if more than one transition is excited simultaneously, the recon-
structed spectrum will show subtle differences in the form of additional
interferences that are absent in traditional direct FC spectroscopy. For-
tunately, analyzing the complex multi-transition spectra is not necessary

Frequency comb

pulse train
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T
frep=1/T
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Time Frequency

Frequency comb
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Figure 1.2: Comparison of direct frequency comb excitation (upper part)
and Ramsey-comb excitation (lower part) when applied on a single transition;
the repetition rate of the comb laser is frep = 1/T . On the left, the excitation
pulse sequences are shown, while the corresponding spectra are sketched on the
right side.
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because in Ramsey-comb spectroscopy the characteristic temporal-phase
evolution of the excited transitions is recorded through the individual
Ramsey scans at different time delays. Based on this experimentally ro-
bust phase-evolution pattern, we developed a pure time-domain fitting
method contrary to traditional spectroscopy methods that are generally
based on fitting spectral line shapes in the frequency domain.

Another intriguing feature of the Ramsey-comb method is that con-
stant phase shifts simply drop out in the analysis. This does not only
include possible amplifier phase shifts (one of the limiting factors in [31])
but also other (transition-independent) phase shifts that are caused by
the interaction with the excitation pulses, e.g., due to the well-known
AC-Stark effect [41]. Note that the calibration of the latter one often
represents a limiting factor in high-precision direct FC spectroscopy.

1.4 Short outline of this thesis

In order to efficiently discuss the experimental and conceptual aspects
of Ramsey-comb spectroscopy, it is instructive to first recall some basic
physical concepts. Therefore, in Ch. 2 we start by introducing the the-
oretical framework to describe optical pulses, coherent pulse trains and
amplification of laser pulses in the contexts that are particularly relevant
for this thesis.

After this introduction, the thesis continues with the description of
the experimental system employed for performing Ramsey-comb spec-
troscopy starting with Ch. 3, which discusses the development of the
double-pulse pump-laser amplifier system. The amplified pump pulses
are then used to coherently amplify FC pulses in a parametric amplifier,
which is the topic of Ch. 4.

Following the characterization of the experimental system, Ch. 5 con-
tains the experimental demonstration of high-precision Ramsey-comb
spectroscopy by measuring complex two-photon spectra in atomic ru-
bidium and cesium. Along with the discussion of the spectroscopic re-
sults, the developed time-domain fitting algorithm is introduced. A com-
prehensive description of the analytical framework of the Ramsey-comb
method then follows in Ch. 6, including numerical simulation results of
the employed fitting method.

Finally, Ch. 7 provides a short outlook discussing interesting future
spectroscopy targets and suggestions for potential upgrades of the ex-
perimental system.



Chapter 2
Preliminary: Electromagnetic waves,
frequency combs and pulse amplifica-
tion

In this chapter, some physical background is discussed which is of partic-
ular importance for the research carried out in the course of this thesis.
For reasons of self-consistency, we start from the elementary level of
Maxwell’s equations but will quickly turn to more specific topics such as
the description of optical pulses and pulse trains, both in the time and
frequency domains. After introducing one of the core elements used in
the experiments, the optical frequency comb, we will briefly discuss the
amplification of laser pulses via nonlinear (parametric) interaction and
in laser gain media.

2.1 Electromagnetic waves in (non)linear media

The most basic description of electromagnetic waves is derived from
Maxwell’s fundamental equations and has been discussed extensively in
a wide range of textbooks (see, e.g., [42, 43]). Here we will restrict the
derivation to propagation in the z-direction and neglect the magnetic
field component, which leads to the differential equation:

∂2
zE(z, t)− 1

c2
∂2
tE(z, t) = 0. (2.1)

The solution to this equation are plane waves traveling with a phase
velocity equal to the vacuum velocity of light c. The expression for such
a wave of amplitude A, propagating in the positive z-direction is:

E(z, t) = Re
{
2Aei(ωt−kz)

}
= Aei(ωt−kz) + c.c., (2.2)
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undergoing oscillations in time at angular frequency ω and in space ac-
cording to the wavenumber k = ω/c. Keeping in mind that the electric
field E(z, t) must always be a real number, we will omit the complex
conjugate (c. c.) during the following derivations for reasons of compact-
ness.

When the electromagnetic radiation is surrounded by a (dielectric)
medium, the induced polarization P of the medium affects the propaga-
tion and has to be included in Eq. (2.1), resulting in:

∂2
zE(z, t)− 1

c2
∂2
tE(z, t) =

1

ϵ0c2
∂2
t P (z, t), (2.3)

where ϵ0 is the electric permittivity of the vacuum. For a linear response
to the electric field, the polarization P (z, t) is described by [43]:

P (z, t) = ϵ0

∫ t

−∞
χe(t− t′)E(z, t′)dt′, (2.4)

where χe(t) is the electric susceptibility of the medium∗. The forward-
propagating wave solution to Eq. (2.3) is still described by Eq. (2.2), but
now the wavenumber k has become a complex function of frequency:

k = k(ω) = ñ(ω)ω/c, (2.5)

depending on ñ =
√
1 + χe = n+ iκ. The real part (= n) of ñ is usually

referred to as the refractive index of the medium, while the imaginary
part (= κ) indicates amplification or loss in the medium.

In general, however, the response of the medium is not linear in the
electric field as assumed in Eq. (2.4) resulting in an intensity-dependent
electric susceptibility of the medium. For an instantaneous response, we
can expand the polarization in terms of electric field amplitude according
to:

P (z, t) = ϵ0

[
χ(1)
e E(z, t) + χ(2)

e E2(z, t) + χ(3)
e E3(z, t) + ...

]
. (2.6)

The nonlinear response of the medium leads to a variety of nonlinear
optic effects that influence the amplitude, phase and frequency of the
electromagnetic waves; comprehensive discussions of these effects can be
found in range of textbooks such as [44, 45]. As an example, we consider

∗In general, both the electric field and susceptibility are vector quantities, but
for simplicity reasons we only investigate the situation with a polarization that is
(anti-)parallel to the source field.
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the leading nonlinear contribution in an isotropic medium, χ(3), where
by definition all even order susceptibilities are zero. In that case, the
previously defined refractive index becomes [43]:

ñ =

√
1 + χ

(1)
e + χ

(3)
e |E(z, t)|2 = ñ0 + ñ2|E(z, t)|2. (2.7)

The index of refraction, Re{ñ}, is now intensity-dependent, which results
in an additional nonlinear phase of the electromagnetic wave. Other im-
portant nonlinear effects include second harmonic generation and para-
metric amplification in the form of three wave mixing (both scaling with
χ
(2)
e ), which will be discussed in more detail in Sec. 2.5. For the moment,

however, we go back to the linear optics regime in order to analyze the
effect of dispersion on the propagation of electromagnetic wave packets.

2.2 Pulse propagation in time and space

So far we exclusively considered the continuous-(plane-)wave solutions
to Eqs. (2.1) and (2.3). However, because these equations are linear, we
can write the general solution as a linear superposition of solutions with
different angular frequencies:

Et(z, t) =

∫ ∞

−∞
A(ω)ei(ωt−kz)dω =

∫ ∞

−∞
A(ω)e−ikzeiωtdω, (2.8)

with A(ω) being the weighting function of the individual frequency com-
ponents. Equation (2.8) is of the form ht(t) = 1

2π

∫ +∞
−∞ hω(ω)e

iωtdω,
which lets us identify:

Eω(z, ω) = FT {Et(z, t)} = 2πA(ω)e−ikz (2.9)

as the Fourier transform of the temporal representation of the electric
field E(z, t) (see Appendix Ch. A). We have the flexibility to choose and
quickly interchange between the time- and frequency-domain pictures
via the appropriate Fourier and inverse Fourier transforms:

Et(z, t)
FT


FT −1
Eω(ω, t). (2.10)

Having these two equivalent representations greatly simplifies the analy-
sis of various physical effects, which are typically much more straightfor-
wardly treated in one out of the two domains, frequency or time. For the
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convenience of the reader, the Appendix Ch. A provides two tables with
common Fourier transforms (Tab. A.1) and related theorems (Tab. A.2)
that have been applied in this thesis.

We make immediate use of the Fourier properties for analyzing the
influence of linear material dispersion on the spatial propagation of an
electromagnetic pulse. At z = 0, the pulse is conveniently represented
in terms of a carrier frequency ω0 and an envelope function Et(0, t):

Et(0, t) = Et(0, t)eiω0t, (2.11a)
Eω(0, ω) = Eω(0, ω − ω0). (2.11b)

In frequency domain, the decoupling of the carrier frequency simply leads
to a shift of the spectral envelope Eω(0, ω) as schematically depicted
in Fig. 2.1.

Propagation (in positive z-direction) of these initial envelopes is most
conveniently accounted for in the frequency domain:

Eω(z, ω) = Eω(0, ω)e−ikz. (2.12)

We use an inverse Fourier transform to subsequently convert to the time
domain:

Et(z, t) =
1

2π

∫ +∞

−∞
Eω(0, ω − ω0)e

−ikzeiωtdω. (2.13)

If we then expand the wave number around ω = ω0:

k(ω) = k0 + k(1)(ω − ω0) +
1

2
k(2)(ω − ω0)

2 + · · · , (2.14)

we can rewrite Eq. (2.13) as:

Et(z, t) = ei(ω0t−k0z)Et(z, t), (2.15)

Time

εt(0,t) εω(0,ω-ω0)

ω0

εω(0,ω)
carrier

Frequency0

Figure 2.1: Visualization of the concept of temporal and spectral envelopes
(Et and Eω, respectively), which are connected to each other by a Fourier
transform.
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with:

Et(z, t) =
1

2π

∫ +∞

−∞
Eω(0, ω − ω0)e

i[(ω−ω0)t−(k−k0)z]dω. (2.16)

2.2.1 Carrier-envelope phase and group velocity
dispersion

If we limit the expansion of k to its first order (see Eq. (2.14)), the
evaluation of the integral in Eq. (2.16) results in:

Et(z, t) =
1

2π

∫ +∞

−∞
Eω(0, ω − ω0)e

i(ω−ω0)(t−k(1)z)dω

= Et(0, t− k(1)z). (2.17)

We see that while the overall shape remains constant, the temporal en-
velope now travels at the group velocity vg = 1/k(1). Since vg is in
general not equal to the phase velocity vp = ω0/k0, this results in a
propagation-dependent phase offset between carrier and envelope. This
so-called carrier-envelope phase shift will be of particular importance
when discussing frequency comb lasers in Sec. 2.4.

The situation changes considerably if we include the quadratic term
in the expansion of the wave vector in Eq. (2.14). The temporal envelope
following from Eq. (2.16) then becomes:

Et(z, t) =
1

2π

∫ +∞

−∞
Eω(0, ω − ω0)e

i(ω−ω0)[t−k(1)z−k(2)z(ω−ω0)/2]dω.

(2.18)

We see that the inclusion of the quadratic term leads to a frequency-
dependent group velocity vg(ω) = 1/[k(1)+k(2)(ω−ω0)/2], which causes
the temporal envelope to broaden during propagation due to the spread
of the individual frequency components. This effect is usually referred
to as group velocity dispersion and while often undesirable can also be
employed to tailor pulse durations as we will see in the following section.
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2.2.2 A practical example: Temporal broadening of a
Gaussian pulse

It is instructive to apply the developed concepts to an analytically con-
venient and hence popular textbook example, the Gaussian pulse:

Et(0, t) = e
− 1

2

(
t
τp

)2

, (2.19a)

Eω(0, ω) = τp
√
2πe−

1
2
(ωτp)

2

. (2.19b)

One conclusion directly apparent from Eq. (2.19) is that the temporal
width of the pulse (∝τp) is inversely proportional to the width of the
frequency-domain envelope (∝ 1/τp). This inverse scaling provides the
important general insight that a short pulse requires a broad spectrum.
We will now analyze two temporal pulse broadening effects.

First, we derive the temporal envelope of an initial Gaussian pulse
which is spectrally clipped. In the experiments, this is applied to adjust
the pulse lengths from the output of the pump oscillator (see Sec. 3.1).
Analytically, the clipping is described by multiplying the spectral enve-
lope Eω(0, ω) with a window function, rect (ω/∆ω) that is 1 for |ω| < ∆ω

2
and 0 otherwise. The Fourier pair of the initially Gaussian envelopes then
reads:

Et(0, t) ⋆
[
∆ω

2π
sinc

(
t
∆ω

2π

)]

 Eω(0, ω) · rect

( ω

∆ω

)
; (2.20)

the multiplication in the frequency domain translates into a convolution
in the time domain. Figure 2.2 illustrates the spectral clipping process by
showing the spectral and temporal envelopes before and after a spectral
gate has been applied. It can be seen that apart from the anticipated
temporal broadening because of the reduced spectral bandwidth, the
spectral convolution with a sinc-function results in pre- and after-pulses
in the time domain.

Another influence that can cause the pulse to broaden in time is
group velocity dispersion as discussed in Sec. 2.2.1. Starting again with
the temporal envelope as defined in Eq. (2.19a), the integral in Eq. (2.18)
evaluates to:

Et(z, t) =
τp√

τp + ik(2)z
e
− (t−k(1)z)2

2(τ2p+ik(2)z) . (2.21)
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Figure 2.2: Simulation of the effect of spectral clipping. (a) Initial spectral
and temporal envelopes of a Gaussian pulse. (b) Envelopes after the spectral
clipping with the spectral gate indicated by the dashed line in (a).

From the real part of this expression we can derive the new pulse dura-
tion:

τ ′p(z) = τp

√
1 +

(
k(2)z/τp

)2
, (2.22)

which describes the increase in duration from its initial value τp due to
the accumulated dispersion k(2)z. Note that in the spectral domain, the
dispersion only acts on the spectral phase:

Eω(z, ω) = Eω(0, ω)e−i[k0+k(1)(ω−ω0)+
1
2
k(2)(ω−ω0)2]z (2.23)

but does not affect the spectral intensity, which is proportional to the
absolute value of Eω(z, ω).
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2.3 Pulse pairs and pulse trains

Based on the previously developed framework for describing electromag-
netic wave packets (light pulses), we will now discuss trains of N pulses,
regularly spaced in time and equal in amplitude. With the shorthands
Et(t) = Et(0, t) and Eω(ω) = Eω(0, ω) for the temporal and spectral en-
velopes of one individual pulse, respectively, and an inter-pulse delay of
T we have:

EN
t (t) = Et(t) ⋆

N−1∑
n=0

δ(t− nT ), (2.24a)

EN
ω (ω) = Eω(ω) ·

N−1∑
n=0

e−inωT . (2.24b)

The spectrum Iω can be written in the more intuitive form of:

Iω(ω) ∝|EN
ω (ω)|2

=|Eω(ω)|2 ·
∣∣einωT ∣∣2︸ ︷︷ ︸

=1

∣∣∣∣∣
N∑

n=1

e−inωT

∣∣∣∣∣
2

=|Eω(ω)|2 ·
(
e−iωT + ...+ e−iNωT

)
·
(
e+iωT + ...+ e+iNωT

)
=|Eω(ω)|2 ·

N∑
n=1

[2(N − n)cos(nTω) + 1] , (2.25)

where in the last step we expanded the two terms in brackets and sorted
out the pre-factors of the cosines (cos(x) = e−ix/2 + eix/2) of different
harmonic orders. From Eq. (2.25) we see that apart from the single-
pulse spectral envelope |Eω(ω)|2, the spectrum comprises an additional
substructure based on the superposition of cosines with spectral periods
of nωrep = n2π/T . In the case of N = 2, this simply leads to a cosine-
modulated spectrum as shown in Fig. 2.3(a,b) for different inter-pulse
delays. For N > 2, the superposition of the different harmonics causes
a characteristic spectral interference pattern with N − 2 side maxima in
between the main peaks (Fig. 2.3(c)).

In the limit of N → ∞ (i.e., an infinite train of pulses), the Fourier
transform of the time-domain comb function in Eq. (2.24a) is a comb
function in the frequency domain. Hence the substructure of the spec-
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Figure 2.3: Temporal (left column) and spectral (right column) intensities
for different pulse sequences. (a, b) Pulse pairs of different temporal spacings.
(c) Pulse train of five regularly spaced pulses. While the shape of the overall
spectral envelope (dashed line) remains constant, the spectral substructure
changes according to the number and spacings of the pulses.

trum:

Iω(ω) ∝ |Eω(ω)|2 ·

∣∣∣∣∣
∞∑
n=0

δ

(
ω − n2π

T

)∣∣∣∣∣
2

(2.26)

then also consists of a series of (theoretically) infinitesimal narrow peaks.
However, this is not yet sufficient to realize what is conventionally called
a frequency comb as we will see in the next section.
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2.4 Frequency combs

Because in general the group and phase velocities of the light pulses are
different due to dispersion, the carrier of the electromagnetic wave will
acquire a phase shift relative to the temporal envelope (cf. Sec. 2.2.1).
If this carrier-envelope phase shift ϕceo is constant from pulse to pulse,
we can incorporate ϕceo in Eq. (2.24) as follows:

EN
t (t) = Et(t) ⋆

N−1∑
n=0

δ(t− nT )e−inϕceo , (2.27a)

EN
ω (ω) = Eω(ω) ·

N−1∑
n=0

e−in(ωT+ϕceo)

= Eω(ω) ·
N−1∑
n=0

e−inT(ω+ϕceo
T ). (2.27b)

The carrier-envelope phase shift thus causes a frequency shift of the
spectral substructure of:

fceo =
ωceo

2π
=

ϕceo

2πT
. (2.28)

We swapped from angular frequencies to regular frequencies (ω = 2πf)
for reasons of convention and will continue so for the majority of this
thesis. The carrier-envelope phase shift as well as its influence on the
spectral substructure are schematically depicted in Fig. 2.4. For obvious
reasons, the spectral features are usually referred to as ”comb modes“.
With the repetition rate frep = 1/T , the expression for the ”mth“ comb
mode is:

fm = fceo +mfrep. (2.29)

The spectral position of the comb lines is, therefore, fully determined
by the pulse-to-pulse spacing T = 1/frep and the carrier-envelope phase
shift via fceo according to Eq. (2.28). In the next section we will dis-
cuss how these two parameters can be controlled in practice in order to
create an optical ruler with precisely calibrated frequencies, an optical
frequency comb.
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Figure 2.4: An infinite, coherent train of optical pulses spaced by a delay
time T (upper part) is equivalent to a spectrum of equidistant infinitesimal
narrow comb modes (lower part). A potential pulse-to-pulse phase shift ϕceo

transforms into the carrier-envelope offset frequency fceo.

2.4.1 On the technical realization of optical frequency
combs

The prerequisite for an optical frequency comb is a regular train of short
optical pulses, which are routinely produced by mode-locked laser oscil-
lators (see, e.g., [46, 47]). For typical resonator lengths of about 1 m,
the repetition rate of the emitted pulse train is in the order of 100 MHz
and can be measured with a standard photodiode. Furthermore, frep
can be compared to a local radio-frequency (RF) oscillator and straight-
forwardly be stabilized via feedback on the resonator length.

However, fixing the second parameter of the comb Eq. (2.29), i.e.,
the carrier-envelope frequency fceo, had not been possible for a long
time. Because the optical carrier frequency is extremely high (in the
order of 500 THz) as compared to convenient RF frequencies, a direct
measurement with, e.g., a photodiode is far out of reach. Fortunately,
this problem has been solved by the technique of self-referencing [14, 15].
In the standard ”f-2f“-implementation, the low frequency part of the pulse
spectrum is upconverted via sum-frequency-mixing (SFM):

fm = mfrep + fceo ⇒
SFM

fm′ = m′frep + 2fceo. (2.30)

The upconverted light is then mixed with the high frequency part of the
spectrum by combining them on a single photodiode. The resulting beat
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signal will contain the difference frequency:

fbeat =
(
2fceo +m′frep

)
− (fceo +mfrep)

= fceo + (m′ −m)frep. (2.31)

If the pulse spectrum covers a full octave, (m′ −m) = 0, 1, 2, ... and the
signal will contain the carrier-envelope frequency fceo ≤ frep. By the
use of appropriate low-pass filters one can isolate fceo and compare it
to a local (RF) oscillator similar to referencing the repetition rate frep.
Feedback on fceo is possible via different means but most commonly
done via small changes of the intra-cavity intensity, e.g., by modulating
the pump laser power. The slight change of the intra-cavity laser pulse
intensity induces a change of the nonlinear refractive index according
to Eq. (2.7), which affects the phase and group velocity of the pulse by
different amounts and thus induces a change of fceo.

Although octave spanning spectra directly from the oscillator have
been demonstrated [48] and are nowadays even commercially available,
such a broadband operation is technically challenging as it requires a
carefully tuned intra-cavity dispersion. Still the most common approach
for getting sufficient spectral coverage is to employ nonlinear effects such
as self-phase modulation and frequency mixing to spectrally broaden
the oscillator output. This is possible because mode-locked lasers can
straightforwardly produce ultrashort pulses ≪1 ps, enabling high pulse
intensities to efficiently drive these nonlinear processes. However, in bulk
nonlinear materials such short pulses typically broaden very quickly due
to material dispersion. The advent of group velocity-tailored micro-
structured photonic fibers [49–51] solved this problem. Using these
fibers, the peak intensity of the laser pulses can be maintained over suf-
ficient interaction lengths to perform the required spectral broadening.
With this tool, the first fully stabilized optical frequency combs were re-
alized simultaneously in the groups of John L. Hall [14] and Theodor W.
Hänsch [15], who were awarded part of the 2005 Nobel prize in physics
for their pioneering work [20, 21].

2.5 Phase-coherent optical parametric
amplification

In this section we discuss in more detail one particular nonlinear effect,
optical parametric amplification (OPA). The technique of OPA is par-
ticularly interesting for the amplification of frequency comb pulses as it



2.5 Phase-coherent optical parametric amplification 19

has been shown that the temporal coherence of the seed pulses can be
preserved during the amplification process [52–55].

The basic principle of OPA is simple: A high-intensity, high-frequency
pump beam (angular frequency ωp) amplifies a lower-frequency signal
beam (ωs). During the amplification process, a third so-called idler
beam (ωi) is created that satisfies energy conservation together with the
two other beams:

ωp = ωs + ωi. (2.32)

This conversion of photons of different frequencies is based on the com-
bined nonlinear response of pump, signal and idler beam in a nonlinear
medium (with a nonzero χ

(2)
e , cf. Sec. 2.1). For example, the pump and

signal beam will induce a combined nonlinear polarization according to
(see, e.g., [56], assuming an instantaneous process and limiting ourselves
to one spatial coordinate):

P = ϵ0χ
(2)
e Ep(z, t)E

∗
s (z, t). (2.33)

Taking into account the different contributions, the full (temporal) pulse
propagation of the envelopes of pump, signal and idler beams can be
described by a set of coupled-wave equations (see, e.g., [57, 58]; we
temporarily refrain from the use of the subscript “t” for the temporal
envelope for reasons of readability):

∂zEs +
∞∑
n=1

(−i)n+1

n!
k(n)∂n

t Es = −iχ(2)
e

ωs

2nsc
EpE∗

i e
−iz∆k, (2.34a)

∂zEi +
∞∑
n=1

(−i)n+1

n!
k(n)∂n

t Ei = −iχ(2)
e

ωi

2nic
EpE∗

s e
−iz∆k, (2.34b)

∂zEp +
∞∑
n=1

(−i)n+1

n!
k(n)∂n

t Ep = −iχ(2)
e

ωp

2npc
EsE∗

i e
iz∆k. (2.34c)

Here the so-called slowly-varying envelope approximation (∂zE ≪ 2k∂zE)
was used and we introduced the wave-vector mismatch

∆k = |∆k| = |kp − ks − ki|; (2.35)

in the ideal case, the nonlinear amplification process is perfectly phase-
matched and hence ∆k = 0. A complete analytical treatment of the
coupled equations is mathematically challenging, but we can derive an
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insightful expression for the small signal gain (i.e., the pump intensity
Ip ∝ |Ep|2 is assumed to be constant) under certain assumptions: If we
neglect dispersion (the temporal derivations in Eq. (2.34)) and assume
the initial absence of an idler beam, the signal intensity after travelling
through a nonlinear medium of length L can be written as [57]:

Iout = Iincosh2(gL) (2.36)

with Iin being the initial intensity of the seed beam and:

g =

√√√√(χ(2)
e

)2
ωsωi

2ϵ0c3npnsni
Ip −

(
∆k

2

)2

. (2.37)

In the large gain approximation (gL ≫ 1), the small signal gain factor
G0 = Iout/Iin is:

G0 ≈
1

4
e2gL. (2.38)

Because of the exponential scaling, gains in the order of 104 can be
reached for pump intensities of a few GW/cm2 and a few mm propagation
in a nonlinear crystal with a high χ

(2)
e such as β−BaB2O4 (BBO).

In general, ∆k is nonzero because of material dispersion, and the
gain is reduced according to Eq. (2.37). However, by exploiting the bire-
fringence of BBO and introducing a small finite angle between signal and
pump beam, one can minimize ∆k. By using this non-collinear optical
parametric (NOPA) scheme, a bandwidth of a few hundred nanometers
can be efficiently phase-matched [59].

In addition to limiting the achievable gain in the parametric am-
plification process, ∆k also has a direct influence on the phase of the
amplified signal beam. This is of particular importance when OPA is
employed for amplifying frequency comb pulses as performed in this the-
sis. If we again neglect dispersion and rewrite the pulse envelopes in a
polar form according to Em(z, t) = ρm(z, t)e−iϕm(z,t) (m = s, p, i), we
can obtain the following coupled equations governing the phase evolution
during the OPA process from the imaginary part of Eq. (2.34) [59]:

∂zϕs = −χ(2)
e

ωs

2nsc

ρiρp
ρs

cos(ζ), (2.39a)

∂zϕi = −χ(2)
e

ωi

2nic

ρsρp
ρi

cos(ζ), (2.39b)

∂zϕp = −χ(2)
e

ωp

2npc

ρsρi
ρp

cos(ζ), (2.39c)
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with ζ = ∆kz + ϕp − ϕs − ϕi. These equations can straightforwardly
be solved by assuming an initially zero idler field and using the Manley-
Rowe relation [59, 60]:

ϕs =ϕs(0)−
∆k

2

∫ L

0

fD
fD + γ2

dz, (2.40a)

ϕi =ϕp(0)− ϕs(0) +
π

2
− L∆k

2
, (2.40b)

ϕp =ϕp(0)−
∆k

2

∫ L

0

fD
1− fD

dz, (2.40c)

where we introduced γ2 =
ωpIs(0)
ωsIp(0)

and the fractional pump depletion:

fD = 1− Ip(z)

Ip(0)
. (2.41)

A number of interesting conclusions can be drawn from Eq. (2.40). First
of all, the phase of the signal pulse is independent of the phase of the
pump pulse. In particular, this means that a coherent amplification
of frequency comb pulses via OPA does not require a coherent pump
pulse pair. However, what does influence the signal phase is the pump
intensity via the fractional pump depletion fD. Depending on the pump
depletion level and thus depending on the propagated distance in the
nonlinear crystal, the signal phase undergoes a phase shift proportional
to the wave-vector mismatch ∆k. Further discussion and quantization
of the signal phase shifts cover a main part of Ch. 4 in this thesis.

Note that in order to obtain the analytical results for both the OPA
gain and OPA phase influence, the dispersion terms in Eq. (2.34) were
neglected. While there is no general analytical solution to the complete
set of equations, further insight can be gained via numerical solutions
which is discussed in the following section.

2.5.1 Numerical solutions to the coupled-wave equations

Most of the complexity of the time-domain Eq. (2.34) arises from the
complicated dispersion terms

∑∞
n=1

(−i)n+1

n! k(n)∂n
t . In the frequency do-

main, however, the dispersion simply manifests itself in the form of a
spectral phase shift of kz = n(ω)ωc according to Eq. (2.12). Because
the remaining part of Eq. (2.34) is preferably calculated in the time do-
main, this suggests the use of a Split-Step Fourier approach that changes
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back and forth between the time and frequency domains with the use
of Fourier transforms: First, the total crystal length L is divided into
a number of subsections of length δL. For each section, one calculates
subsequently either the accumulated dispersion in the frequency domain
or the nonlinear interaction (the influence of the nonlinear polarization
induced by the fields) in the time domain. For the time-domain step, this
requires the simultaneous integration of the coupled integral equations,
which can be done by employing a fourth-order Runge-Kutta integration
routine [61]. If the number of sections L/δL is chosen sufficiently large
(which can be cross-checked by further increasing L/δL without causing
significant changes of the result), this step-by-step algorithm provides a
good approximation to the analytical problem.

For this thesis, a program written by S. Witte [58] in Python [62]
was adapted to model the parameters of the experimental setup. The
results, in particular the influence of certain experimental parameters
onto the amplified signal phase, are discussed in detail in the context of
the experimental phase measurements of the amplified frequency comb
pulses in Ch. 4.

2.6 Amplification in laser gain media

In the previous section, we discussed the physics of optical parametric
amplification (OPA), which can be employed to phase-coherently amplify
optical frequency combs. In order to drive the OPA process, high-energy
pump pulses are required that need to be created via amplification in a
laser amplifier. Therefore, we first briefly review the physical processes
describing the amplification of a short (<1 ns) laser pulse as can be found
in various textbooks (see, e.g., [46, 47, 63]). Subsequently, we apply the
basic theory to the special case of grazing-incidence amplifiers, which are
employed in the pre-amplifier for the laser system described in Ch. 3.

2.6.1 Gain and saturation in short-pulse amplification

In a four-level system, as it is, e.g., the case for the Nd-doped laser
amplifier media used in the experimental setup, the change in the popu-
lation inversion n due to a pulse of a certain photon density ξ (number
of photons per volume) is [63]:

∂tn = −ncσeξ, (2.42)
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where σe is the emission cross section of the laser medium and c is the
speed of light. Thanks to the stimulated emission, ξ increases while
travelling in the amplifier proportional to cnσeξ. To calculate the net
change in photon density, we have to subtract the photons flowing out of
the considered amplifier region (while the pulse is travelling in positive
z-direction):

∂tξ = cnσeξ − c∂zξ. (2.43)

This time-dependent transport equation can be solved for various types
of input pulse shapes. For a square pulse of duration τp and an initial
photon density ξ0, the solution as presented by Frantz and Nodvik is [64]:

ξ(z, t)

ξ0
=

1

1− (1− e−σenz) e−σeξ0c(t−z/c)
. (2.44)

We can rewrite this equation with the help of more intuitive laser pa-
rameters: the fluence of the input (seed) laser pulse Fin = cτpξ0hfL and
the saturation level of the medium Fsat = hfL/σe; fL is the frequency
of the laser transition and h is Planck’s constant. Writing further the
small signal gain factor of a laser medium of length L as G0 = enσeL,
the amplifier gain G is obtained from Eq. (2.44) as [63]:

G =
Fsat

Fin
ln
[
1 +

(
eFin/Fsat − 1

)
G0

]
, (2.45)

from which the signal fluence after the amplifier can be calculated as
Fout = FinG. Equation (2.45) describes the gain from the laser medium
including saturation effects, which become significant when the amplified
signal fluence gets comparable to the saturation fluence of the medium,
Fsat. In the case of low seed fluence (G0Fin/Fsat ≪ 1), the gain depends
exponentially on the amplifier length:

G ≈ G0 = enσeL, (2.46)

while in the case of strong saturation (Fin/Fsat ≫ 1) a linear dependence
can be found:

G ≈ 1 + Fsat/FinnσeL. (2.47)

Saturating the amplifier obviously results in a lower gain. This regime
is nevertheless desirable for efficient energy extraction, i.e., converting
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the majority of stored pump energy into signal pulse energy. In addi-
tion, a saturated amplifier also helps to reduce energy fluctuations of
the amplified signal pulse energy. As shown in [43], this can be seen by
differentiating Fout = GFin with respect to Fin and relating the relative
fluctuations of the output (∆Fout/Fout) and input fluences (∆Fin/Fin)
to define the damping factor:

DF =
∆Fout/Fout

∆Fin/Fin
=

G0e
Fin/Fsat

1 +
(
eFin/Fout − 1

)
G0

· 1

G
. (2.48)

In the case of strong saturation, DF ≈ 1/G and hence the stability of
the amplified pulse energy is enhanced accordingly. While the extraction
efficiency and the stability benefit from operating the amplifier in the
saturation regime, there are a range of other, less desired effects such
as spectral and temporal gain shaping, which will be discussed in Ch. 3
together with the technical description of the amplifier system.

2.6.2 Grazing-incidence amplifiers

A special type of laser amplifiers are grazing-incidence (”bounce“) am-
plifiers, pioneered by Alcock et al. [65]. Because of their potential high
gain, bounce amplifiers can be set up in compact single- or double-pass
configurations enabling short optical paths in the amplifier. As opposed
to regenerative or multipass amplifiers, which often exhibit long internal
path lengths, this allows the amplification of short pulse sequences with-
out interference of the pulses within the amplifier. This feature makes
bounce amplifiers particularly attractive for Ramsey-comb spectroscopy,
which requires equally amplified pulse sequences at variable delays. The
geometry of such an amplifier is schematically depicted in Fig. 2.5(a). As
the name suggests, the signal beam travels in the crystal under a shal-
low angle and undergoes a total internal reflection halfway on its path
through the crystal. This geometry has two main advantages. First,
the signal beam can travel very close to the side of the crystal facing
the pump beam as seen in Fig. 2.5(a). Second, the effective gain in the
plane of the pump and signal beams is averaged over the inhomogeneous
pumping region caused by the one-sided pumping scheme. In order to
gain further insights of the amplification process for this particular ge-
ometry, we introduce an analytic model based on the work of Agnesi et
al. [66] to calculate the gain coefficient G.

The mathematical model is considerably simplified by making use
of a local coordinate system (a,b) as defined in Fig. 2.5(b); for small
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Figure 2.5: (a) Schematic of the side-pumped, grazing-incidence “bounce”
amplifier geometry. (b) Sketch of the different coordinate systems used to
model the propagation in the amplifier.

grazing angles, tan(ϵ) ≈ ϵ, and the x-coordinate can be expressed as
x(a, b) = ϵL/2−aϵ+b. In order to calculate the signal intensity after the
amplifier Iout (the output fluence divided by its pulse duration, assuming
a square pulse shape) analogously to Eq. (2.42), we write the population
inversion density as:

n(x, y) =
Wp(x, y)τ

1 + Is(b, y)/Isat
, (2.49)

with the lifetime of the upper laser state τ , the saturation intensity
Isat = Fsat/τ , and the pump rate:

Wp(x, y) = η
αp

HL

Pe−αpx

hfL
ΘH(y). (2.50)

The pump rate is assumed to be constant in the vertical direction over
the pump sheet of length L and height H (ΘH(y) = 1 for |y| < H/2, and
0 otherwise), and depends on the absorbed pump power P , the quantum
efficiency η = fL/fp (fp is the center frequency of the pump light) and
the saturated absorption coefficient:

αp =
αp,0

1 + Ip/Ip,sat
, (2.51)

which in turn depends on the incident pump pulse intensity Ip = P/(HL)
and the pump pulse saturation intensity Ip,sat = hfp/(σaτ); σa is the
absorption cross section of the laser medium at fp. We can calculate the
amplifier gain from solving the differential propagation equation:

∂bIout(b, y) = σen(x, y)Iout(b, y) (2.52)

to obtain [66]:

ln
[
Iout(b, y)

Iin(b, y)

]
+

Iout(b, y)− Iin(b, y)

Isat
= η

αpP

HLIsat
ρ(b) (2.53)
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with:

ρ(b) =
2

ϵαp

[
1− cosh(bαp)e

−αpϵL/2
]
. (2.54)

To further simplify this expression, we eliminate the b-dependence of
Eq. (2.53) by assuming an average, constant gain over the horizontal
diameter of the seed beam ds:

ρ̄ =
2

ds

∫ ds/2

0
ρ(b)db =

2

ϵαp

[
1− 2

dsαp
sinh(dsαp/2)e

−αpϵL/2

]
. (2.55)

Assuming a finite duration of the pump pulse τpump (in the experiments,
the amplifier was pumped quasi-continuously), we arrive at a compact
expression for the amplified signal intensity:

ln
(
Iout
Iin

)
+

Iout − Iin
Isat

= ln(G0) (2.56)

with:

ln(G0) = η
αpP

IsatHL

(
1− e−τpump/τ

)
ρ̄. (2.57)

The small signal gain coefficient G0 can then be used in conjunction
with Eq. (2.45) to estimate the output fluence after the grazing-incidence
amplifier, which is employed in Sec. 3.2 to analyze the experimentally
obtained gain from the developed pre-amplifier.



Chapter 3
The double-pulse pump amplifier system

The main experimental work in the course of this thesis consisted of the
development of a new laser system capable of producing high-energetic
frequency comb pulse pairs at different delays. In order to drive the para-
metric amplification process, this requires even higher-energy, picosec-
ond pump pulse pairs, whose inter-pulse delay can be changed quickly
on a time scale stretching from nano- to microseconds. In addition, the
pump pulses of different delays should travel the same optical path in the
amplifier to minimize wavefront deviations while the delay is changed.
The outline of this technical chapter describing the development of the
double-pulse pump laser system is sketched in Fig. 3.1. First, the home-
built Nd:YVO4 master oscillator is described in Sec. 3.1. After tempo-
ral selection using programmable pulse pickers, the pulse pairs are first
amplified in a pre-amplifier based on ultrahigh-gain grazing-incidence
Nd:YVO4 slabs (Secs. 3.2 and 3.3), and then seeded into a Nd:YAG
post-amplifier to further increase the energy of the pulse pairs to the
100 millijoule-level as described in Sec. 3.4.

Pulse picking, 

pre-amplifier I
Pre-amplifier II Post-amplifierMaster oscillator

Section 3.1

10 nJ 100 μJ 1 mJ 100 mJ

Section 3.2 Section 3.3 Section 3.4

Figure 3.1: Outline of this chapter, indicating the different stages of the
pump laser system and the characteristic pulse-energy levels.
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3.1 The master oscillator of the pump laser

Passively mode-locked oscillators emitting picosecond pulses around a
center wavelength of 1064 nm and multiple watts of average power are
available from a range of companies (see, e.g., [67, 68]). However, these
commercial products typically have a very limited tuning range of the
cavity length and, therefore, do not allow for significant changes of the
repetition rate frep. Therefore we chose to build the master pump os-
cillator ourselves, including convenient feedback mechanisms for short-
and long-term stabilization of frep.

3.1.1 Laser gain material and diode pumping

Considering potential gain materials, the choice was limited to materials
compatible to the 1064 nm emission line of Nd:YAG, the preferred ma-
terial for the post-amplifier (see Sec. 3.4). This constraint and its high
emission cross section as compared to Nd:YAG itself make Nd-doped
vanadate (Nd:YVO4) the preferred choice for the gain medium. While
Nd:YVO4 absorbs most strongly around 808 nm, pumping with 880 nm
light had been identified already some time ago as an attractive alterna-
tive, because the somewhat lower absorption cross section is well-traded
for a reduction of thermal issues in the crystal [69]. However, mainly
due to the lack of suitable pump diodes, mode-locked vanadate oscilla-
tors pumped at 880 nm have only recently been reported [70]. The pre-
sented oscillator is pumped by a fiber-coupled pump diode from Jenoptik
(JOLD-30-CPXF-1L), delivering up to 30 Watts of 880 nm pump light
through a 400 µm core-diameter pump fiber. The pump-light imaging
system is shown in Fig. 3.2. A one-to-one telescope comprising two
25 mm focal-length plano-convex lenses images the end face of the pump
fiber a few mm deep into the laser crystal. Because the absorption in the
Nd:YVO4 crystal is polarization dependent, a quarter-wave plate and a
half-wave plate are placed in the collimated beam section between the
two lenses in order to adjust the pump light polarization for optimum
absorption. All these pump delivery optics are mounted on a single trans-
lation stage together with the pump fiber ferrule so that the exact focus
position in the crystal can conveniently be adjusted. The 3x3x8mm3

Nd:YVO4 crystal (CASTECH Inc.) incorporated a 0.5 at.% Nd-dopant
concentration so that the absorption length for the pump light is smaller
than the crystal length. Both end faces of the crystal are anti-reflection
coated for the 880 nm pump light and slightly wedged (1.5◦) to suppress
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Figure 3.2: Schematic of the home-built Nd:YVO4 master oscillator for
the pump laser. F = 25 mm (focal length), QP: quarter-wave plate, HP: half-
wave plate, PZT: single-stack piezo transducer, M1: dichroic plane mirror,
M2 = -80 cm (radius of curvature), M3: thin, plane mirror, M4 = -100 cm
(radius of curvature).

etalon effects. In addition, the end face of the crystal facing the pump
beam is coated for partial reflection (90%) of the laser light at 1064 nm,
thus acting as one of the cavity end mirrors and as the output coupler
of the laser cavity; the opposite crystal end face is coated for maxi-
mum transmission at 1064 nm. The crystal is wrapped in indium foil
and mounted in a water-cooled copper mount, temperature-stabilized to
around 18◦C.

3.1.2 The laser cavity

The laser cavity, as sketched in Fig. 3.2, effectively consists of a telescope
between two plane end mirrors. One of the end mirrors is the partially
reflection-coated face of the Nd:YVO4 crystal, the other end mirror is
the saturable absorber mirror (SAM) from BATOP GmbH with a modu-
lation depth of 1.2% and a relaxation time of 10 ps. The SAM facilitates
the passive mode-locking of the oscillator by providing higher losses for
lower laser intensities (see, e.g., [46, 47] for further details concerning
the operation principles of pulsed lasers). The size of the beam width∗

on these end mirrors can be estimated from so-called ABCD-matrix cal-
culations [47], which enable to simulate the propagation of laser beams
through optical elements. For the target value of frep = 125 MHz, a sta-
ble cavity configuration is suggested from these simulations (see Fig. 3.3)
by choosing distances of 245 mm between the crystal face and mirror M2,
635 mm between M2 and M3, and 320 mm between M3 and the saturable

∗The beam width w is defined as the radial distance for when the intensity of
a Gaussian laser beam has dropped to 1/e2 of its peak value. It relates to the full
width at half maximum (FWHM) according to 2ln(2)w2 = FWHM2.
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Figure 3.3: Simulation of the laser beam width through propagation in the
oscillator. Starting from the plane crystal surface, first the thermal lensing
(fth= 40 cm) and subsequently the two curved cavity mirrors are modeled as
lenses. The plane saturable absorber imposes again the constraint of a plane
wavefront.

absorber end mirror. At the crystal end face, these distances lead to a
plane wavefront with a full width at half maximum (FWHM) intensity
width of 245 µm, well within the pump beam with a diameter of about
400 µm. At the position of the SAM, the FWHM of the beam is expected
to be 265 µm. For a typical intra-cavity power of 50 W and pulsed op-
eration, the resulting peak fluence of 725 µJ/cm2 is about an order of
magnitude higher than the specified saturation fluence of the SAM of
70 µJ/cm2 but remains well below its damage threshold of 3 mJ/cm2.

Starting from these initial parameters, the aligned laser exhibits
continuous-wave (CW) lasing for pump powers <1 W. First mode-locking
(with a Q-switch envelope) is typically seen starting from pump powers
around 19 W, while for powers above 23 W stable CW mode-locking
can be achieved. For a pump power of 25 W, the laser emits more than
5 W of average power with a pulse-to-pulse energy stability of about
0.6% rms measured over tens of minutes. Further details concerning the
pulse duration, shape and spectrum are discussed in conjunction with
the description of the pre-amplifier in Secs. 3.2 and 3.3.

3.1.3 Repetition-rate control

In order to coarsely adjust the repetition rate, the curved mirror before
the SAM (i.e., mirror M4 in Fig. 3.2) is placed on a translation stage,
which allows straightforward changes of frep of ±3 MHz with minor
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realignment of the cavity end mirrors. The stabilization of a certain
repetition rate to a stable, radio-frequency local oscillator is performed
via small cavity lengths adjustments (in the order of 1 µm) by cavity
mirror M3 that is glued onto a single-stack piezo transducer (PZT, from
Physik Instrumente GmbH). The PZT in turn is glued onto a heavy
counterweight consisting of a copper cone filled with lead [71]. Because
of the limited range of the PZT, thermal drifts of the cavity length
require an additional coarse but not necessarily fast feedback mechanism
of the cavity length. This is accomplished by applying feedback via
the temperature of the water-cooled baseplate of the oscillator, which is
adjusted automatically (via a small computer program) as soon as the
continuously monitored voltage of the PZT approaches its lower or upper
limit.

3.2 Tailored pulse sequences from an 880 nm
pumped Nd:YVO4 bounce amplifier

In this section, we discuss an 880 nm quasi-continuously pumped grazing-
incidence Nd:YVO4 “bounce” amplifier, operating at 300 Hz repetition
rate. More than 70 dB small signal gain is achieved with a single crystal.
Combined with fast programmable modulators, high-contrast and near-
diffraction limited pulse sequences at the 100 µJ-level are produced that
can be tailored in terms of pulse duration, amplitude, and a temporal
spacing well into the microsecond range.

3.2.1 Introduction

A rising number of research groups have developed TW peak power,
ultrafast optical parametric chirped-pulse amplifier systems given their
considerable potential in fields such as attoscience and high-energy phy-
sics (see, e.g., [72–74]). Recently we have shown that such a system is
also well suited to perform frequency comb metrology in the extreme ul-
traviolet by amplifying and upconverting two consecutive pulses from a
near-infrared frequency comb laser [31]. This approach requires a care-
fully synchronized pump pulse for each frequency comb pulse that is
amplified in the parametric amplifier. Up to now, these have been gen-
erated by applying beam splitters and a fixed delay line in the pump
laser. Here we present a more versatile and general approach using an
ultrahigh-gain amplifier combined with fast modulators. The system em-
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ploys a grazing-incidence “bounce” amplifier based on Nd3+-doped gain
material (Nd:YVO4), which benefits in particular from high-peak-power
QCW diode pumping [65]. Hundreds of µJ of amplified pulse ener-
gies have been reported for picosecond pulses with small signal gains
of around 40 dB and 60 dB for single- and double-slab modules, re-
spectively [66]. To the best of our knowledge, all reported Nd3+-doped
bounce amplifiers so far (see, e.g., [65, 66, 75–77]) have been pumped
by 808 nm light, although direct pumping in the upperband laser level
at 880 nm would lead to higher quantum efficiency and lower thermal
distortion [69].

Here we present the first Nd:YVO4 bounce amplifier that takes ad-
vantage of an 880 nm pumping scheme. Together with spectral clipping
and the combination of fast electro-optical and high-contrast acousto-
optical modulators, the system produces near-diffraction limited pulse
sequences with widely tunable timings, intensities and pulse lengths.

3.2.2 Experimental setup

Figure 3.4 shows a simplified sketch of the experimental setup. The
master oscillator is the home-built high-power Nd:YVO4 laser described
in Sec. 3.1, mode-locked with a semiconductor saturable absorber mir-
ror and pumped with 24 W at 880 nm. It provides 0.25 nm spectral
bandwidth in a 126 MHz pulse train with 5 W average output power.

A slit on a translation stage close to the Fourier plane of a 4f-grating
system is used for spectral selection. Because of the high-power mas-
ter oscillator and overall efficiency of 60% of the grating system, more
than 90% of the spectral power can be clipped while still obtaining suf-
ficient seeding energy (&10 pJ) for the amplifier. Hence a great flexibil-
ity in terms of amplified bandwidth and center wavelength is achieved,
and the system supports Gaussian-shaped pulses as short as 12 ps (full
bandwidth) to about 100 ps (10 pJ seeding energy). For the presented
measurements, the spectral clipping is set to transmit ∆λ . 0.05 nm
(resolution-limited by the optical spectrum analyzer) at the peak of the
amplifier emission spectrum. This results in a 59 ps Gaussian-shaped
pulse, which is equal to the typical pump pulse length employed in our
parametric amplifier system [31]. The returning beam is extracted via
the rejection port of the optical isolator and coupled into a single-mode
fiber.

In order to select individual pulses from the 126 MHz oscillator pulse
train, a fast electro-optical switch is needed. Suitable bulk Pockels cells
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Figure 3.4: Schematic of the experimental setup. PD: photodiode, IS:
optical isolator, TGR: transmission grating (1680 lines/mm), SMF: single-mode
fiber, AOM: acousto-optical modulator, PC: polarization controller, PM-SMF,
polarization-maintaining single-mode fiber, EOM: electro-optical modulator,
F1 = 30 cm (focal length), F2 = 75 cm, F3 = 60 cm, HWP: half-wave plate,
CYL: cylindrical lens, focal length f = 25 mm, LD: laser diode. The inset shows
an oscilloscope trace illustrating the amplified pulse contrast.

require electrical pulses of a few kV and are limited to repetition rates
at the kHz-level. For the implemented fiber-coupled EOM (AM 1060
HF, Jenoptik), less than 3 V is needed. Hence, it can be controlled by
combining different output channels from a commercial delay generator
(DG645, Stanford Research Systems) providing full and programmable
control over the picked pulse sequences in terms of amplitude and timing.
In order to improve the extinction ratio of 33 dB of the fast EOM, it is
augmented with a slower, 30 ns rise time fiber-coupled AOM (T-M150-
0.4, Gooch and Housego). This combination provides an extinction ratio
of more than 90 dB for pulses outside of both picking gates and introduce
losses of 10 dB.

The amplifier medium consists of a single 5◦-wedged, 1 at.%-doped
2x4x20 mm3 Nd:YVO4 crystal. It is anti-reflection coated for 880 nm at
the pump surface and for 1064 nm at the entrance and exit sides. The
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crystal is pumped at a repetition rate of 300 Hz by 130 µs long pulses
from a fast axis-collimated 170 W peak power QCW 880 nm linear diode
array. A half-wave plate is used to rotate the polarization of the pump
diode parallel to the c-axis of the Nd:YVO4 crystal and a 25 mm focal
length cylindrical lens is used to obtain a gain region height of 0.6 mm.
The seed beam diameter and internal grazing angle of 0.34 mm and
2.8◦ are increased to 0.41 mm and 3.4◦ from the first to the second
pass, respectively. The triangular-shaped delay arm between the passes
allows the incorporation of a low-power isolator that prevents backwards
selfseeding from the amplifier.

3.2.3 Amplifier performance and modeling

In Fig. 3.5(a), the extracted pulse energy for a single seed pulse is shown
for single- and double-pass operation (including the losses of the isolator
after the first pass). At 62 pJ seed energy, a maximum of 182 µJ could
be extracted corresponding to a saturated gain of 65 dB. For low seed
energy, the unsaturated small signal gain exceeded 70 dB. The unseeded
average power of the ASE is less than 4% of the seeded output power.

We adapted the model developed by Agnesi et al. [78] to simulate the
expected gain for our amplifier configuration. The model approximates
the pump and signal beam geometry and calculates the gain according to
the Franz-Nodvik amplifier theory [64]. As an extension, we incorporated
the depletion of the gain of the individual amplifier stages due to ASE.
According to [43], ASE reduces the small signal gain coefficient g0 to:

g(L) =
g0
L

∫ L

0

Fp/FASE(0)− exp[g(z)]

Fp/FASE(0) + exp[g(z)]
dz (3.1)

where L is the length of the pumped region in the crystal and Fp is the
pump fluence. The fluence of ASE at L = 0 is estimated as:

FASE(0) =
ηF∆Ω~ωASE

4σASET
(3.2)

and depends on the fluorescence quantum yield ηF , the solid angle ∆Ω
from the exit to the entrance area of the gain sheet and on the fluores-
cence lifetime and cross section, T and σASE , respectively. The ratio
Fp/FASE(0) (∼39 dB in the present setup) represents the ultimate limit
of small signal gain for a single pass due to ASE depletion.

Apart from the assumed pump saturation intensity of the crystal of
Ip,sat = 5.2 kW, which was derived from the absorption measurements
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Figure 3.5: Extracted pulse energy from the amplifier versus seed energy.
(a) Single pulse in single and double-pass configuration. (b) Achieved double-
pass gain factors for a pulse pair (32 ns spacing).

at 880 nm in [79] and scaled by the emission bandwidth of the pump
diode, the biggest uncertainty in the simulation results stems from the
uncertainty of the stimulated emission cross section σe of Nd:YVO4 at
1064 nm. Recently published values of σe range from 1.14×10-20 cm2 [80]
to 1.44 × 10-20 cm2 [81]. A good agreement between our experimental
data and the theoretical model was achieved for an emission cross section
of σe = 1.10× 10-20 cm2. A slight underestimation of σe can be due to
intrinsic model approximations and imperfect beam matching of pump
and seed light. Excluding the ASE depletion of the gain in the model
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results in an underestimation of σe of about 10% or an overestimation
of the small signal gain by a factor of ten.

While Fig. 3.5(a) describes single pulse operation, Fig. 3.5(b) visu-
alizes how the gain decreases for a second, slightly delayed pulse due to
gain depletion of the first pulse. The pulse pair was created by com-
bining two individual output channels from the delay generator as the
input signal for the EOM. Hence the amplitude ratio of the two pulses
can be freely adjusted and for seed energies of the first and second pulse
of about 30 pJ and 60 pJ, respectively, two equally energetic pulses of
about 100 µJ were obtained. The spacing between the two pulses can
be changed by multiples of the pulse separation of the master oscillator
as shown in Fig. 3.6(a-c) for different pulse delays. The energy of both
pulses fluctuated by less than 1% rms due to saturation in the amplifier.
The pulse train shown in Fig. 3.6(d) was realized by picking 5 pulses of

Time [µs]

Time [ns]

Time [ns]

Time [ns]

A
m

p
l. 

p
u

ls
e

 e
n

e
rg

y
 [

µ
J]

100
80

7050

60

30 60

40

40

20

10 20
0

0

705030 604010 200

1000400 8006002000

10 124 8620

100
80
60
40
20

0

100
80
60
40
20

0

100
80
60
40
20

0

(a)

(b)

(c)

(d)

Figure 3.6: Oscilloscope traces of pre-compensated pulse pairs with spacing
of (a) 8 ns, (b) 56 ns and (c) 1009 ns; (d) shows an uncompensated pulse train
with 2.7 µs spacing.
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equal seeding energy of 23 pJ. By combining more individual outputs
from the delay generator (or external modulation of the voltage pulse),
one can straightforwardly tailor such sequences of MW peak power pulses
in terms of spacing and amplitude.

Thanks to the low average thermal load on the amplifier crystal (ow-
ing to QCW pumping at 880 nm), the beam hardly deteriorates through
the amplification process as can be seen in Fig. 3.7. The beam width
measurement after focusing the amplified pulses with a 25 mm focal
length lens indicates M2 < 1.2 for both axis. The slight ellipticity of the
beam is due to the non-circular gain sheet, which is imprinted on the
amplified beam.
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Figure 3.7: Beam width measurements and fits of (a) horizontal and (b)
vertical axes of the amplified beam; (c) CCD image of the unfocused amplified
beam 20 cm from the Nd:YVO4 crystal.

3.2.4 Conclusion

We have demonstrated an 880 nm QCW pumped single-slab Nd:YVO4
bounce-amplifier system with more than 70 dB small signal gain, which
produces near-diffraction limited pulse sequences with an energy of up
to 100 µJ per pulse and an intensity stability better than 1%. It pro-
vides an excellent front-end for post-amplification based on Nd:YVO4 or
Nd:YAG, and is capable of generating double-pulse sequences over a time
scale of microseconds without a physical delay line. This is particularly
interesting as a driver for parametric amplification and harmonic upcon-
version of frequency comb laser pulses, which could improve the accuracy
of extreme ultraviolet frequency combs based on this principle [31] by
several orders of magnitude.



38 The double-pulse pump amplifier system

3.3 A 1.8 mJ, picosecond Nd:YVO4

bounce-amplifier pump front-end system
for high-accuracy XUV-frequency comb
spectroscopy

In this section, an extension of the previously described pre-amplifier
stage (cf. Sec. 3.2) is presented. This results in an 880 nm quasi-
continuously pumped, grazing-incidence “bounce” amplifier system ca-
pable of producing picosecond pulses (12 ps - 100 ps) and tailored pulse
sequences at the mJ-level. More than 1.8 mJ of pulse energy was achieved
for a 58 ps pulse using sub-100 pJ seeding energy (up to a repetition rate
of 300 Hz). Owing to saturation effects, the pulse-to-pulse energy fluc-
tuations were as low as 0.3% rms. The time delay between these pulses
can be changed between 8 ns and >1 µs, providing a promising pump
laser system for parametric amplification and subsequent upconversion
of near-infrared frequency combs to the extreme ultraviolet (XUV).

3.3.1 Introduction

Bounce amplifiers have been used in a variety of configurations (see, e.g.,
[65, 66, 75–77]). By employing high peak power, QCW pump diodes,
pulse energies up to 1 mJ have been reported for sub-nanosecond pulses
with microjoule seeding energies [77, 82].

We already demonstrated the combination of a single bounce ampli-
fier with a programmable pulse-picking unit capable of producing tai-
lored pulse sequences at the 100 µJ-level [83] (see Sec. 3.2). Here we
report on the extended version of that amplifier system delivering more
than 1.8 mJ in 58 ps pulses using sub-100 pJ seeding energy. To the
best of our knowledge, this presents both the highest gain and highest
pulse energy that have been reported for amplifiers in a single-bounce
geometry. With the help of spectral clipping and high-contrast mod-
ulators, the system supports pulse durations in the range of 12 ps to
100 ps and produces highly stable (0.3% rms), high-contrast millijoule
pulse sequences.

3.3.2 Experimental setup

A simplified sketch of the experimental setup is shown in Fig. 3.8; the
master oscillator is the home-built Nd:YVO4 laser described in Sec. 3.1,
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Figure 3.8: Schematic of the experimental setup illustrating spectral se-
lection (TGR: transmission grating), temporal selection (SMF: single-mode
fiber, AOM: acousto-optical modulator, EOM: electro-optical modulator) and
the QCW-pumped Nd:YVO4 amplifier (LD: laser diode). The inset shows the
amplified beam profile.

providing Gaussian-shaped pulses of 0.25 nm spectral bandwidth in a
126 MHz pulse train with 5 W average output power.

3.3.2.1 Spectral clipping and pulse picking

Typical pump pulse durations required for our high-power optical para-
metric amplifier are in the order of a few tens of picoseconds. Therefore,
the initial pulse duration of 12 ps was adjusted by spectral clipping via a
movable slit close to the Fourier plane of a 4f-grating system. The high-
energy pulses from the master oscillator (40 nJ) enable a considerable
flexibility in terms of the amplified bandwidth and center wavelength
and leave sufficient pulse energy for subsequent amplification in the sat-
urated regime. The system supports Gaussian-shaped pulses from 12 ps
to about 100 ps (10 pJ seeding energy for the first amplifier). For the
reported experiments, the seed pulse duration was adjusted to ∼60 ps
(Fig. 3.9(a-d)) according to the requirement of our amplifier system [31].
The center wavelength was matched to the peak wavelength of the ampli-
fied spontaneous emission (ASE) spectrum of the amplifier for maximum
gain.

The full pulse train was then coupled into a single-mode fiber in order
to spatially filter the beam and mechanically decouple the oscillator from



40 The double-pulse pump amplifier system

Δλ=0.26 nm

Δλ=0.06 nm

Δλ=0.06 nm

τdec=13 ps

τdec=62 ps

τdec=58 ps

0

0.5

1.0

0

0.5

1.0

0
1064.25 1064.50 1064.75

0.5

1.0

0

0.5

1.0

0

0.5

1.0

0

0.5

1.0

-150 -100 -50 0 50 100 150

S
p

e
ct

ra
l i

n
te

n
si

ty
 [

a
.u

.]

S
H

G
 s

ig
n

a
l [

a
.u

.]

Wavelength [nm] Delay [ps]

(a)

(c)

(e)

(b)

(d)

(f )

Figure 3.9: Optical spectra (left column) and second-harmonic,
background-free autocorrelations (right column, τdec is the deconvolved pulse
duration derived from the Gaussian fits indicated by the dashed lines) of the
full bounce-amplifier bandwidth (a, b), the clipped seeding pulse (c, d) and the
amplified pulse (e, f).

the amplifier. In addition, it allowed the implementation of a fast and
programmable fiber-coupled pulse-picking system, which is described in
detail in [83] (cf. Sec. 3.2).

3.3.2.2 Grazing-incidence amplifiers

After spectral and temporal selection, the pulse train passes a double,
>80 dB isolation stage to prevent back reflections into the pulse-picking
system. The pulses of sub-100 pJ energy are then amplified in a bounce-
amplifier system comprising two Nd:YVO4 crystals, both 5◦-wedged and
anti-reflection coated for pump and lasing wavelength. Among the range
of Nd3+-doped gain materials, Nd:YVO4 was chosen as gain material be-
cause of its large stimulated emission cross section (&1.1x10-18 cm2 [80])
and the good spectral overlap with the Nd:YAG emission spectrum,
which is commonly used for high-energy post-amplification because of
its superior thermal properties. The first crystal (2x4x20 mm3, 1 at.%-
doped) was pumped with 135 µs long pulses from a 180 W peak power
QCW 880 nm linear diode array. The pump pulse duration was not
increased any further to limit excess ASE in the first amplifier stage,
which otherwise extracts a considerable part of the stored energy in the
following amplifier sections.
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In addition, a second, 4x6x20 mm3 crystal was implemented and
pumped by a similar diode with 200 µs long pulses of 250 W peak power.
In order to increase the damage threshold for the pump light, a lower
doping of 0.5 at.% was chosen for the second crystal [84]. In both cases,
half-waveplates are used to rotate the polarization of the pump beam
parallel to the c-axis of the crystal, and cylindrical lenses are used to
adjust the beam height to about 0.6 mm (first crystal) and 0.9 mm
(second crystal). The maximum repetition rate of the pump pulses for
this experiment was 300 Hz due to the available diode driver but is in
principle only limited by the maximum duty cycle of the QCW diodes
of 10%.

The first crystal was double-passed by the seed beam with diameters
and internal grazing angles of 0.3 mm and 2.8◦ (first pass), and 0.4 mm
and 3.4◦ (second pass); the triangular-shaped delay arm allows the in-
corporation of a low-power, 30 dB isolator. After double-passing the first
crystal, the seed beam diameter was increased to 0.9 mm and the beam
sent through the second amplifier crystal at an internal grazing angle of
4.5◦. Apart from suppressing dangerous back reflections of the amplified
seed beam, the two isolators in between the amplifier stages also prevent
backwards seeding of the individual stages, which otherwise significantly
reduces the available stored energies in the crystals.

3.3.3 Results and discussion

3.3.3.1 Single pulse operation

At a repetition rate of 300 Hz, we obtained 1.83 mJ of pulse energy using
62 pJ seeding energy. To the best of our knowledge, this is the highest
net gain (75 dB) and pulse energy achieved so far for this amplifier ge-
ometry. As can be seen in Fig. 3.9(e, f), spectrum and pulse duration
remain basically unchanged during the amplification process indicating
the absence of significant nonlinear effects and gain narrowing. Decreas-
ing the repetition rate by a factor of ten revealed no apparent change of
the amplified beam profile, hence no deterioration of the nearly-Gaussian
beam (inset of Fig. 3.8) due to thermal effects could be observed.

The stability of the amplified pulse energy was measured with a pho-
todiode and indicated fluctuations in the order of 0.3% rms within a
timespan of 300 seconds (Fig. 3.10). The reasons for this high stability
were twofold. First, the QCW pump pulse duration was chosen signifi-
cantly longer than the upper-state lifetime of Nd:YVO4 (.100 µs [80]),
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Figure 3.10: Measured pulse energy after the bounce amplifier in single-
pulse operation (0.3% rms).

which completely saturates the inverted region in the amplifier crys-
tal and, therefore, makes the system less prone to fluctuations of the
QCW diode output power. Second, gain depletion damped the ampli-
fied pulse-energy fluctuations originating from amplitude noise of the
master oscillator (0.6% rms within 300 seconds).

The oscilloscope trace depicted in Fig. 3.11 illustrates the effect of
the gain depletion on the amplification of a second, slightly delayed pulse
of equal seeding energy. The inset shows the amplified pulse-to-pulse
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Figure 3.11: Time trace of an amplified pulse pair of equal seeding energy
(24 ns spacing). The pulse energy of the second pulse is decreased by a factor
of four due to gain depletion. The inset shows the amplified short-time contrast
of >400:1.
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contrast of 400:1, which due to saturation effects is slightly lower than
the initial >1000:1 contrast after the pulse picking.

3.3.3.2 Double-pulse sequences

In addition to the described single-pulse operation, the system can also
be used to produce adjustable pulse sequences as described in [83] but
now producing equal pulses at the mJ-level as shown in Fig. 3.12. Be-
cause of the high level of gain depletion, the seed energy of the first pulse
was adjusted to be .20% of the seed energy of the second pulse.
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Figure 3.12: Time traces of amplified pulse pairs after the bounce amplifier
for different temporal spacings (equal to multiples of the cavity round-trip time
of the master oscillator).

3.3.4 Conclusion

We presented a pump front-end laser system based on two ultrahigh-
gain grazing-incidence Nd:YVO4 amplifier slabs, delivering highly stable
(0.3% rms) picosecond pulses of more than 1.8 mJ at a repetition rate
of 300 Hz. In addition, with the help of fast programmable modulators
adjustable mJ pulse sequences were produced. The extended temporal
delay between these pulse pairs will potentially enable kHz-level XUV
frequency comb spectroscopy based on the two-pulse approach as demon-
strated in [31].
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3.4 Post-amplification to the 100 millijoule-level

In order to further increase the pulse energy from 1 millijoule to the
100 millijoule-level, two different post-amplifiers were employed. Both
amplifiers are based on Nd:YAG gain media, which exhibits better ther-
mal properties as opposed to Nd:YVO4 used for the oscillator and pre-
amplifier. In addition, Nd:YAG crystals can be produced in larger di-
mensions, thus allowing for larger beam diameters in the amplifier, which
is beneficial for circumventing laser damage. The initially used post-
amplifier was developed by S. Witte [58] and had been the “workhorse”
for consecutive experiments (e.g., [31, 85]). Therefore, we will only
briefly mention its basic principle in Sec. 3.4.1. However, before the
spectroscopic measurements described in Ch. 5 were carried out, the
post-amplifier was replaced with a new amplifier based on diode-pumped
amplifier modules, which is described in more detail in Sec. 3.4.2.

3.4.1 Flashlamp-pumped amplifier in ring geometry

The initially used post-amplifier consisted of two flashlamp-pumped am-
plifier modules (EKSPLA) comprising two Nd:YAG rods of 10 cm length
and 12 mm diameter. Because the small signal gain factor per module
is only ∼4 - 6, the two modules were passed twice in a ring geometry to
obtain a net gain of more than 100, producing around 140 mJ of pulse
energy. In the first round, the diameter of the Gaussian seed beam was
only about half the diameter of the rod, while for the second round a
telescope was employed to increase the beam diameter in order to slightly
overfill the whole amplifier rod. This enabled the production of nearly
flat-top pump beam profiles, which is beneficial for both avoiding laser
damage and efficient pumping of the parametric amplifier.

While the large diameter rods allow for high energy extraction, the
flashlamp pumping imposes two main limitations. First, because the
flashlamp emission spectrum is very broad, pumping is not very effi-
cient, which results in the rather low gain. As a consequence, the com-
plex double-pass ring geometry was required for sufficient gain and after
each periodic replacement of the flashlamps (after ∼107 shots), a realign-
ment of the amplifier was required. Second, the large amount of excess
heat deposited in the amplifier modules causes strong thermal lensing,
depolarization and aberrations. Although these effects can largely be
compensated by using an active rotator between the amplifier modules,
the thermal effects still compromise the obtainable beam quality. In ad-
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dition, because of these effects and the high requirements for the pulsed
driver of the amplifier units, the maximum repetition rate of the ampli-
fier was limited to a few tens of Hz.

3.4.2 Amplification with diode-pumped modules

Primarily in order to facilitate higher repetition rates (up to 300 Hz)
and reduce thermal effects in the amplifier, a new post-amplifier based
on high-gain diode-pumped modules was developed. Figure 3.13 shows
a sketch of the amplifier geometry starting from the collimated output
of the pre-amplifier stage as described in Sec. 3.3. Close to the relay-
imaging plane∗ in between the two passes through the amplifier, a Fara-
day rotator was employed to rotate the polarization by 2x45◦. This is
done to compensate for thermally induced depolarization and also allows
to couple out the back-coming beam with a thin-film polarizer in front of
the module. The commercial amplifier module (Cutting Edge Optron-
ics, REA6308-3P200H) is based on a 14.6 cm long and 6.4 mm diameter

Pre-amplifier

Nd:YVO4

PC

IS

F1F2F3F4

F5

F7 F7

TFP F6 FR
Nd:YAG module Pinhole

to parametric
ampli�er

Figure 3.13: Schematic of the diode-pumped post-amplifier. The Pockels
cell (PC) unit before the isolator (IS) is employed as a pulse picker to suppress
amplified ASE from the pre-amplifier and to pre-compensate gain depletion in
the post-amplifier. FR: faraday rotator, TFP: thin-film polarizer, F1 = 20 cm
(focal length), F2 = 100 cm, F3 = 25 cm, F4 = 35 cm, F5 = 25 cm, F6 = 20 cm,
F7 = 100 cm.

∗A relay-imaging telescope consists of two focusing optics (e.g., lenses or curved
mirrors) of focal lengths f1 and f2, placed at a distance equal to f1 + f2. In this
configuration, the beam at a distance of f1 before the first optic is fully reconstructed,
both in amplitude and spatial phase at a distance of f2 after the second optic.



46 The double-pulse pump amplifier system

Nd:YAG rod, grooved along the pump sides to prevent self-lasing. It
is pumped by 120 diode bars with a combined QCW peak power up to
24 kW. The diode bars are arranged in a fivefold pumping symmetry
around the crystal rod. The effect of the resulting non-uniform inversion
can be seen in Fig. 3.14(a), where a low energy Gaussian seed beam
that filled the whole rod was amplified using 110 A current pulses. The
amplified beam clearly mirrors the fivefold pumping geometry. In order
to obtain a more uniform beam profile, the seed beam diameter in the
amplifier rod was limited to 4.9 mm by relay-imaging a circular aperture
close to the end face of the rod. This was done by first enlarging the
seed beam to 6 mm diameter and subsequently cutting out its center
part with a pinhole of 3.5 mm diameter, which was then projected into
the amplifier unit by a relay-imaging 7:5 telescope. Relay-imaging is
essential because the hard spatial cut made by the pinhole inevitably
causes diffraction, which in this case would result in a sinc-like spatial
distribution with local intensity maxima that can cause laser damage
in the amplifier. Hence starting from the pinhole, the pump beam has

6.4 mm 

6.4 mm 

(a1)

(a2)

4.9 mm 
(b)

Figure 3.14: Amplified beam profiles after the diode-pumped post-
amplifier. (a1) Low seed energy, non-amplified Gaussian beam filling the whole
6.4 mm diameter amplifier rod. (a2) Amplified beam profile, showing the five-
fold pumping geometry. (b) Amplified beam profile for a maximum seed energy,
limited to 4.9 mm diameter. Also shown are the beam cross sections indicated
by the dashed lines.
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to be relay-imaged throughout the whole amplifier and also later in the
parametric amplifier. The result of using only the inner (4.9 mm diam-
eter) part of the 6.4 mm diameter Nd:YAG rod is a much more uniform
amplified beam profile as can be seen in Fig. 3.14(b) where the spatially
cut seed beam was relay-imaged and amplified to ∼35 mJ.

Because of the narrow bandwidth of a few nm, the high-power pump
light from the diodes is efficiently absorbed in the Nd:YAG rod and fa-
cilitates a very high single pass amplification. Figure 3.15 shows the
single pass gain for 250 µs long diode current pulses with peak powers
of up to 140 A; the input seed energy was attenuated to 12 µJ to avoid
gain saturation effects in the amplifier. As can be seen from Fig. 3.13,
the amplifier module was implemented in a double-pass configuration,
which straightforwardly provides the required two orders of magnitude
gain to amplify the signal pulses to about 40 mJ for moderate driving
currents of 80 - 85 A. Indeed, the only reason the pump current was
not increased further was because the pulse intensities in the amplifier
(∼3.5 GW/cm2) are getting close to the damage threshold of the ampli-
fier crystal coatings.

While the output energy is currently limited to about 40 mJ pulse
energy because of laser damage thresholds, this energy can be further
increased by implementing a second amplifier stage using a 10 mm di-
ameter rod in an analogous way. We have recently used this exact com-
bination for a post-amplifier in a different experimental setup to produce
130 mJ pulses even at a much higher repetition rate of 300 Hz [86]. For
the experiments described in Ch. 5, the obtained 40 mJ pulses at 28 Hz
(same repetition as previously used with the flashlamp amplifier) was
fully sufficient.

Figure 3.15: Gain factor of the diode-pumped Nd:YAG post-amplifier for
different pump currents and a low input signal energy of 12 µJ.





Chapter 4
Multi-delay, phase-coherent pulse pair
generation for precision Ramsey-comb
spectroscopy

In this chapter, we demonstrate an experimental system capable of gen-
erating phase-stable mJ-pulse pairs at programmable inter-pulse delays
up to hundreds of nanoseconds. A detailed investigation of potential
sources for phase shifts during the parametric amplification of selected
pulses from a Ti:sapphire frequency comb are presented, both numeri-
cally and experimentally. It is shown that within the statistical uncer-
tainty of the phase measurement of 10 mrad, there is no dependence of
the differential phase shift over the investigated inter-pulse delay range
of more than 300 ns. In combination with nonlinear upconversion of
the amplified pulses, the presented system will potentially enable short
wavelength (<100 nm), multi-transition Ramsey-comb spectroscopy at
the kHz-level.

4.1 Introduction

The realization of optical frequency combs (FC) based on mode-locked
oscillators has enabled the production of phase-coherent optical pulse
trains [14, 15] and the direct measurement of optical frequencies leading
to various applications such as attoscience [22], quantum control [87] and
precision metrology [25]. While for many purposes the output power of
an unamplified FC is sufficient, there are many applications which require
a higher peak power than an oscillator can deliver. One application in
particular is nonlinear upconversion of FCs (which typically operate in
the near-infrared) to the extreme ultraviolet (<100 nm) for ultrahigh-
precision spectroscopy. In this wavelength region, simple atomic and



50 Multi-delay, phase-coherent pulse pair generation

molecular systems such as He, He+ or H2 have their principal transitions
which can be used for highly-accurate tests of the theory of quantum
electrodynamics [31, 88, 89].

One experimental approach to increase the FC pulse intensity uses an
enhancement cavity for efficient high-harmonic generation [38, 39] and
FC generation in the extreme ultraviolet [40]. As an alternative route,
we demonstrated that pulse pairs from a Ti:sapphire FC can be amplified
while maintaining their phase coherence; the amplified pulses can then
be used to perform high-precision Ramsey-like FC spectroscopy [37, 90].
More recently, this principle was employed with an improved system
based on an optical parametric chirped-pulse amplifier (OPCPA) and
high-harmonic generation, which resulted in MHz-level FC-spectroscopy
in Helium at 51 nm [31].

The parametric amplification of two FC pulses requires a pair of
high-energy pump pulses, which in [31] were created by splitting a single
pump pulse via an optical delay line. This method introduced two main
limitations. First, the physical delay line limited the maximum possi-
ble temporal delay to about ten nanoseconds. This in turn limited the
resolution of the Ramsey-like spectroscopy [2] and changes of the pulse
delay at the nanosecond level required a physical change of the delay line
and realignment of the amplifier system. Second, due to the additional
optical path for the delayed second pump pulse, notable wavefront devia-
tions were introduced, which resulted in phase shifts of the amplified FC
pulses in the OPCPA. These amplifier phase shifts had to be monitored
constantly with high accuracy (∼20 mrad) to correct the spectroscopy
signals.

In order to lift both these limitations, a new pump front-end system
based on fast modulators and ultrahigh-gain Nd:YVO4 grazing-incidence
amplifier has been developed [83, 91]. In conjunction with a Nd:YAG
post-amplifier and second-harmonic generation, 532 nm pulse pairs at
the 100 mJ-level and programmable delays up to the microsecond range
can be produced. These pump pulse pairs then amplify two pulses from
a synchronously locked Ti:sapphire FC in an OPCPA similar to the one
used in [31].

The upgraded system opens the new possibility to obtain Ramsey-
like signals at different and much longer time delays (at multiples of
the round-trip time of the oscillators) without any physical change in
the setup. If the phase influence of the OPCPA system is constant at
different time delays, then this OPCPA phase shift can be eliminated
completely by comparing Ramsey signals at different time delays. This
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is a fundamental difference to traditional Ramsey spectroscopy where
the absolute phase shift determines potential frequency errors [92].

It is, however, of vital importance that a potential absolute phase
shift between amplified FC pulse pairs does not depend on the inter-pulse
delay ∆t. A phase shift difference δϕ between pulse pairs with inter-pulse
delays that differ by ∆tdiff would cause a systematic frequency error of:

δf =
δϕ

2π∆tdiff
. (4.1)

For example, a phase shift difference of δϕ = 5 mrad for ∆tdiff = 8 ns
translates into a 100 kHz frequency error.

The systematic investigation of phase shifts caused by the OPCPA
system, and in particular their dependence on the inter-pulse delays,
constitute the main part of this chapter. First, the investigated experi-
mental setup is outlined in Sec. 4.2. In order to estimate the phase sensi-
tivity of the amplified FC pulses to experimental parameters such as the
pump-pulse intensity and the phase-matching angle, simulations of the
narrowband OPCPA were carried out and are discussed in Sec. 4.3. The
outcome of the theoretical considerations then provides the roadmap for
the experimental investigation of the pump pulse pairs for the OPCPA
(Sec. 4.4). Finally, in Sec. 4.5, the results of the actual phase-shift mea-
surements of the amplified FC pulses are presented and discussed.

4.2 Setup

4.2.1 Overview of the experimental system

Figure 4.1 shows a schematic overview of the setup used in the exper-
iments. A Nd:YVO4 pump front-end, quasi-continuously pumped at
28 Hz, delivers picosecond 1064 nm pulse pairs at the mJ-level and is
described in detail in [83, 91] (see Secs. 3.1 to 3.3 of the previous chap-
ter). The seed pulses for the pump-pulse amplifier are picked via fast
modulators from a home-built, passively mode-locked Nd:YVO4 oscilla-
tor. Two ultrahigh-gain grazing-incidence Nd:YVO4 amplifier slabs are
then employed to boost the pulse energy of the picked pulse pairs to the
mJ-level. As opposed to creating the pump pulse pairs via an optical
delay line as employed in [31], all pulses travel exactly the same optical
path in order to reduce phase effects in the OPCPA due to wavefront
differences of the pump pulses. In addition, the inter-pulse delay ∆t
within one pump pulse pair can be changed by multiples of the cavity
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Figure 4.1: Schematic of the experimental setup including a Pockels-cell
pulse picker (PC), second-harmonic generation (SHG) and the optical paramet-
ric chirped-pulse amplifier (OPCPA). A reference fraction of the non-amplified
frequency comb pulses is compared with the amplified pulses via spectral inter-
ference in the phase-measurement setup. The programmable inter-pulse delay
can be changed in steps of the cavity round-trip time (T = 8 ns, n is an integer
number).

round-trip time of the pump oscillator (T = 8 ns) via a programmable
delay generator.

A flashlamp-pumped Nd:YAG post-amplifier (see Sec. 3.4 of the pre-
vious chapter) further boosts the pulse energy to 140 mJ, and after
frequency doubling two 532 nm pulses at the 100 mJ-level are available.
In between the pre- and post-amplifier, a Pockels-cell pulse picker can be
used for additional pulse shaping by adjusting the intermediate energies
of the amplified pulses.

Figure 4.1 also shows the implementation of the phase measurement.
In order to measure additional phase shifts induced by the OPCPA, the
phases of the two amplified FC pulses are compared with the technique
of linear spectral interferometry using 25% of the FC seed power split
off before the OPCPA as a reference [55, 93]. By comparing the spec-
tral interference patterns of the two FC pulses, the differential spectral
phase induced by the OPCPA can then be determined via a Fourier-
transform method [94]. As we will see later, the OPCPA phase shift
of the amplified FC pulses crucially depends on the pump pulses used
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for the parametric amplification. Therefore, potential pump-pulse differ-
ences were investigated by optically gating either the first or the second
pulse of the frequency-doubled pump pulse pair. A Shack-Hartmann
wavefront sensor and a CCD camera were then used to record the differ-
ential wavefronts and different intensity profiles, respectively. However,
before we start analyzing the performance of the OPCPA output, we will
first introduce further experimental details of the FC seeding source, the
electronic synchronization scheme and the amplifier geometry.

4.2.2 The Ti:sapphire frequency comb

The seed pulses for the OPCPA are derived from a home-built Ti:sap-
phire FC, adapted from the design by A. Wolf [95] and schematically
depicted in Fig. 4.2. The Ti:sapphire crystal is placed at Brewster’s
angle in the focus between two curved mirrors with radii of curvature
of 100 mm. A commercial single-mode laser (Verdi V-10, Coherent) is
employed to provide 5 W of 532 nm pump light. The particular set
of dispersion-adjusted cavity mirrors was chosen to facilitate a ∼40 nm
wide spectrum centered at 770 nm with an average power of 700 mW.
For coarse adjustment of the carrier-envelope phase (see Sec. 2.4), a pair
of wedges is placed inside the cavity so that the intra-cavity dispersion
can be changed by translating one of them. Figure 4.2 also shows the
f-2f-detection setup, which allows to stabilize the carrier-envelope phase

Verdi V-10 

pump laser

to ampli�er

f-2f-detection setup

PZT

Ti:Sa

AOM

W

TS

TS

OC

PBS

SHG
PCF

HWP
IFAPD

Rb-clock

PBS

PID

Figure 4.2: Schematic of the Ti:sapphire frequency comb functioning as
the seed laser for the OPCPA. AOM: acousto-optic modulator, TS: transla-
tion stage, W: wedges, PZT: single-stack piezo transducer, OC: output cou-
pler, PCF: photonic crystal fiber, SHG: second-harmonic crystal (BBO), PBS:
polarizing beam splitter, HWP: half-wave plate, IF: interference filter, APD:
avalanche photodiode, PID: proportional-integral-derivative controller
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by referencing it to a radio-frequency standard provided by an atomic
Rb-clock (PRS10, Stanford Research Systems). For the f-2f-detection,
25% of the FC output is tapped off and spectrally broadened to an
octave-spanning spectrum in 16 cm long photonic crystal fiber (Menlo
Systems). From the interference of the short-wavelength part and the
frequency-doubled long-wavelength part of the spectrum, the carrier-
envelope frequency can be measured as described in Sec. 2.4.1. This
frequency can then be mixed with the stable reference frequency from
the Rb-clock to provide the error signal for the acousto-optic amplitude
modulator that modulates the pump power (see Fig. 4.2).

4.2.3 Electronic synchronization scheme

The repetition rate of the Ti:sapphire FC is locked to a stable radio-
frequency reference synchronously with the Nd:YVO4 pump oscillator.
Figure 4.3 shows the electronic scheme providing the feedback signals
for the piezo transducers employed to stabilize the length of both laser
cavities. The repetition rates of both oscillators are monitored with
fast photodiodes (Electro-Optics Technology, Inc.) such that the 76th

harmonic∗ of the repetition rates can be mixed with a ∼10 GHz stable
reference frequency provided by a frequency generator (PSG-L E8241A,
Agilent). By adjusting the frequency output of the 10 GHz-frequency
generator, the resulting mixing frequency is set to ∼30 MHz. This mixing
product is then mixed again but this time with the ∼30 MHz output from
a direct digital synthesizer (DDS) board (AD9912, Analog Devices) to
provide the final error signals for the cavity-length stabilization. In order
to adjust the repetition rate of the lasers, the DDS output is scanned in
small steps while the GHz-generator frequency output remains constant.
The combined locking scheme allows to benefit from both the frequency
stability of the GHz-generator and the fast switching and small step size
(∼µHz) of the DDS.

Locking the repetition rate of both oscillators to the same reference
frequency is, however, not sufficient for assuring their temporal overlap
in the OPCPA since there is in general a constant time offset between
the pulses from the two oscillators. A sufficient adjustment of the refer-
ence phase at the 76th harmonic is technically challenging. Therefore, a

∗Locking to the 76th harmonic instead of, e.g., to the fundamental repetition
rate provides an increased “lever arm” (the timing jitter of the laser pulses increases
linearly with the harmonic number) and hence enables a tighter lock of the repetition
rate.



4.2 Setup 55

Nd:YVO4

pump oscillator

Ti:sapphire

seed oscillator

Rb-clock

PID

PID

BPF

BPF

LPF

LPF

LPF

Switch

125 MHz

RF generator

10 GHz

RF generator

30 MHz

Digital synthesizer

GPS

Figure 4.3: Electronic locking scheme of the repetition rates of the
Ti:sapphire frequency comb seed oscillator and the Nd:YVO4 pump oscillator.
GPS: global Positioning System, BPF: 30 MHz bandpass filter, LPF: 1.9 MHz
lowpass filter, PID: proportional-integral-derivative controller. The frequency
generators and synthesizer are referenced to a GPS-disciplined atomic Rb-clock.

second, intermediate repetition-rate lock of the FC laser is implemented
as shown in Fig. 4.3. Initially, the FC laser is referenced to the MHz-
generator (adjusted to exactly 1/76 of the combined locking frequency
of the DDS board and the GHz-generator) whose phase can straightfor-
wardly be changed by a few π so that the temporal overlap between FC
and pump pulses can always be obtained. After gradually changing from
the MHz- to the GHz-lock (via the “switch” shown in Fig. 4.3), the tem-
poral overlap between pump and seed can be fine-tuned via a physical
translation stage of a few centimeters in the OPCPA.

4.2.4 The parametric amplifier

The three-stage (two crystals), narrowband OPCPA system consists of
an unsaturated first pass followed by two saturated passes and produces
amplified Ti:sapphire FC pulses of more than 5 mJ of pulse energy. The
system, as shown in Fig. 4.4, is based on the design in [31]. First, part
of the seed spectrum is selected via a movable slit in the Fourier plane
of a 4f-grating stretcher. The combination of chirp and spectral clipping
broadens the FC seed pulses to about 10 ps pulse duration. The seed
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pulses are then amplified via a double pass (slightly displaced vertically)
in a first, 5 mm thick BBO crystal to the 100 µJ-level. Afterward the
beam is blown up and further amplified to the mJ-level in a second,
power amplifier BBO crystal of equal thickness. A grating compressor
is used to recompress the pulses to a pulse duration of a few 100 fs.
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Figure 4.4: Schematic of the OPCPA system used to amplify the
Ti:sapphire frequency comb pulses to the mJ-level. SHG: second-harmonic
generation (KDP crystal), OPA: optical parametric amplification (BBO crys-
tal), G1, G2: 1200 lines/mm grating, F1 = 20 cm (focal length), F2 = 55 cm,
F3 = 15 cm, F4 = 75 cm, F5 = 40 cm, F6 = 60 cm, R1 = -60 cm (radius
of curvature), R2 = -25 cm, R3 = -10 cm, R4 = -100 cm, R5 = -75 cm,
R6 = -50 cm.

4.2.5 The phase-measurement setup

For measuring the phase influence of the parametric amplification pro-
cess, the technique of linear interferometry is used in a Mach-Zehnder
scheme as depicted in Fig. 4.1. To serve as a reference for the amplified
FC pulses, 25% of the seed light of the FC oscillator is tapped off before
the OPA and combined with a small fraction of the amplified pulses af-
ter the OPA; the path length for the reference pulses is adjusted so that
they are delayed by about ∼1 ps with respect to the amplified pulses.
Figure 4.5 shows a more detailed overview of the phase-measurement
setup which is based on the design described in [55, 93]. Before both
the amplified and reference pulses are coupled into a large mode area
fiber to assure spatial overlap, they are temporally broadened to about
400 fs by passing through 18 cm of F2 glass in order to reduce nonlin-
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Figure 4.5: Schematic of the phase-measurement setup for measuring the
phase influence of the parametric amplification process. The inset shows two
experimentally obtained horizontal spectral interference patterns; for more de-
tails see the text. PBS: polarizing beam splitter cube, PC: Pockels cell.

ear effects in the fiber. For the suppression of unnecessary background
light, a double-passed Pockels cell between two polarizers is employed
to provide a high-contrast gate (>104:1) from before the first amplified
pulse until the maximum delay time for which the phase shift is mea-
sured. A second Pockels cell followed by a polarizing beam splitter cube
is then used to redirect part of the gated pulses to a small delay arm as
visualized in Fig. 4.5. This way a small vertical offset can be introduced
between the beams belonging to the first and the second amplified pulse,
which are subsequently dispersed and focused on a CCD camera to ob-
tain two vertically displaced spectral interference patterns (see the inset
of Fig. 4.5). For each pattern, the average spectral phase is determined
using a Fourier-transform based method [94]. Because of the different
beam paths after the second Pockels cell, an additional phase shift is in-
troduced. This issue, however, can be solved by adjusting the temporal
gate of the second Pockels cell so that the beam paths for the first and
second amplified pulses are swapped. As a result, the two interference
pattern will exchange positions every time the Pockels cell is changed. In
Fig. 4.6, a typical differential phase signal resulting from this alternat-
ing switching scheme is shown. By subtracting the measured differential
phase of one switching state from the other (and dividing the result by
two), the differential phase shift of the parametric amplifier is obtained.
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Figure 4.6: Typical measurement of the differential phase influence of the
parametric amplifier. About once per second the optical paths of first and
second pulses are alternated as highlighted by the shaded background.

4.3 Numerical simulations of a narrowband
OPCPA system

Prior to quantitatively analyzing the amount of phase shift on the (FC)
seed pulses in the OPCPA and the possible causes, it is instructive to
investigate the influence of certain experimental parameters via numeri-
cal simulations. Therefore, a split-step method was used to numerically
solve the coupled equations for the parametric amplification similar to
the one described in [96] (see Sec. 2.5.1 for more details on the algorithm).
In order to extract only the nonlinear phase caused by the parametric
interaction, the linear phase originating from material dispersion was
subtracted from the presented simulation results.

The parameters used in the simulation represent a typical operational
condition of our three-stage OPCPA system. The signal (seed) beam was
modeled as an initially 10 fs transform-limited Gaussian pulse, clipped
to 6 nm bandwidth and centered around 780 nm. This pulse is stretched
to about 10 ps duration by applying 690,000 fs2 of group delay disper-
sion; the seed intensity was taken as 450 W/cm2. The pump pulses
were assumed to be 58 ps Gaussian-shaped pulses with an intensity of
5.5 GW/cm2 in the first two stages and 40% less in the third stage,
respectively.

In Fig. 4.7(a), the spectral output intensity and phase is presented
for four different pump intensities in steps of 0.1 GW/cm2. The charac-
teristic peaks of the spectral intensity at the edges of the spectra are due
to a combination of saturation effects in the parametric amplification
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Figure 4.7: Simulation results for the investigated narrowband OPCPA sys-
tem. (a) Resulting changes of the amplified spectra and the nonlinear phase due
to variations in pump intensity. (b) Similarly for detuning the phase-matching
angle from its initial value ϕPM,0 = 2.30000◦ while keeping the pump intensity
fixed at Ip = 5.5 GW/cm2. In the right column of the figure, the corresponding
differential phase contributions from the individual OPCPA passes are shown.

process and the hard spectral clipping of the seed spectrum. It can be
seen that although the intensity undergoes notable changes, the effect on
the spectral phase is much less pronounced. Only in the spectral wing
regions, the signal phases differ by more than several tens of milliradians.
It should be noted that the spectral phases in the left column plots of
Fig. 4.7 are simply the sum of the individually acquired spectral phases
in the different OPCPA passes. The contributions from the individual
passes are shown in the right column of the figure, where the spectral
phase changes (relative to the obtained spectral phase for the lowest
simulated pump intensity of Ip = 5.3 GW/cm2) have been plotted.

It is apparent from Fig. 4.7(a) that the applied changes in pump
intensity hardly have any effect on the spectral phase after the unsat-
urated first pass (note the different y-axis scales). This effect can be
understood by looking at the analytical expression for the change in
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signal phase after parametric amplification in a crystal of length L [59]:

∆ϕs(L) =
∆k

2

∫ L

0

fD(z)

fD(z) + γ2s
dz, (4.2)

which depends on the detuning ∆k from the ideal phase-matching con-
dition, the pump depletion fD = 1−Ip(z)/Ip(z = 0) and the initial ratio
of pump and seed intensity γ2s = λsIs(z = 0)/λpIp(z = 0); λs, Is and
λp, Ip are the intensities and center wavelengths of the signal and pump
beams, respectively. In the unsaturated regime γ2s << fD, hence the in-
tegrand in Eq. (4.2) is close to unity and changes in the pump intensity
have little effect on the amplified signal phase.

The influence of the initial signal (seed) intensity on the amplified
spectra was found to be even significantly smaller than the influence of
changes in pump intensity. A change of 5% in seed intensity caused a
phase shift difference of ∼1 mrad, hence phase shifts and phase jitter
due to seed intensity fluctuations from the Ti:sapphire FC are typically
not of a concern.

Equation (4.2) also suggests a linear dependence of the induced phase
shift with changes of the phase mismatch ∆k. Therefore, simulations
were performed for different detunings of the phase matching relative to
ϕPM,0 = 2.30000◦. As apparent from Fig. 4.7(b), changes on the order
of a few tens of microradians can already cause significant (hundreds of
milliradians) phase shifts over the entire spectrum, although the spectral
intensity remains basically unaltered. Note that in the simulations the
phase mismatch for the third pass was reduced by a factor of five with
respect to the first two passes according to the five times larger pump
beam and hence five times smaller wavefront deviations expected in the
third pass of the OPCPA. This explains the smaller relative phase shifts
in the third pass as seen from the individual contribution plots (right
column of Fig. 4.7).

4.3.1 Cross- and self-phase modulation

Not included in the above simulations are the effects of self-phase modu-
lation (SPM) and cross-phase modulation (XPM) between signal, pump
and idler beams. These phase shifts can be estimated by calculating the
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B-integral (type 1 phase-matching) in a crystal of length L [44]:

Btot = Bss +Bps +Bis =
2π

λs

∫ L

0
n2

(
Is(z) +

2

3
Ip(z) + 2Ii(z)

)
dz.

(4.3)

In order to investigate their relative impact, the total value of the B-
integral (Btot) was split up into the contributions from the signal beam
itself due to SPM (Bss) and from the coupling of the pump and idler in-
tensities with the signal beam via XPM (Bps and Bis, respectively). As-
suming a nonlinear coefficient of n2 = 4×10−16cm2/W for BBO around
the signal wavelength of 780 nm [97], this resulted in the phase shifts
depicted in Fig. 4.8.

It can be seen that most of the phase shift is caused by XPM between
the signal and pump beam where a change of 5% in pump intensity causes
an additional phase shift of about 10 mrad of the amplified signal phase.
Similar relative changes of the seeding intensity result in a two orders of
magnitude lower phase shift and can therefore be neglected.
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Figure 4.8: Calculated B-integral values of the three stage OPCPA for
different pump intensities. Shown are the total value (Btot) and the individual
contributions from SPM of the signal beam (Bss) and XPM between pump
and signal (Bps) and idler and signal beams (Bis).
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4.4 Analysis of the pump pulse pair

As mentioned in Sec. 4.2, one of the main reasons for the development
of the new pump frontend was to assure that all amplified pulses travel
exactly the same optical path, which enables the production of pump
pulse pairs with almost equal wavefronts. However, the high saturation
level of the ultrahigh-gain pre-amplifier (net gain >70 dB) introduces the
issue of temporal and spatial gain shaping. In this section, we discuss the
influence of these shaping mechanisms as well as the direct measurement
of the wavefront deviations within one pump pulse pair.

4.4.1 Temporal gain shaping

Because the first seed pulse takes out a significant part of the stored
energy in the amplifier crystals, the gain of the amplifier becomes a
function of time. The instantaneous gain G(t) can be modeled as [47]:

G(t) =
G0

G0 − (G0 − 1)exp [−Fin(t)/Fsat]
(4.4)

and depends on the undepleted gain factor G0, the saturation fluence of
the amplifier crystal Fsat and the integrated input intensity Iin from a
starting time t0 up to the time t:

Fin(t) =

∫ t

t0

Iin(t
′)dt′. (4.5)

Figure 4.9 shows the calculated pulse shapes after the Nd:YVO4 pre-
amplifier (Fsat = 170 mJ/cm2 and a total undepleted gain factor of
G0,tot = 90 dB) and after the double-pass flashlamp-pumped Nd:YAG
post-amplifier (Fsat = 650 mJ/cm2 and G0,tot = 25 dB) for seeding en-
ergies at the pJ-level for the first stage. For simplification, a flat-top
spatial distribution was assumed for the laser pulses and losses in the
amplifier were neglected.

The effect of gain saturation is most apparent in the case of equal
seeding energy into the pre-amplifier as seen in Fig. 4.9(a) where the am-
plified pulses differ greatly in intensity and shape. The most straight-
forward way to achieve equal peak intensities is to adjust the seeding
energy (Fig. 4.9(b)), but the different gain dynamics result in a ∼9 ps
shift of the intensity maximum of the pulse. Since the repetition rate
of the pump oscillator is synchronized to the Ti:sapphire FC, this shift
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Figure 4.9: Calculated amplified pulse shapes for different seeding ratios
(first : second) of the two pump pulses to obtain equal pulses after the post-
amplifier. Each row shows the pulse shapes upon exiting the pre-amplifier (left
column) and post-amplifier (right column). (a) Seeding pulses of equal energy.
(b) 14 times higher seed energy for the second pulse. (c) 6.5 higher seed energy
for the second pulse. In addition, the energy of the first pulse was reduced by
47% between the pre- and post-amplifier, which in the experiment is performed
by a Pockels-cell pulse picker.

would cause the FC pulses to see different parts of the pump pulses in
the OPCPA, thus experiencing different amplification.

However, the simulations indicate that this issue can be addressed
by cutting away about half the energy of the first pulse after the pre-
amplifier as seen in Fig. 4.9(c). This additional pulse shaping, in combi-
nation with adjustment of the seeding energies, allows the production of
two almost identical amplified pulses despite the strong gain saturation.
In the experimental setup, a fast Pockels-cell pulse picker is employed
to reduce the pulse energy of the first pulse after the pre-amplifier (see
Fig. 4.1).
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4.4.2 Spatial gain shaping

The seed pulses for the pre-amplifier have a Gaussian-like spatial inten-
sity distribution, hence the saturation of the amplifier will also cause
spatial gain shaping. This means that the spatial profile will be dis-
torted after amplification. Furthermore, since the first pulse takes out
a significant part of the stored energy in the amplifier, the second pulse
will be distorted differently due to a different spatial distribution of the
remaining stored energy. The result can be seen in Fig. 4.10 where beam
profiles of the first and second pulses after the post-amplifier (with dif-
ferent time delays of 40 ns and 400 ns) are shown.

First pulse Second pulse, Δt = 40 ns Second pulse, Δt = 400 ns
130

90

50

10

-30

Figure 4.10: Amplified beam profiles of the first pulse and two second
pulses with different time delays of 40 ns and 400 ns, respectively.

It is apparent that although the overall shape of the beam profiles are
very similar (as expected since the pulses travel the same optical path in
the amplifier), the intensity profiles of the first and second pulses can still
differ significantly over the beam. Different pump intensities influence
the phase of the amplified FC pulses as described in Sec. 4.3, thus the
spatial gain shaping will cause a spatially dependent amplifier phase
shift. However, Fig. 4.10 also shows that the spatial differences (and
hence the induced spatially dependent phase shifts) basically remain
constant with different time delays because the gain distribution after
the first pulse hardly changes on a timescale less than one microsecond.

4.4.3 Wavefront differences

While relevant differences in spatial intensity distributions on the per-
cent-level can be measured straightforwardly with a CCD-camera, it
is experimentally challenging to measure wavefront deviations on the
microradian-level. A Shack-Hartmann wavefront sensor was used in or-
der to establish relative wavefront deviations between the first and a
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Figure 4.11: Relative horizontal and vertical wavefront tilts between the
first and a second pump pulse at 40 ns inter-pulse delay based on an average
of 40 acquisitions.

second pulse at a 40 ns inter-pulse delay. Figure 4.11 shows the obtained
wavefront tilts in the horizontal and vertical direction across the beam as
a result of an average of 40 single-shot acquisitions. It is apparent that
the differential wavefront tilt is zero within the measurement uncertainty
of about 50 µrad. However, the measurement cannot detect wavefront
tilts below tens of microradians, which can still influence the phase of
the amplified FC pulses (see Sec. 4.3). In the next section, the phase
shift is therefore quantified based on direct measurements using spectral
interferometry.

4.5 Phase-measurements of the amplified
frequency comb pulses

4.5.1 Phase shifts at different pulse delays

The ultimate test of the system is a direct measurement of the differen-
tial phase shift of the amplified FC comb pulse pairs after the OPCPA.
Therefore, the spectral phase-measurement setup (see Sec. 4.2.5) was
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used to determine this phase shift and its dependence on the inter-pulse
delay. Figure 4.12 shows two of these measurements performed on dif-
ferent days and states of alignment of the OPCPA. During the phase
measurement, the inter-pulse delay of the pump pulses was changed
in steps of 80 ns and Fig. 4.12(b) shows the average differential phase
shifts per pulse delay; the statistical uncertainty of the averaged value of
∼10 mrad is mainly due to noise from the phase-measurement procedure
itself. It can be seen that independent of the absolute differential phase
shift, which is alignment-dependent and can be as big as a few hundred
milliradians, the differential phase shift effectively remains the same for
different inter-pulse delays. Together with the numerical simulations dis-
cussed in Sec. 4.3, this indicates that the average wavefront tilt between
the first and the second pump pulse remains equal on a microradian-
level, independent on the inter-pulse delay. Furthermore, if one assumes
a linear relation between differential phase shift and inter-pulse delay,
the statistical uncertainty of the phase measurement together with the
maximum investigated pulse delay can be used to obtain an upper bound
on the inter-pulse delay-dependent phase shift. According to Eq. (4.1),
this potential systematic phase shift of ∼10 mrad would correspond to
a frequency error of less than 5 kHz at the fundamental laser frequency.
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Figure 4.12: (a) Differential phase-shift measurements between two ampli-
fied FC comb pulses for two states of alignment of the OPCPA system (Set 1
and Set 2, respectively). During one measurement the inter-pulse delay was
changed in steps of 80 ns. (b) Average phase shifts for each inter-pulse delay
of these two measurement sets together with their statistical uncertainties.
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However, if the same 10 mrad can be attained over a longer delay, then
the corresponding uncertainty reduces even further with this delay. In
order to investigate significantly longer pulse delays than the 336 ns
presented in this paper, a rebuild of the phase-measurement setup is
required, incorporating an additional Pockels cell to suppress the in-
termediate reference pulses. While not producing a spectral interference
pattern, these pulses still contribute to the measurement noise by adding
a constant background level to the interference signal and thus limiting
the investigated delays to a few hundred nanoseconds.

4.5.2 Phase-shift scaling with amplified pulse ratio

From the simulations discussed in Sec. 4.3 it is clear that for a constant
differential phase shift of the amplified FC pulses a stable intensity ratio
of the pump pulse pair is essential. Therefore, the pump-pulse-intensity
ratio (and hence the ratio of the amplified FC pulses) was changed while
measuring the differential amplifier phase shift for a constant inter-pulse
delay as before. Figure 4.13 shows such a measurement for a certain
amplifier alignment stage together with a linear fit of the experimental
data points. In general, the linear scaling coefficient is typically on the
order of a few mrad per 1% pulse-energy difference. Thus for minimizing
phase-shift deviations below 10 mrad rms, the amplified pulse-energy
ratio needs to be actively stabilized. Experimentally, this is achieved by
using the Pockels-cell unit in between the pre- and post-amplifier (see
Sec. 4.2) in a simple feedback loop, performing small adjustments on the
seed energy ratio for the post-amplifier.
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Figure 4.13: Differential phase shift of the FC pulses in the OPCPA versus
amplified pulse-energy ratio. The scaling coefficient of the phase shift based
on the linear fit is 3.3 mrad / 1% energy-ratio difference.
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4.5.3 Spatial dependence of the phase shift

In order to examine the spatial dependence of the measured phase shifts,
a pinhole was used to select different spatial parts of the amplified FC
pulses (see Fig. 4.14, inset). For each subsection, a short phase measure-
ment was then carried out while switching the inter-pulse delay. As can
be seen from Fig. 4.14, the phase shift can differ by ∼100 mrad for dif-
ferent parts of the amplified FC pulses. These deviations are mainly
attributed to the different spatial intensity profiles of the first and sec-
ond pump pulses (see Fig. 4.10). In addition, nonlinear effects such as
SPM can already have an influence in the last stages of the pre- and
post-amplifier of the pump laser. This can potentially cause slight (few
µrad) wavefront differences between the first and second pump pulses
due to different intensity profiles, which in turn could lead to phase
shifts in the amplified FC pulses. However, when the amplified pulses
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Figure 4.14: Phase-shift measurements of different spatial subsections of
the amplified FC pulses as schematically depicted in the inset. The dashed
lines represent the average phase shift per subsection.
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are used for a spectroscopic experiment, typically only the average spatial
phase shift matters so that the measured spatial variations will at most
cause a slight reduction in contrast of the measured Ramsey-like signals.
More important, Fig. 4.14 also shows that for the individual subsections
there is again no observed dependence (within the measurement uncer-
tainty of 10 mrad) between the measured phase shift at different time
delays, which is the most important prerequisite for precision Ramsey-
comb spectroscopy.

4.6 Conclusion

The presented OPCPA system produces FC pulse pairs of more than
5 millijoule pulse energy and with a programmable inter-pulse delay of
multiples of the cavity round-trip time of the master oscillators (cur-
rently 8 ns). We have investigated the phase coherence of these pulse
pairs up to hundreds of nanoseconds, but an extension to even tens of mi-
croseconds seems feasible. With the help of numerical simulations and
an experimental investigation it was established that despite absolute
differential phase shifts of up to a few hundred milliradians (depending
on the amplifier alignment), the differential phase shift remains constant
within at least 10 mrad given a straightforward active stabilization of
the pulse-intensity ratio. In addition, within the measurement uncer-
tainty of about 10 mrad, no dependence of the differential phase shifts
on the inter-pulse delay could be observed. Given this uncertainty as
an upper bound for a potential phase shift, we estimate a maximum fre-
quency error of 5 kHz in a Ramsey-type measurement (at the fundamen-
tal wavelength of the Ti:sapphire FC). However, this upper bound was
derived from a noise-limited measurement over a maximum inter-pulse
delay of 336 ns. A phase measurement over longer pulse delays (such as
microseconds) could potentially reduce this value proportionally to the
delay time.

Furthermore, the new possibility to obtain Ramsey-like signals at
programmable delays could also be used to measure multiple transi-
tions at the same time. Similar to the well-known technique of Fourier-
transform spectroscopy [98, 99], complex excitation spectra can be re-
trieved from the combined Ramsey signals via a Fourier transform. To-
gether with nonlinear upconversion of the amplified FC comb pulses,
the combined Ramsey signals will potentially enable multi-transition
Ramsey-like spectroscopy in the extreme ultraviolet at the kHz-level.





Chapter 5
Ramsey-comb spectroscopy with in-
tense ultrashort laser pulses

5.1 Introduction

Optical frequency combs (FCs) based on mode-locked lasers have revo-
lutionized the field of metrology and precision spectroscopy by providing
precisely calibrated optical frequencies and coherent pulse trains [24, 29].
Amplification of the pulsed output from these lasers is very desirable as
nonlinear processes can then be employed to cover a much wider range
of transitions and wavelengths for ultrahigh precision, direct FC spec-
troscopy [27, 100]. Therefore, full repetition rate laser amplifiers [35, 36]
and enhancement resonators [38, 39] have been employed to produce up
to microjoule-level pulse energies [40]. Here we present a spectroscopy
method to obtain FC accuracy and resolution by using only two FC
pulses amplified to the millijoule pulse-energy level, orders of magnitude
more energetic than what has previously been possible. The new proper-
ties of this approach, such as cancellation of optical light-shift effects, are
demonstrated on weak two-photon transitions in atomic rubidium and
cesium thereby improving the frequency accuracy up to thirty times. As
an alternative to full repetition rate amplification and cavity enhance-
ment of FCs, direct amplification of selected FC pulses allows for much
higher pulse energies and wavelength tunability. By amplifying two FC
pulses and subsequent harmonic upconversion, precision spectroscopy in
the extreme ultraviolet near 51 nm has been demonstrated [31]. How-
ever, in [31] the FC resolution was sacrificed because only two consec-
utive FC pulses could be amplified, and phase shift effects during the
amplification process compromised the FC accuracy. To realize both FC
resolution and accuracy in conjunction with mJ pulse energies, we devel-
oped the method of Ramsey-comb spectroscopy. This method is based
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on a series of excitations with two selectively amplified FC laser pulses,
which can be varied in delay over a wide range without affecting the
optical phase. The result is a form of spectroscopy that is related yet
fundamentally different to normal FC spectroscopy as we will discuss in
the following chapter.

5.2 Principle of Ramsey-comb spectroscopy

Traditionally, excitation of atoms or molecules with two short and phase-
coherent laser pulses is known as Ramsey spectroscopy [2, 37]. The pulses
induce two excitation contributions that interfere depending on the delay
time (∆t) and a possible additional phase shift between the pulses (∆ϕ,
e.g. from a pulse-amplification process). For a two-level atom with tran-
sition frequency fk, the excited state population will exhibit an oscilla-
tory behavior when ∆t is changed, proportional to 1+cos(2πfk∆t+∆ϕ)
(see Fig. 5.1(a) and Fig. 5.4 in the Supplementary information Sec. 5.6).
If this signal is measured over a few oscillation periods as a function of
∆t (a Ramsey scan), then the transition frequency can be determined
very precisely provided that ∆t and ∆ϕ are known. A larger ∆t leads
to a more accurate determination of the transition frequency fk. How-
ever, Ramsey spectroscopy based on a single scan can only measure one
isolated transition at a time, and is sensitive to errors in ∆ϕ [31].

Instead, in Ramsey-comb spectroscopy, a series of individual Ram-
sey scans are performed using coherently-amplified pulse pairs derived
from a FC laser. The coarse delay of the pulse pairs can be changed in
steps of the FC repetition time T . At each macro-delay step, the delay
is fine-tuned to record a short Ramsey scan. As a result, we obtain a
“comb” of Ramsey signals with three fundamental properties. First, the
FC provides a precisely calibrated absolute time axis and phase control
over a wide range of pulse delays (>microseconds), thus enabling a very
precise frequency determination. Second, if a constant phase shift ∆ϕ
affects the Ramsey signals, then it can be identified as a common effect
in all the signals recorded at different time delays. It therefore drops
out of the analysis and the full FC accuracy is recovered. Note that
this includes light-induced phase shifts due to AC-Stark and similar ef-
fects [101], which often lead to frequency errors in (FC) spectroscopy.
Third, by probing the excited state population over longer periods, mul-
tiple transitions can be measured simultaneously by observing a beating
between the individual cosine contributions from each resonance at fre-
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Figure 5.1: The principle of Ramsey-comb spectroscopy. An atomic system
is excited with two coherent laser pulses at a widely tunable and accurate
delay provided by a frequency comb. The laser pulses sample the excited
population signal by a short Ramsey scan over δt at macro delays that are
an integer (n) multiple of the comb repetition time T . From these scans the
transition frequencies and strengths can be reconstructed with high precision.
(a) In the case of only one resonance, the excitation signal undergoes a single
cosine modulation of constant amplitude known as Ramsey fringes. (b) If
multiple transitions are excited simultaneously, the resulting signal will exhibit
complex amplitude and phase patterns. The phase evolution is visualized in
color relative to the single transition in part (a).

quency fk with transition strength Ak. The multi-transition signal will
be proportional to:

S =
∑
k

Ak [1 + cos(2πfk∆t+∆ϕ)] (5.1)

As an example, the expected upper-state population signal for three
transitions as a function of the inter-pulse delay is schematically de-
picted in Fig. 5.1(b). It can be seen that analogous to the superposition
of sound waves from slightly detuned tuning forks, the excitation sig-
nal exhibits a characteristic beating pattern. The excitation oscillations
are related to those observed in traditional Fourier-transform spectros-
copy [99], or similar methods with pulsed lasers based on physical optical
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delay lines [102, 103]. However, in Ramsey-comb spectroscopy the FC
source provides an absolute time axis for the pulse delay ∆t, and this for
time scales many orders of magnitude larger than any physical delay line
can provide. Moreover, the individually acquired Ramsey scans result in
accurate information on the phase of the complex delay-dependent signal
as visualized by the color gradient of the signal trace in Fig. 5.1(b). This
phase information is robust against fluctuations of signal strength and
encodes both the transition frequencies and strengths. The underlying
resonances can therefore be obtained very accurately from a straight-
forward fit of the phase according to Eq. (5.1) without complications
introduced by line shapes in the frequency domain (more details on the
fitting procedure is found in the Supplementary information Sec. 5.6).
The frequency-domain spectrum can be calculated as well from the Ram-
sey scans by a discrete Fourier transform over all measured delay zones.
These spectra are subtly different from normal FC spectroscopy but en-
able straightforward identification of the transitions and provide good
starting values for the phase fit performed on Ramsey signals in the
time domain (see Supplementary information Sec. 5.6).

5.3 Overview of the experimental setup

Experimentally, we obtain Ramsey-comb pulse pairs from a fully refer-
enced Ti:sapphire FC laser, operating near 760 nm with a repetition rate
of frep ≈ 128 MHz. Two pulses from this comb laser are parametrically
amplified more than a million times up to 5 mJ. The parametric ampli-
fier supports broadband operation [72], but for this experiment only a
5 nm wide part of the spectrum is selected. The pulse delay of the ampli-
fied FC pulses is determined by the pump laser as visualized in Fig. 5.2.
Only the FC pulses overlapping temporally with the high-energy pump
pulses are amplified in the parametric amplifier. We verified that there is
no delay-dependent phase shift introduced in the amplification process
within an accuracy of <1/1000 of an optical cycle, based on spectral
interferometry with the original FC pulses [104].

To demonstrate the capabilities of Ramsey-comb spectroscopy, the
amplified FC pulse pairs are used to perform non-resonant two-photon
spectroscopy in an atomic vapor cell (Fig. 5.2). Although the investi-
gated transitions are very weak, no focusing of the laser beam (which
has a diameter of 3 - 6 mm depending on experimental conditions) is
required because of the high pulse energy. At every macro-delay step n,
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Figure 5.2: Schematic of the experimental setup. A high-energy pump
pulse pair selectively amplifies two pulses from a frequency comb laser pulse
train. The macro delay between the pump pulses and hence the amplified
frequency comb pulses can be changed in steps of the cavity round-trip time
T = 7.8 ns (where n is an integer number). The amplified pulse pairs are then
split into counter-propagating copies to perform Doppler-reduced two-photon
spectroscopy in a cell containing a mixture of atomic rubidium and cesium
vapor. The signal is detected by monitoring fluorescence decay of excited atoms
with a photo-multiplier tube.

the inter-pulse delay between the two amplified FC pulses is scanned in
steps of a few hundred attoseconds. This results in Ramsey scans con-
sisting of a few oscillations of the fluorescence signal, which is recorded
with a photomultiplier. Further experimental details can be found in the
Method Sec. 5.5.

5.4 Two-photon Ramsey-comb signals from
rubidium and cesium

A typical measurement for rubidium and cesium is shown in Fig. 5.3; the
signals are corrected for a constant background in the vertical direction.
The change in Ramsey-signal amplitude between the macro-delay steps
(T = 7.8 ns) is a direct result of the beating of the individual fluorescence
signals from simultaneously excited transitions. Because these contrast
changes appear on a nanosecond time scale, there is only a negligible
effect on the signal amplitude within one Ramsey scan of ∼3 fs length.
For longer delays (higher n), there is an additional, general reduction in
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Figure 5.3: Experimental demonstration of Ramsey-comb spectroscopy.
(a) Upper part: Selection of measured Ramsey-comb signals of the two-
photon 5S-7S transitions in atomic 85Rb and 87Rb at macro delays of nT
(T = 7.837146 ns). For each delay step n, the inter-pulse delay ∆t was fine-
adjusted over a range of δt ≈ 3 fs to record a few oscillations of the signal
beating pattern, such that ∆t = nT + δt. The solid lines represent sinusoidal
fits. Lower part: Calculated spectra based on the discrete Fourier transform
(DFT) of the time-domain signal from a total of 44 Ramsey scans. (b) Sim-
ilarly for the two-photon 6S-9S transition in 133Cs; the lower part shows the
calculated spectra based on 37 Ramsey scans.
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contrast due to the residual Doppler effect and spontaneous decay of the
excited states. In the case of, e.g., rubidium, this limits the useable delay
to about 345 ns (n = 44) due to the upper-state lifetime of 88 ns [105].
Note that the experimental system can produce pulse pairs with sig-
nificantly longer delays well into the microsecond range, which enables
much higher accuracy measurements given sufficiently narrow transitions
(longer lifetimes); the increasing timing jitter of the FC seed oscillator
for longer delays can efficiently be suppressed by directly locking the
oscillator to a stable Hz-level reference laser [106].

Regarding the 5S-7S transition in 85Rb, we arrive at the transi-
tion frequency before hyperfine splitting (“center of gravity frequencies”,
fcog) and hyperfine A constants of fcog = 788,796,960,604(5) kHz and
A7S = 94,684(2) kHz (based on 28 datasets). For the same transition in
87Rb we find fcog = 788,797,092,129(7) kHz and A7S = 319,762(6) kHz.
The uncertainties are a combination of statistical and systematic errors
(see Supplementary information Sec. 5.6 for more details). Because of
small laser power drifts up to a few percent during the measurements,
the AC-Stark (light) shift effect was not perfectly cancelled. However,
still an effective ∼50 times suppression was accomplished leading to only
small residual AC-Stark shift corrections of a few kHz.

The measurements presented here are in good agreement with pre-
vious experiments [107, 108], and also of the same accuracy as the best
determination recently obtained with full repetition rate comb excita-
tion, employing strong focusing of the nJ-level laser pulses and coherent
control [108]. This confirms that Ramsey-comb spectroscopy can be at
least as accurate as full repetition rate FC spectroscopy but at many
orders of magnitude higher pulse energy.

The advantage of having high pulse energies becomes apparent when
Ramsey-comb spectroscopy is applied on much weaker transitions such
as the investigated 6S-9S two-photon transition in 133Cs. As can be
seen in Fig. 5.3, a strong signal is obtained without any need for reso-
nant enhancement by an intermediate level. From the analysis, we find
fcog = 806,761,363,429(7) kHz and A9S = 109,999(3) kHz, which is thirty
times more accurate than the best previous measurement on this tran-
sition [109], which was based on FC spectroscopy. The Ramsey-comb
method, therefore, outperforms traditional forms of continuous-wave or
FC laser spectroscopy on transitions that are too weak to be easily ex-
cited with unamplified FC pulses.

Based on parametric amplification, Ramsey-comb spectroscopy com-
bines high frequency precision with wide wavelength coverage at mJ-level
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pulse energy. Because of the high peak energy, the frequency range of
this method can straightforwardly and efficiently be extended via non-
linear crystals to the ultraviolet, or with high-harmonic generation in a
gas jet to the extreme ultraviolet [85] (taking ∆t > 100 ns to avoid phase
shifts from ionization in the gas jet). Therefore, there are many interest-
ing targets for the Ramsey-comb method such as the 1S-2S two-photon
transition in He+ to provide new information on the proton-size puz-
zle [32, 110], or the two-photon X-EF transition in molecular hydrogen
to put tighter constraints on speculative 5th forces beyond the Standard
Model [30].

5.5 Methods: Further experimental details

The FC laser providing the seed pulses for the parametric amplifier is a
home-built, Kerr-lens mode-locked Ti:sapphire oscillator. Both its repe-
tition rate and carrier-envelope phase are locked to an atomic Rb-clock
disciplined by the Global Positioning system (fractional inaccuracy bet-
ter than 2×10−12 for averaging times larger than 100 s). The oscillator
emits pulses of 6 nJ energy at a repetition time of 7.8 ns and with a spec-
tral bandwidth of ∼40 nm centered at 760 nm. Before amplification, the
pulses are stretched to 10 ps by the combined effect of clipping the spec-
trum to about 5 nm around the desired wavelength and the application
of ∼690,000 fs2 of group delay dispersion. The stretched FC pulses are
selectively amplified in an optical parametric amplifier to the mJ-level
by a high-energy 532 nm pump-pulse pair. The pump pulses originate
from a separate, passively mode-locked Nd:YVO4 oscillator, which is
electronically synchronized to the Ti:sapphire FC oscillator at the same
frep ≈ 128 MHz. Via programmable pulse-pickers, two pulses are se-
lected from the pump oscillator pulse train. These pulses are amplified
to 40 mJ with an ultrahigh-gain Nd:YVO4 pre-amplifier system [83, 91]
and a Nd:YAG post amplifier, and subsequently frequency-doubled to
24 mJ at 532 nm. The parametric amplifier then produces amplified
FC pulse pairs up to 5 mJ energy at a repetition frequency of 28 Hz,
which therefore determines the repetition rate of the total experiment.
During the amplification process, both pump pulses travel exactly the
same optical path, assuring that their wavefronts are equal on a sub-
milliradian level. This is essential because the parametric amplification
is a highly-nonlinear process and the amplified signal phase is very sen-
sitive to differences in wavefronts [104].
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The Doppler-reduced two-photon spectroscopy is performed in a cell
containing a mixture of rubidium and cesium vapor heated to ∼50◦C.
Because of the relatively broad excitation spectrum, the Doppler effect
is not suppressed completely [108]. Background signal originating from
single-sided excitation is strongly suppressed because of the chirp of the
amplified FC pulses [111] combined with the use of quarter-wave plates
to generate circular polarized light. The signal is proportional to the
number of excited atoms as a function of inter-pulse delay and is recorded
by monitoring the fluorescence decay (420 nm - 459 nm) to the ground
state after the second excitation pulse.

5.6 Supplementary information

5.6.1 The atomic phase evolution

The time-domain analysis of Ramsey-comb spectroscopy relies on track-
ing the phase evolution of the recorded upper-state population signal.
It is instructive to construct the multi-transition situation starting from
the single resonance case, which simply exhibits a linear phase evolu-
tion (Fig. 5.4, first column). The second column of Fig. 5.4 depicts the
situation when an equally strong second resonance is added. Now the
superimposed signal exhibits a beating pattern, which results in phase
jumps every time the signal envelope goes to zero. This phenomena is
well-known from the field of acoustics, where the superposition of two
similar acoustic frequencies (e.g., two slightly detuned tuning forks) pro-
duce a modulation of the sound amplitude according to the frequency
difference of the involved sound waves. While in the special case of two
transitions of equal amplitude the relative phase is still constant (apart
from the periodic phase jumps), the situation changes when the spectral
amplitudes are unequal (Fig. 5.4, third column). Finally, adding further
transitions leads to a complex phase-evolution pattern as depicted in the
last column of Fig. 5.4. In this characteristic phase trace, however, the
full time-domain information of the signal is encoded. Thus measuring
the phase evolution of the signal provides sufficient information for the
synthesis of the spectral content.
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Figure 5.4: Visualization of the phase evolution of different beating pat-
terns. Each column describes a different set of parameters. (a) Spectral am-
plitudes and frequencies of the atomic transitions. (b) Time-domain Ramsey
signals for different delays of the excitation pulse pair. (c) Signal phase. The
dashed line represents a linear reference phase. (d) Phase evolution relative to
the reference phase.

5.6.2 Fitting the data: Time domain versus frequency
domain

Most spectroscopic methods are based on data analysis in the frequency
domain, which means that an optical excitation or absorption spectrum
is fitted to obtain the transition frequencies of the excited resonances. In
general, the spectral domain has the advantage that the individual reso-
nances are, at least to some extent, decoupled if the spectral resolution
is high enough. Also in Ramsey-comb spectroscopy the spectrum, as
calculated from the time-domain Ramsey signals via a discrete Fourier-
transform (DFT), can be used to extract the underlying resonances.
However, the analytical description of the spectrum and hence the com-
plexity of the fitting model greatly increases if more than one resonance
is excited. This can be understood by looking at the analytical descrip-
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tion for the calculated spectrum that can be derived with the help of
basic signal processing theory [112]. For two resonances with transition
frequencies f1, f2 and amplitudes A1, A2, the analytical spectrum can be
expressed as (for simplification, we neglect here the negative frequency
components as well as the influence of the finite scanning length of the
individual Ramsey zones):

|DFT (S)|2 ∝ ss21 + ss22 + cos [(f1 − f2)(N + 1)πT ] ss1ss2 (5.2)

with:

ssk = Ak
sin [NπT (f − fk)]

sin [πT (f − fk)]
, k = 1, 2. (5.3)

The last term on the right side of Eq. (5.2) is due to the interference
of the two transitions and depends on the maximum number of Ramsey
zones N and the macro-delay step T . This additional interference term
makes Ramsey-comb spectroscopy fundamentally different to, e.g., full
repetition rate FC spectroscopy, which relies on the superposition of exci-
tation amplitudes instead of the upper-state populations (proportional to
the excitation amplitude squared) as for Ramsey-comb spectroscopy. In
practice, spectral line-shaping mechanism such as a finite laser linewidth,
lifetime and Doppler broadening further increase the complexity of these
spectral interferences. For a more elaborate discussion of the analytical
description see Ch. 6.

However, since both the transition frequencies and amplitudes are
fully encoded in the phase evolution of the temporal signal, the fitting
can be performed purely in the time domain without converting to the
frequency domain. Note that the time-domain fit does not rely on am-
plitude information of the Ramsey signals but only on the experimen-
tally more robust phase information. The fitting procedure is illustrated
in Fig. 5.5. First, an arbitrary frequency fref is chosen as a reference
close to the expected value of the measured resonances. The phase of
each individual Ramsey zone is determined relative to the linear refer-
ence phase 2πfref∆t by sinusoidal fits of the experimentally obtained
signals (Fig. 5.5).

These relative phases as a function of macro-delay steps are then
fitted based on the phase of the analytical time-domain signal:

Φfit(∆t;A1, A2, · · · ; f1, f2, · · · ;∆ϕ)

=arg

{∑
k

Akexp(−i2πfk∆t)

}
+∆ϕ− 2πfref∆t, (5.4)
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Figure 5.5: Visualization of the temporal-phase-fitting procedure. (a) Sim-
ulated signal (dots) together with a sinusoidal fit (solid line) and the fixed
frequency reference trace (dashed line); T is the macro-delay step between the
Ramsey zones. (b) Relative phase between the signal and the reference trace.
Two possible fits for frequencies off by 1/T are shown. (c) Frequency-domain
representation of the two possible outcomes from the phase fit.

including a potential, constant phase shift ∆ϕ as an additional parame-
ter. In the experiment, ∆ϕ incorporates constant phase shifts that might
occur during the parametric amplification (which can be as big as a few
hundred mrad depending on the amplifier alignment) of the FC pulses.
However, in Ramsey-comb spectroscopy even a common light shift (due
to the AC-Stark effect) simply adds to ∆ϕ and is therefore decoupled
from the determination of the transition frequencies. This is a crucial
feature since typically the light shift has to be quantized by repeating
the measurement at different power levels and extrapolation to zero ex-
citation power. Because the phase trace is not fully recorded but only
sampled at certain inter-pulse delay steps spaced by T , the frequency
can only be determined modulo 1/T . As an example, Fig. 5.5(b) shows
two groups of frequencies that fit the data equally well but differ by 1/T
as depicted in Fig. 5.5(c). In general, this inherent ambiguity can always
be solved by repeating the measurement at slightly different delay steps
in case no previous measurements are available with sufficient accuracy.
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5.6.3 Discussion of the spectroscopic results

The spectroscopic measurements were performed using two-photon ex-
citation with counter-propagating lasers pulses of typically 5 nm band-
width, chirped to 10 ps pulse duration. For most of the measurements,
the originally mJ-level pulses were attenuated to a few 100 µJ of pulse
energy using neutral grey filters as this was already sufficient and limited
the residual AC-Stark effect. Because of the high energy, intensities of
a few 100 MW/cm2 were obtained despite the rather large beam diam-
eters of 3 - 6 mm in the interaction region. A set of quarter-wave plates
was used to adjust the polarization of both beams to be circular for a
suppression of the one-sided excitation (in addition to the suppression
effect from the pulse chirp). The spectroscopic target consisted of ru-
bidium and cesium vapor in a cell (Toptica) heated to ∼50◦C. The cell
was not shielded against magnetic fields and was manufactured with-
out the use of a buffer gas. In the presented experiment, three different
atomic systems were investigated. Figure 5.6 schematically depicts their
relevant energy levels. All examined transitions are electric-dipole for-
bidden between two S-states (∆L = ∆F = ∆MF = 0), and are excited
non-resonantly via two-photon excitation. The upper and lower energy
levels are split up due to the hyperfine interaction and the transitions
occur between hyperfine levels of the same F-number.

The obtained values for the investigated transitions are the result of
averaging over 28 measurement sets (typical recording time for one set:
10 - 15 min). Within one measurement set, Ramsey fringes of at least
25 different macro-delays are recorded and the transition frequencies
of rubidium or cesium are determined with the help of the previously
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Figure 5.6: Level diagrams of the investigated transitions. The schematics
show the relevant levels for the two rubidium isotopes (85Rb and 87Rb) and
cesium (only one isotope, 133Cs). Indicated are the excitation paths and the
fluorescence light used for detection.
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described time-domain fitting procedure. In Fig. 5.7, a typical example
of such a phase fit is shown.

With the results from the time-domain phase fit we can simulate
the expected Ramsey-signal traces, calculate the spectrum via a discrete
Fourier transform and compare this simulated spectrum to the “exper-
imental” spectrum calculated directly from the experimental Ramsey-
signal traces. The time-domain fit discards amplitude information and,
therefore, does not incorporate spectral line broadening effects as ex-
plained in the previous section. In the spectral domain, however, these
effects need to be included to compare the “experimental” with the sim-
ulated spectra. Figure 5.8 shows such a comparison where a lifetime
of 75 ns and a Doppler width of 2.3 MHz were assumed, both incorpo-
rated via a convolution of the simulated spectrum with the correspond-
ing Lorentzian and Gaussian functions describing lifetime and Doppler
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Figure 5.7: Example of a fitted phase trace from the rubidium measure-
ment. The individual signal phases from different Ramsey zones are fitted
simultaneously according to Eq. (5.4) as described in the text; the individual
signal-phase uncertainties in particular for small zone numbers are too small
to be seen on the graph’s scale. Note that the fit function is discrete and only
defined for integer zone numbers, the dashed line is only drawn for visualization
purposes. Also shown are the phase fit residuals, normalized to the signal-phase
uncertainties.
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broadening, respectively; the dataset is the same as used for Fig. 5.7.
Note that the assumed values for the upper-state lifetime and Doppler
width deviate from their real values as additional line-broadening mech-
anism as, e.g., the linewidth of the comb laser were not incorporated
in the model. Nevertheless, the calculated spectrum shown in Fig. 5.8
provides a straightforward coarse check of the less intuitive graphical
outcome of the temporal phase fit as shown in Fig. 5.7.

The resulting statistical uncertainties of the transition frequencies
(from the time-domain phase fit) of each set are combined with a statis-
tical uncertainty of 20 - 35 kHz, which accounts for random statistical
phase shifts due to power fluctuations of the amplifier system. In order
to give an example of the reproducibility of the measurement, Fig. 5.9
shows the individual measurement results for one of the rubidium tran-
sitions with datasets taken on four different measurement days. From a
combined fit of these individual measurements, the final result (before
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Figure 5.8: Comparison of the calculated signal spectrum with a simple
spectral model. The model uses the transition frequency and amplitude results
from the time-domain fit together with an assumed upper-state lifetime of 75 ns
and Doppler width of 2.3 MHz to better match the calculated “experimental”
spectrum (see the text for more details). Note that this spectral model was
not used for the frequency determination, which was performed purely in the
time domain.
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and the shaded area represents the 1-σ confidence interval of this determination;
the χ2 divided by the number of degrees of freedom is 1.05.

correcting for systematic shifts) was obtained as well as an estimation of
its statistical significance.

Similarly, all other measured transition frequencies were determined,
leading to the results as shown in Tab. 5.1 (including the correction
for systematic shifts). Also quoted in Tab. 5.1 are the commonly used
transition frequencies before hyperfine interaction (“center-of-gravity fre-
quency”) and the hyperfine splitting (A) constants, which are both cal-
culated from the measured transition frequencies between the different
F-states [113]. For rubidium, the isotope shift is derived as the difference
of the center-of-gravity frequencies of the two isotopes.

5.6.3.1 Analysis of systematic effects

A range of systematic effects have been analyzed and taken into account.
Table 5.2 summarizes the relevant systematic effects, which lead to the
corrected results and systematic uncertainties that are shown in Tab. 5.1.
In the following, we briefly discuss the characterization of the individual
systematic effects.

Blackbody radiation. Dynamic Stark shifts due to blackbody radia-
tion are estimated from extrapolating the calculations by Farley and
Wing [114] to the measured temperature of the atomic vapor of 50(5)◦C.
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Frequency description Final result [kHz]
85Rb, F=2 - F=2 788,798,565,751(6)stat(4)sys

5S1/2 - 7S1/2 F=3 - F=3 788,795,814,071(5)stat(4)sys

Centre of gravity 788,796,960,604(4)stat(4)sys

Hyperfine A7S 94,684(2)stat(1)sys
87Rb, F=1 - F=1 788,800,964,104(9)stat(4)sys

5S1/2 - 7S1/2 F=2 - F=2 788,794,768,945(7)stat(4)sys

Centre of gravity 788,797,092,129(6)stat(4)sys

Hyperfine A7S 319,762(6)stat(1)sys

Isotope shift 131,525(7)stat(3)sys
133Cs, F=3 - F=3 806,766,286,786(8)stat(4)sys

6S1/2 - 9S1/2 F=4 - F=4 806,757,534,152(7)stat(4)sys

Centre of gravity 806,761,363,429(5)stat(4)sys

Hyperfine A9S 109,999(3)stat(0)sys

Table 5.1: Final spectroscopic results including the corrections for system-
atic shifts. The statistical and systematic uncertainties are shown in brackets
(denoting the standard 68% confidence interval). Note that most of the sys-
tematic errors cancel when calculating the Hyperfine A constants resulting in
small systematic uncertainties (<0.5 kHz for 133Cs).

85Rb 87Rb 133Cs

F2-2 F3-3 F1-1 F2-2 F3-3 F4-4

Blackbody radiation -0.6(0.0) -0.4(0.0)

1st order Doppler effect 0.7(0.5) 0.1(0.5) -0.4(0.5) -1.8(0.5) no effect

2nd order Doppler shift -0.4(0.0) -0.2(0.0)

2nd order Zeeman shift -3.5(0.8) 2.5(0.6) -1.7(0.4) 1.0(0.2) -2.3(0.5) 1.8(0.4)

Pressure shift 1.5(2.7) -0.6(3.0)

Amplifier phase shift 0.0(2.5) 0.0(2.5)

Residual AC-Stark (1.0)* (2.0)*

Total -2.2(3.9) 3.2(3.9) -1.4(3.9) -0.1(3.9) -3.5(4.4) 0.5(4.4)

Table 5.2: Overview of the systematic shifts and uncertainties. All quoted
values are in kHz. *For the AC-Stark shift effect only the uncertainty is given;
each individual measurement set was corrected separately for the residual AC-
Stark shift (see the explanation in the text).
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Doppler shift. Because of the relatively broad excitation spectrum of
about 5 nm bandwidth, the spectral line broadening due to the Doppler
effect is not completely suppressed by the counter-propagating excita-
tion scheme but only reduced to a few MHz. Nevertheless, because
the spectroscopy was performed in a vapor cell with an isotropic atom-
velocity distribution, the first-order Doppler shift still averages out. The
second-order Doppler shift of the transition frequency fk is calculated
as δfk = fkv

2/2c2 [115], where c is the speed of light and v is the aver-
age speed of the atoms (284(2) m/s for 85Rb, 281(2) m/s for 87Rb and
227(2) m/s for 133Cs), based on the Boltzmann distribution for rubid-
ium and cesium vapor at a temperature of 50(5)◦C. Although a common
spectral line shape has no influence on the results, a difference in residual
Doppler width can indirectly cause some small systematic shifts. This is
the case for the two rubidium isotopes, which have a residual 1st order
Doppler width that differs by about 1%. We simulated this effect taking
into account the measurement conditions and the resulting shifts (on
average <1 kHz) are shown in Tab. 5.2.

Magnetic (Zeeman) shift. The investigated S-S transitions are inher-
ently insensitive to first-order magnetic shifts. The second-order mag-
netic shift depends on the hyperfine quantum number F and can be
calculated using second-order perturbation theory [116, 117]. The shifts
shown in Tab. 5.2 are based on a measured magnetic field of 0.85(0.10) G
in the interaction zone of the gas cell. Because the accuracy of this cali-
bration was sufficient as compared to the other systematic error sources,
no attempt was made to suppress the magnetic field via shielding or ex-
ternal compensation.

Pressure shifts. The atomic vapor cell used in this experiment was man-
ufactured without buffer gas. Nevertheless, in order to estimate poten-
tial frequency errors that depend on the atomic vapor pressure such as
collisions between Rb and Cs atoms, potential background gases or im-
purities, the cell was temporarily heated to >110◦C resulting in a more
than 100 times higher vapor pressures than typically used during the
experiment. Based on frequency measurements at these high pressures
(with reduced accuracy due to detrimental effects from the high vapor
pressure), the potential frequency error was linearly extrapolated to the
typical vapor pressure during the experiments according to a vapor tem-
perature of 50(5)◦C.
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Amplifier phase-shift error. In a separate measurement, we measured
the potential delay dependency of the amplifier phase shift using spec-
tral interferometry analogous to [104]. With the help of an improved
measurement over ∆tmax = 625 ns of inter-pulse delay (in [104] only
pulse delays of ∼330 ns were investigated), the amplifier phase shift was
found to be constant within the accuracy of the phase measurement of
δϕ = 5 mrad (<1/1000 of an optical cycle). Assuming a linear rela-
tion between phase shift and delay, an upper bound for the potential
frequency error can be calculated as 2δϕ/(2π∆tmax) = 2.5 kHz; the ad-
ditional factor 2 is because of the two-photon excitation. In case this
potential frequency error becomes the limiting factor (e.g., when mea-
suring much narrower transitions with longer upper-state lifetimes than
the investigated cesium and rubidium transitions), the phase measure-
ment can straightforwardly be extended with a small technical upgrade
enabling longer pulse delays ∆tmax well into the microsecond range [104].

Residual AC-Stark shift. Ramsey-comb spectroscopy is inherently insen-
sitive to constant phase shifts, which also includes transition-independent
AC-Stark shifts caused by the excitation pulses. However, if during one
measurement set the absolute pulse energy of the excitation pulses sys-
tematically drifts, this can cause a small residual phase change and hence
frequency errors. Therefore, we measured the phase shift a priori as a
function of excitation pulse-energy for both rubidium and cesium. To-
gether with the pulse-energy drift, which was obtained from a linear fit
of the recorded pulse energies during the measurement, the individual fit
results could then be corrected. The applied corrections were typically
<3 kHz for rubidium and <6 kHz for cesium. We estimate the uncer-
tainty of this residual AC-Stark shift correction to be 1.0 kHz in the case
of rubidium and 2.0 kHz for cesium.





Chapter 6
Ramsey-comb spectroscopy: Theory
and signal analysis

In the previous chapter, we demonstrated that the spectroscopic accu-
racy and resolution of optical frequency combs (FCs) can be obtained
from a series of Ramsey-like measurements using only two amplified FC
pulses at variable delays. In this chapter, we present a comprehensive
analytical framework of this “Ramsey-comb” method, both in the time
and frequency domains. It is shown that as opposed to traditional forms
of spectroscopy, the signal analysis can be performed purely in the time
domain based on the temporal phases of the individual Ramsey signals.
We give a detailed description of the robust fitting algorithm relying
solely on this phase information and discuss special features such as an
insensitivity to (transition-independent) spectral line-broadening mech-
anisms and constant phase shifts due to, e.g., the AC-Stark effect from
the excitation pulses themselves. The precision and resolution of the
Ramsey-comb fitting method is assessed via numerical simulations, in-
cluding cases of transition-dependent broadening mechanisms and phase
shifts.

6.1 Introduction

Optical FCs based on mode-locked lasers have become an indispens-
able tool in many laboratories performing ultrahigh-precision frequency
measurements [14, 15, 24, 29]. Because of their ability to link opti-
cal frequencies with radio frequencies from atomic clocks, FCs enable
precise calibration of narrowband spectroscopy lasers leading to fre-
quency measurements with up to 17 digit accuracy [25, 26]. More-
over, FCs themselves can be employed to perform direct FC spectros-
copy [27, 28, 100, 118, 119]. Amplification of the pulsed output of
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FCs is very desirable as it allows one to perform spectroscopy on weak
(multi-photon) transitions and the deployment of nonlinear processes
such as wavelength conversion to explore frequency ranges inaccessible to
continuous-wave lasers. Full repetition rate amplifiers have been used to
increase the pulse energy of, e.g., Ti:sapphire FC lasers [35] and Yb-fiber
FCs [36]. Additionally, enhancement cavities can be employed to further
increase the power level [38, 39] and pulse energies at the 10 µJ-level have
recently been achieved with this method [40]. Producing higher energy
FC pulses remains very challenging because of average power limitations
and dispersion in the enhancement cavities. One way to circumvent
this problem is the phase-coherent amplification of (two) selected pulses
derived from a FC oscillator. We demonstrated amplification of such
pulse pairs to the mJ-level, which allowed for efficient frequency con-
version via high-harmonic generation in a gas jet and enabled precision
spectroscopy in the extreme ultraviolet wavelength region at 51 nm [31].
However, with the experimental system in [31] only two consecutive FC
pulses could be amplified. As a consequence, the Ramsey-type measure-
ment could only record single isolated transitions and the accuracy was
limited by phase shifts during the amplification and in the harmonic
upconversion. We therefore developed a new system capable of produc-
ing amplified FC pulses at the mJ-level with inter-pulse delays that can
be changed over a wide range (in steps of the cavity round-trip time
of the FC) without affecting the optical phase [83, 91, 104]. The sys-
tem provides the new possibility to record a series of Ramsey signals at
different macro delays. This enables Ramsey-comb spectroscopy [120],
which is related to yet fundamentally different from traditional Ramsey
or standard direct FC spectroscopy.

In this chapter, we present an analytical framework of the Ramsey-
comb method and introduce fitting models for both the spectral and
time domains; the latter was used to obtain the high-accuracy frequency
results in [120]. First, we recall the principle of quantum-interference
excitation with laser pulse pairs in order to establish the basic concept
for describing the multi-delay Ramsey-like signals. This concept is then
extended to multiple transitions, and effects such as constant and time-
dependent phase shifts as well as spectral line-broadening mechanisms
are included. With the help of the developed framework, we then briefly
introduce an approach to fit the spectrum as calculated from the Ramsey
signals. Subsequently, we describe in detail the significantly more robust
time-domain fitting procedure based on the combined fit of the individ-
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ual Ramsey-signal phases. Finally, the performance of this phase-fitting
procedure is evaluated on a range of simulated data series.

6.2 Analytical framework

6.2.1 Quantum-interference excitation with laser pulse
pairs

Ramsey-comb spectroscopy is based on Ramsey’s method of separated
oscillating fields [1, 2]. In the optical domain, it is performed by looking
at the quantum-mechanical interference of atomic amplitudes created
by excitation with resonant laser pulses (see, e.g., [8, 37]). Figure 6.1
shows a schematic visualization for an atomic system with an isolated
transition. When a resonant laser pulse interacts with such a system, it
creates a quantum-mechanical superposition of the lower and the upper
state (with energies El and Eu, respectively). While the initial phase
of the atomic superposition is determined by the laser-pulse carrier, it
subsequently evolves with an angular frequency of 2πfk = (Eu − El)/~,
where ~ is the reduced Planck constant. If after a certain delay time
a second atomic superposition is created by another laser pulse, both
superpositions will interfere depending on their relative phase resulting
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1st pulse

Time

Atom phase

|superposition amplitude|2 = Signal
1/fk

1/fk

2nd pulse
 Delay
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Figure 6.1: Visualization of the principle of quantum-interference excitation
with laser pulses in the time domain. If a laser pulse resonantly excites an
atomic transition, the quantum-mechanical phase of the excited atoms evolves
according to the transition frequency of the atomic resonance 2πfk. If this
process is repeated after a certain delay with a second laser pulse, the two
atomic amplitudes will interfere. This results in a sinusoidal signal pattern
(with a period of 1/fk; see the inset) as a function of the inter-pulse delay.
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in an enhanced or decreased net amplitude of the atomic excitation. The
squared absolute value of the resulting amplitude is proportional to the
upper-state population of the atom and forms the experimental signal in
Ramsey-type measurements. Based on the definitions used in [2], we take
the excitation field as square light pulses with an electric field according
to E(ei2πfLt + e−i2πfLt), which act as an external dipole perturbation
to a two-level system. An analytical description for the upper-state
population P after the second excitation pulse can be derived as [2, 121]:

P =
4Ω2

R

b2
sin2 (bτp)

{
cos (bτp) cos

[
2π(fk − fL)tfree − δex

2

]
−π(fk − fL)

b
sin (bτp) sin

[
2π(fk − fL)tfree − δex

2

]}2

, (6.1)

where τp is the duration of the square excitation pulses, tfree is the
duration of the field-free evolution in between the two pulsed excitations,
ΩR = d ·E/~ is the so-called Rabi frequency (which in turn depends on
the electric dipole operator d),

b =

√
Ω2
R + π2 (fk − fL)

2 (6.2)

is known as the Rabi flopping frequency, and δex is a possible phase shift
between the two excitation fields [3]. We now want to cast Eq. (6.1) in
a form more convenient for describing Ramsey signals from laser-pulse
excitation. In Ramsey’s original derivation, tfree denotes the time in
between the two excitation zones, while for laser excitation typically the
time interval (pulse delay) ∆t from the center of the first to the center
of the second laser pulse is used, hence ∆t = tfree+ τp (see Fig. 6.2 for a
visualization of ∆t, tfree and τp). This substitution causes an additional
phase term of π(fk − fL)τp. Furthermore, traditionally, the detuning
fk − fL is changed to obtain Ramsey signals. In contrast, for pulsed laser
excitation typically the (effective) relative phase δex of the excitation
pulses is changed. The latter can be done, e.g., by varying the pulse
delay ∆t via small adjustments of the laser repetition rate frep (while
keeping the carrier-envelope phase offset fixed). This induces an effective
phase change between the excitation zones according to δex = −2πfL∆t
as visualized in Fig. 6.2. With the help of some basic trigonometric
relations, we can now transform Eq. (6.1) into a compact form describing
the optical Ramsey signal (at frequency 2πfk, see Fig. 6.1) as a function
of the pulse-to-pulse delay time ∆t as:

P = A [1 + cos(2πfk∆t+ θ)] , (6.3)
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Figure 6.2: Optical Ramsey spectroscopy requires a laser pulse pair with a
controlled inter-pulse delay and carrier-envelope phase, which can be achieved
by selectively amplifying two pulses from a frequency comb laser. To measure
Ramsey-like signals, the time delay ∆t, and therefore the effective relative
phase of the two amplified pulses δex can be adjusted via small changes of the
frequency comb repetition rate frep.

with the amplitude:

A =
2Ω2

R

b2
sin2 (bτp)

{
cos2(bτp) +

[
π(fk − fL)

b

]2
sin2(bτp)

}
(6.4)

and the constant (delay-independent) phase term:

θ =− 2πτp(fk − fL) + 2tan−1

[
π(fk − fL)

b
tan(bτp)

]
. (6.5)

For zero detuning between laser and transition frequency (fk = fL) it
can be seen that θ = 0. For non-zero detuning and in the low-power
regime (ΩR ≪ |fk−fL|) one can approximate b ≈ π(fk − fL), which also
leads to θ = 0. For these cases, one obtains the well-known expression
describing optical “Ramsey fringes” (see, e.g., [8]):

P = Ak [1 + cos(2πfk∆t)] =
Ak

2
cos2(πfk∆t), (6.6)

with:

Ak := 2sin2 (ΩRτp) cos2 (ΩRτp) . (6.7)
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However, ΩR ≪ |fk − fL| does not hold in general, in particular
when a sizable excitation probability is involved. Therefore, we perform
a Taylor-expansion of θ around τp = 0:

θ =
2π

3
Ω2
R(fk − fL)τ

3
p +O

(
τ5p
)
. (6.8)

We can expect the maximum possible detuning to be of the order of the
spectral bandwidth of the pulse ∼1/τp, thus from the leading term in
the Taylor-expansion we obtain:

|θ| < 2π

3
(τpΩR)

2. (6.9)

The phase shift θ is therefore small as long as τpΩR ≪ 1 holds, which
translates into a low fractional excitation rate from the lower to the upper
state. However, |fk − fL| is typically minimized when optimizing for the
highest Ramsey-fringe amplitude Ak, resulting in a further suppression of
the phase shift by the factor τp/|fk−fL| as compared to Eq. (6.9). Since
θ scales with the intensity of the excitation pulses (∝Ω2

R), the influence
of θ is in practice usually included in the AC-Stark shift calibration of the
coupling from additional, non-resonant levels. In fact, θ can be regarded
as an AC-Stark shift on the resonant transition due to an asymmetric
excitation spectrum.

In the discussed optical form of Ramsey spectroscopy based on exci-
tations with coherent laser pulse pairs, usually only a few periods of the
Ramsey signal P are recorded. The transition frequency fk can never-
theless be determined with high precision from Eq. (6.6) provided both
the delay time ∆t and θ (and additional potential phase shifts such as
the previously mentioned AC-Stark shift) are known. It is the accuracy
of these two parameters that often represents the limiting factor for the
achievable accuracy of the frequency determination.

6.2.2 Combining Ramsey signals from different macro
delays: Ramsey-comb spectroscopy

In traditional Ramsey spectroscopy as described previously, the transi-
tion frequency is determined via an effective extrapolation to zero de-
lay and correction for potential phase shifts. However, the situation
becomes fundamentally different if not one but multiple Ramsey-signal
traces can be measured by changing the delay between the excitation pul-
ses in macro-delay steps. In the following we will describe the relation
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between the combined time-domain Ramsey signals and the resulting
spectral features in the frequency domain. As shown in Fig. 6.3, com-
bining the signal from N scans at regular intervals in steps of T leads
(after Fourier transformation) to spectral features whose widths are simi-
lar to the width as obtained from a continuous signal trace of length NT .
However, due to the subsampling, the spectral pattern repeats at posi-
tions equal to the inverse sampling steps 1/T = <frep>, where <frep>
is the average value of frep during the Ramsey scans. In addition, the
finite length δt of the individual scans gives rise to a further overall am-
plitude modulation of the spectrum. In order to analytically describe
the combined Ramsey signals as sketched in Fig. 6.3, it is convenient to
decompose the time-domain signal into two parts:

St =St,k ·Wt. (6.10a)

The first part of Eq. (6.10a), St,k = St,k(Ak, fk, frep,∆t), describes the
rapid oscillations at the optical transition frequency 2πfk, while the sec-
ond part, Wt = Wt(δt,N, T,∆t), is a macro window function, which de-
pends on the Ramsey-scan interval δt, the time step between the scans T
and the total delay span from the first to the last scan at a macro delay
of NT , where N is the number of individual scans (see Fig. 6.3). The
frequency-domain representation of the signal Sf can then be derived
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Figure 6.3: Individual Ramsey signals and the derived Ramsey-comb spec-
trum, which is calculated as the absolute value squared of the discrete Fourier
transform of the combined time-domain signal. δt: individual scanning inter-
val, T : macro-delay step between two Ramsey scans, N : number of scans.
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via a convolution of the Fourier transformations of the two individual
terms:

Sf = Sf,k ⋆ Wf . (6.10b)

In the time domain, the window function Wt consists of a series of rect-
angular envelopes (rect(x) = 1 for |x| < 1/2, and 0 otherwise), which
can be converted to the frequency-domain representation Wf with the
help of basic Fourier transformations:

Wt =
N∑

n=1

rect
(
∆t− nT

δt

)
, (6.11a)

Wf =δt · sinc(fδt) · exp [−i(N + 1)πTf ] · sin (NπTf)

sin (πTf)
, (6.11b)

with sinc(x) = sin(πx)/(πx). These window functions are combined
with the part that depends on the transition frequency fk, which in the
case of a single resonance with a transition amplitude Ak can be written
as (see Eq. (6.3)):

St,k =Akcos (2πfk∆t) , (6.12a)

Sf,k =
Ak

2
[δ(f − fk) + δ(f + fk)]. (6.12b)

Note that because in practice the constant offset of the measured Ram-
sey signals (see Eq. (6.3)) is typically removed by centering the signals
around zero, we neglected it in Eq. (6.12b) and will continue so in the
following derivations. In addition, we initially also refrain from including
potential phase shifts between the excitation pulses such as θ.

Discarding negative frequencies∗, we can define S+
f,k := A

2 δ(f − fk).
We can then rewrite the expression for the spectrum as a superposition

∗While in general the “leakage” of the negative frequencies diminishes with scan-
ning longer individual Ramsey scans (longer δt), the influence of negative frequency
components can also be minimized by an appropriate choice of the individual scan-
ning interval δt. In order to make the overall envelope from the negative frequency
components zero around the positive transition frequency, one has to ensure that
sin(2fkδt)

!
= 0 ⇔ δt = u/(2fk), with u being an integer. This translates into scan-

ning a multiple of half-cycle Ramsey fringes at each macro-delay step.
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of cosines of different harmonic orders:∣∣∣S+
f

∣∣∣2 = ∣∣∣S+
f,k ⋆ Wf

∣∣∣2
=

(
Akδt

2

)2

sinc2 [(f − fk)δt]

·
N∑

n=1

{2(N − n)cos[n2πT (f − fk)] + 1} , (6.13)

which resembles the spectra from FC pulse trains. However, note that
in Ramsey-comb spectroscopy the temporal signal St is comprised of
individual Ramsey-like measurements of the upper-state population of
the atom. In contrast, the frequency-domain signal in traditional, full
repetition rate FC spectroscopy is based on the coherent superposition
of the upper-state amplitudes accumulated over many excitation pulses.
This fundamental difference between these two techniques will become
more apparent in the following section.

6.2.3 Extension to multiple transitions

Up to now we have considered only the case of a single resonant transi-
tion. When extended to M simultaneously excited transitions of ampli-
tudes Ak and frequencies fk, Eqs. (6.12a) and (6.12b) become:

St,k =

M∑
k=1

Akcos (2πfk∆t) , (6.14a)

Sf,k =
M∑
k=1

Ak

2
[δ(f − fk) + δ(f + fk)]. (6.14b)

This assumes that coherent effects can be neglected in the measurement
of the excited populations (e.g., by suppressing quantum beats in fluo-
rescence detection by averaging the signal over long times compared to
the beating period, or by ionization detection of the excited states).

The full expression for the spectral signal amplitude (restricted to
positive frequencies) can then be written as:

S+
f =

M∑
k=1

Akδt

2
sinc [(f − fk)δt] ·

sin [NπT (f − fk)]

sin [πT (f − fk)]

· exp [−i(N + 1)πT (f − fk)] . (6.15)
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Because of the transition-dependent phase terms, the spectrum (propor-
tional to the absolute value squared of Eq. (6.15)) exhibits complex
interferences. In order to see this more clearly, we limit ourselves to two
transitions (M = 2), introduce the shorthand notation:

ssN,k(fk) :=
Akδt

2

sin [NπT (f − fk)]

sin [πT (f − fk)]
, (6.16)

and approximate:

sinc [(f − fk)δt] ≈ 1 (6.17)

for (f − fk)δt ≪ 1. We can then write the positive-frequency spectrum
in the compact form of:∣∣∣S+

f

∣∣∣2 =ss2N,1 + ss2N,2 + 2cos [(N + 1)πT (f2 − f1)] ssN,1ssN,2. (6.18)

Apart from the linear superposition term ss2N,1+ss2N,2, which would also
be seen in traditional FC spectroscopy, there is an additional interference
term that depends on f2 − f1, N and T . It is these interferences that
complicate the frequency-domain analysis as will be shown in Sec. 6.3.1.

6.2.4 Constant phase shifts

We will now discuss the so far neglected possibility of additional phase
shifts between the Ramsey scans of different macro delays. At first we
consider the case of a potential constant (transition-independent) phase
shift ϕc. With the inclusion of ϕc, Eqs. (6.14a) and (6.14b) become:

St,k =
M∑
k=1

Akcos (2πfk∆t+ ϕc) , (6.19a)

Sf,k =

M∑
k=1

Ak

2
[eiϕcδ(f − fk) + e−iϕcδ(f + fk)]. (6.19b)

It is apparent that in the time domain a constant phase shift simply
causes a global shift of all Ramsey scans together. However, this com-
mon shift does not influence the frequency of the Ramsey-fringes. This
is even more obvious from the frequency-domain representation where
the constant phase shift only produces an additional phase factor. When
the (positive-frequency) spectrum is calculated, this phase factor simply
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drops out as visualized in Fig. 6.4(a). The insensitivity to constant phase
shifts fundamentally distinguishes Ramsey-comb spectroscopy from tra-
ditional Ramsey-type experiments where phase shifts of all kinds can
cause frequency errors. This feature was particularly important for the
high-accuracy Ramsey-comb spectroscopy based on amplified FC pulses
in [120]; because the differential phase shift during the amplification pro-
cess was constant (independent of the delay time), it did not affect the
measurement accuracy in a significant way. Furthermore, in Ramsey-
comb spectroscopy also the well-known light shift due to the AC-Stark
effect from the excitation pulses themselves simply manifests itself as
a constant phase shift of the Ramsey signal (as long as the energy of
the excitation pulses is constant with respect to the delay time). Since
in many practical cases such as the hyperfine transitions in cesium and
rubidium measured in [120], this constant phase shift is common for the
investigated transitions, it simply drops out in the analysis. Note that
the same holds for shifts based on quantum-mechanical interference from
off-resonance states, which do not scale with the power of the excitation
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Figure 6.4: Influence of lifetime and phase-shift effects on the Ramsey-
comb signals (single transition) and the corresponding spectra. (a) Constant
phase shifts have no influence on the spectrum. (b) Delay-dependent phase
shifts are translated into frequency shifts. (c) Exponential decay due to the
finite upper-state lifetime leads to spectral line-broadening but does not shift
the line positions.
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pulses and therefore cannot be determined in the traditional way by
repeated measurements at different power levels [101].

6.2.5 Time-dependent phase shifts

Although Ramsey-comb spectroscopy is insensitive to common constant
phase shifts as discussed previously, the observed frequencies are altered
by phase shifts that depend on the delay time between the two excitation
pulses. The most simple case comprises a phase shift that is linear in
time and can be described as (ϕT denotes a delay-independent constant):

ϕt = ∆t
ϕT

T
. (6.20)

Setting ϕc = 0 for simplicity, Eqs. (6.14a) and (6.14b) then become:

St,k =
M∑
k=1

Akcos(2πfk∆t+ ϕt)

=

M∑
k=1

Akcos
[
2π

(
fk +

ϕT

2πT

)
∆t

]
, (6.21a)

Sf,k =

M∑
k=1

Ak

2

{
δ

[
f −

(
fk +

ϕT

2πT

)]
+ δ

[
f +

(
fk +

ϕT

2πT

)]}
. (6.21b)

The result is an effective frequency shift of ϕT /(2πT ), which is schemati-
cally depicted in Fig. 6.4(b). For a correct interpretation of the Ramsey-
comb frequency results it is therefore of vital importance to accurately
characterize potential delay-dependent phase shifts. One candidate of
such a phase shift typical for spectroscopy relying on FCs is the carrier-
envelope phase slip between consecutive laser pulses, which is straight-
forwardly measured in a self-referencing f-2f-setup and stabilized via a
feedback loop [14, 15].

6.2.6 Spectral line-broadening mechanisms

In practice, the spectral line shapes of the transitions will often be af-
fected by various broadening mechanisms due to, e.g., the Doppler effect
or a finite upper-state lifetime of the excited transitions. In the case
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of the latter, spontaneous emission causes the upper state population
induced by the first pulse to decay over time so that the achievable
Ramsey-fringe contrast after the second excitation will decrease accord-
ingly. In the time domain, this effect is incorporated into the model via a
multiplication of the Ramsey signals with an exponential decay function
(τ is the lifetime of the upper state):

St → St · e−
∆t
2τ . (6.22)

In the single-transition case, the corresponding spectral shape is obtained
via a convolution with a Lorentz-function with a linewidth of 1/(2πτ):

∣∣∣S+
f

∣∣∣2 → |Sf |2 ⋆
[

4τ

1 + (4πfτ)2

]
. (6.23)

As visualized in Fig. 6.4(c), this results in a broadening but not a shift
of the spectral line positions. Similar to the inclusion of lifetime effects,
other line-broadening mechanisms such as Doppler broadening or a finite
laser linewidth can be incorporated via the appropriate multiplications
and convolutions in the time and frequency domains.

However, for more than one simultaneously excited transition, the ef-
fect of the spectral-broadening mechanisms has to be incorporated into
the complex spectral amplitudes described by Eq. (6.15). It will there-
fore also affect the spectral interference terms (see Eq. (6.18)) and thus
cause slight systematic shifts of the spectral line positions. Hence in
the multi-transition frequency-domain analysis of Ramsey-comb spec-
troscopy, all line-shaping effects have to be carefully taken into account
for a correct interpretation of the spectral data.

6.3 Fitting of the Ramsey-comb signals

The main motivation for the development of the analytical Ramsey-
comb model is to enable the fitting of the experimentally obtained sig-
nals so that the properties of the excited resonances can be extracted.
In this section, we will first briefly discuss the more intuitive frequency-
domain fitting approach. Afterward we will focus on an alternative fit-
ting method used to analyze the experimental signals in [120], based
purely in the time domain and found to be significantly more robust
than the spectral fit approach.
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6.3.1 Frequency-domain approach

For a single isolated transition, the spectral analysis is as straightfor-
ward as in traditional direct FC spectroscopy. However, for multiple
transitions, the previously discussed interference terms (see Eq. (6.18))
complicate the spectral fitting procedure. In order to increase the ro-
bustness of the fitting algorithm, an iterative approach can be applied.
For that we split up the absolute squared value of Eq. (6.15):

Sf : =
∣∣∣S+

f

∣∣∣2 = ∣∣∣∣∣
M∑
k=1

sk

∣∣∣∣∣
2

, (6.24)

with:

sk :=

(
Akδt

2

)
sin [(f − fk)δt] ·

sin [NπT (f − fk)]

sin [πT (f − fk)]

· exp [−i(N + 1)πT (f − fk)] , (6.25)

into a part without cross terms (note the different order of summing and
taking the absolute value):

S0f :=
M∑
k=1

|sk|2 (6.26)

and the cross term (“interference term”) itself:

Sintf =Sf − S0f =
M∑
k=1

M∑
k′=1

(1− δkk′)sk (sk′)c.c. , (6.27)

where c.c. denotes the complex conjugate and the Kronecker delta is
defined as δkk′ = 1 for k = k′ and 0 otherwise. The iterative fitting
procedure then consists of the following steps:

(i) Fit S0f to the experimental spectrum, which is corrected for the
interferences Sintf based on the initial parameter guesses.

(ii) From the obtained fit results, (re)calculate Sintf .

(iii) Again, fit the spectrum corrected for the most current Sintf and
continue with the second step until the fit has converged.
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An example of this fitting approach is depicted in Fig. 6.5 based on sim-
ulated data from two transitions 40 MHz apart with an amplitude ratio
of A2/A1 = 0.8, N = 25 and T = 8 ns (see Eq. (6.15)). Given initial pa-
rameter guesses 500 kHz away from the modeled transition frequencies,
the correct interference term Sintf is obtained within ∼100 iterations;
the final fit results match the modeled frequencies within 1 - 2 kHz.
In general, however, experimental noise and the incorporation of line
shapes as discussed in Sec. 6.2.6 severely affect the convergence of the
spectral fit approach. Furthermore, it is in practice very challenging to
fully include all line-shape mechanisms because apart from Doppler and
lifetime broadening, there are various other physical and experimental
effects that also contribute to the actual spectral line shape. The ob-
tained fitting results are therefore prone to (small) systematic deviations.
Because of these issues, we developed an alternative fitting approach,
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Figure 6.5: Example of the iterative spectral-domain fitting procedure for
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ulated spectrum Sf together with the initial and the final fit. (b) Fitting
residuals for certain iterations steps (it). (c) Corresponding interference term
Sintf of the most current fit result.



106 Ramsey-comb spectroscopy: Theory and signal analysis

which is based purely in the time domain and is described in detail in
the following section.

6.3.2 Time-domain approach

In the time domain, the signal from multiple resonances consists of a
complex beating pattern with a time-dependent amplitude, carrier and
phase. While it is possible to simultaneously fit all Ramsey scans on
a global time axis using Eq. (6.10a), typically the fitting process is not
very robust because of the periodicity of the fit function and the strong
coupling between the different fit parameters. In addition, analogous to
the frequency-domain approach described in the previous section, the
inclusion of line-broadening effects further compromises the robustness
of the fitting procedure. Therefore, we developed a fitting model based
solely on the phases of the individual Ramsey fringes. This is possible
because both the amplitudes and transition frequencies are fully encoded
in the phase evolution of the complex beating pattern as visualized in
Fig. 6.6; when multiple transitions are excited simultaneously, the phase
of the Ramsey signals becomes a complex but characteristic function of
the delay time. It is this phase trace that is sampled in Ramsey-comb
spectroscopy and used for the frequency determination.

For analytical convenience, we introduce the complex quantity

Ŝt :=
M∑
k=1

Akexp [−i(2πfk∆t+ ϕc)] , (6.28)

with the real part of Ŝt corresponding to St,k as defined in Eq. (6.19a).
The argument (angle) of Ŝt:

arg(Ŝt) = : Φ(A1,...,AM ,f1,...,fM ,ϕc)(∆t)

=Φ(A1,...,AM ,f1,...,fM ,ϕc=0)(∆t)− ϕc (6.29)

describes the phase of the Ramsey signals and contains both transition
amplitudes and frequencies as parameters as well as the common con-
stant phase shift ϕc. While this phase shift no longer simply drops out as
in the spectral-domain approach, it is still decoupled from the transition
frequencies.

Figure 6.7 visualizes how Eq. (6.29) is used to perform the time-
domain fitting. At first, the phase of the signal carrier at different macro
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delays is determined relative to a fixed reference frequency fref by fitting
each individual Ramsey scan with

g(∆t,∆ϕ, a) = a · cos(2πfref∆t+∆ϕ). (6.30)

While the exact value of fref is not important as it is only used for
comparison, it is conveniently chosen close to the average signal carrier
to facilitate straightforward fitting of the individual Ramsey signals. The
obtained relative phases ∆ϕn (n = 1, 2, ..., N , where N is the number of
measured Ramsey scans) can then be compared to

Φfit :=Φ(A1,...,AM ,f1,...,fM ,ϕc=0)(∆t)− ϕc − 2πfref∆t, (6.31)

as visualized in Fig. 6.7(b). The minimization of |Φfit(∆t)−∆ϕn| for
∆t = nT (n = 1, ..., N) represents an N -dimensional χ2-problem. As
long as the number of Ramsey scans is greater than or equal to the
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number of free parameters, numerical solutions can be obtained via
a standard least-square fitting algorithm. Note that as in traditional
direct FC spectroscopy, the frequencies can only be determined mod-
ulo 1/T = <frep> (see Fig. 6.7(c)). This ambiguity, however, can be
solved either by previous knowledge or by comparing measurements with
slightly different repetition rates.

6.3.3 Numerical simulations of the time-domain fitting
algorithm

In order to investigate the performance and precision of the developed
fitting algorithm, the phase-fitting procedure was tested on a set of sim-
ulated Ramsey signals. The parameter space was kept comprehensible
by limiting the simulations to two transitions (M = 2) with frequencies
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of f1 = 800 THz, f2 = f1 + 40 MHz and amplitudes A1 = 1, A2 = 0.8,
unless stated otherwise. Figure 6.8 shows an example phase trace that
is obtained from N = 25 simulated Ramsey scans. Gaussian noise with
a standard deviation of 0.1 was added to model experimental noise, and
a common upper-state lifetime of τ = 40 ns was incorporated according
to Eq. (6.22) as an example of a line-broadening mechanism.

As can be seen from Fig. 6.8, the reduction of signal amplitude due
to the modeled lifetime leads to a less accurate determination of the
Ramsey-signal phases for longer delay times. However, because the sen-
sitivity of Φfit to changes in signal amplitude or frequency increases with
delay time, the signal phases for longer delays also still have a compa-
rable influence on the fitting result. In order to show this, Φfit was
detuned from its best fit result by changing f1 by 500 kHz (the dashed
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line in Fig. 6.8(a)). While for shorter delays the detuned phase function
is still reasonably close to the obtained signal phases, it exhibits a more
pronounced deviation for longer delay times.

Based on the parameter set shown in Fig. 6.8, a number of fits were
performed for different sets of noise and randomly chosen initial fit pa-
rameters. The initial values for the frequencies and amplitudes were
varied with standard deviations of 200 kHz and 10% of their absolute
value, respectively. In Fig. 6.9, the results for 300 of such fits are shown.
Note that during the fitting process, the amplitude of the first transi-
tion (A1) was kept fixed since Φfit is only sensitive to the ratio of the
amplitudes. Also, the common constant phase ϕc is not fitted, but in
each fit iteration step the average offset between signal and fit phases
is subtracted from the fit results. Figure 6.9 shows that not only the
transition frequencies but also the amplitude ratio can be obtained very
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accurately without any knowledge of the upper-state lifetime or a po-
tential (transition-independent) constant phase shift. The achievable
precision of the fitting (the standard deviation of the fit results based on
300 data sets with different noise and starting parameters) depends on
the modeled signal-to-noise ratio of the Ramsey signals, and scales ap-
proximately linearly with the standard deviation of the applied Gaussian
noise.

6.3.3.1 Influence from neighboring transitions

As the presented fitting algorithm acts purely in the time domain and is
insensitive to common line shape mechanisms, it is interesting to inves-
tigate the resolution of this method, i.e., how the algorithm performs for
two transitions close in frequency. In particular, for the case of two very
unequal transitions one typically expects a strong effect for the weaker
transition. We therefore simulated sets of 25 Ramsey signals as described
previously but with a more unequal amplitude ratio of A2/A1 = 0.4 and
various frequency spacings. As can be seen from Fig. 6.10, the fit preci-
sion gets worse when the two transitions are within about one linewidth
(≈5 MHz) of the transitions. However, even when the two transitions
are almost indistinguishable in the spectral domain, the transition fre-
quency results can still be obtained without sizable systematic offsets.

6.3.3.2 Transition-dependent phase shifts and spectral
line-broadening mechanisms

So far we have assumed that both line-broadening mechanisms and con-
stant phase shifts affect all transitions exactly the same way. While
this is a good approximation for many practical spectroscopic targets of
Ramsey-comb spectroscopy, one can also extend the phase fit function
Φfit to incorporate these transition-dependent effects according to

Φext
fit :=Φext

(A1(∆t),...,AM (∆t),f1,...,fM ,ϕ1,...,ϕM ,ϕc=0)(∆t)− ϕc − 2πfref∆t,

(6.32)

where Φext now relates to an extended version of Eq. (6.28):

Ŝext
t =

M∑
k=1

Ak(∆t)exp [−i(2πfk∆t+ ϕk + ϕc)] . (6.33)
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Figure 6.10: Fit results for two transitions with an amplitude ratio of
A2/A1 = 0.4 and different frequency spacings ∆f21 = f2−f1. (a) Fit precision
from 300 simulated Ramsey-signal sets. The insets show the frequency-domain
representation of four spectra according to certain frequency spacings. (b, c)
Deviations of the mean fit values relative to the modeled transition frequencies
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The ϕk-terms allow for additional transition-dependent phase shifts,
whereas ϕc still represents a transition-independent constant phase shift
and is treated as before. Furthermore, the previously constant ampli-
tudes Ak can now also have a dependence on the delay time ∆t, which
allows us to incorporate individual spectral line-broadening mechanisms.

To investigate individual phase shifts, again 300 datasets are pro-
duced analogously to the simulations that led to the results shown in
Fig. 6.9 but this time incorporating a constant phase shift of 0.4 rad
for the first transition and 0.7 rad for the second; the initial starting
parameters for the individual phase shifts were varied with a standard
deviation of 10% of their absolute value. The results of the fitting series
are shown in Fig. 6.11.

As compared to the results without a differential phase shift (see
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Fig. 6.9), the uncertainties of the transition frequencies have increased by
about a factor of two, but still no systematic deviations are introduced.
In addition, the value of the differential phase shift ∆ϕ21 = ϕ2 − ϕ1 is
also obtained from the analysis (the common phase shift of 0.4 rad is
incorporated in ϕc). Note that apart from A1, ϕ1 was also fixed during
the fitting since for both parameters only the differential values are of
significance.

Returning to common constant phase shifts (ϕk = 0), we now inves-
tigate the influence of delay-time-dependent amplitudes Ak(∆t). For the
case that all transitions are affected the same way, we already discussed
in Sec. 6.2.6 the reduction of signal strength due to, e.g., natural decay
of the upper state or the Doppler effect. Analogous to Eq. (6.22), we
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now incorporate individual lifetimes τk in the form of delay-dependent
amplitudes according to:

Ak(∆t) = Ak(0) · e
− ∆t

2τk . (6.34)

Again, the performance of Φext
fit is investigated by simulating 300 signal

sets as before but with a 10% increased lifetime for the second transition
of τ2 = 44 ns; the initial starting parameters for the lifetimes τk were
varied with a standard deviation of 10%. From the results in Fig. 6.12,
we see again that the uncertainties increased in contrast to the results
shown in Fig. 6.9. Nevertheless, the inclusion of the lifetime does not
induce sizable systematic shifts on the determination of the frequencies
or the amplitude ratio.
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Figure 6.12: Phase-fit results for 300 simulated data sets for two transitions
with an amplitude ratio A2/A1 = 0.8 and an upper-state lifetime ratio of
τ2/τ1 = 1.1; see the text for more details. (a, b) Frequency results relative
to the two input transition frequencies. (c) Obtained transition amplitude
ratio. (d) Obtained transition lifetime ratio. For each histogram, the standard
deviation σ and the mean value µ with its statistical uncertainty are given.
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6.4 Conclusion

In this chapter we presented a comprehensive framework describing the
temporal and spectral representations of spectroscopic signals obtained
by the Ramsey-comb method [120], which relies on the combination of
optical Ramsey signals at variable macro delays. Based on this frame-
work, fitting algorithms in both the time and frequency domains were
developed. The spectral-domain approach was found to be severely com-
promised because of additional interference terms that are not present
in traditional comb spectroscopy. In the time domain, however, it was
shown that the spectroscopic analysis can be performed solely based
on the Ramsey-signal phases from different macro delays. The perfor-
mance of the fitting algorithm was investigated via numerical simula-
tions, verifying that common line-broadening mechanisms and constant
phase shifts, e.g., due to the AC-stark effect do not affect the fitting
outcome. Furthermore, the inclusion of also transition-dependent line-
broadening mechanisms and constant phase shifts only affects the uncer-
tainty of the fit results but does not introduce sizable additional shifts.





Chapter 7
Outlook

In the first part of this outlook chapter, upgrades of the experimental
system are suggested to further enhance its performance. The second
part discusses potential future spectroscopy targets for the Ramsey-comb
spectroscopy method.

7.1 Upgrades of the current system

For the experiments carried out in the course of this thesis, the output
of the employed laser system was fully sufficient. However, the approach
of selective frequency comb (FC) pulse amplification allows for straight-
forward further scaling in both peak and average energy, which would
be beneficial for future experiments requiring higher energies.

In terms of peak energy, the limiting factor is the damage threshold
of the amplifier crystals for the high-energy pump pulses in the post-
amplifier. For lowering the peak intensity by increasing the maximum
useable beam diameter, a second diode-pumped post-amplifier mod-
ule with an almost two times larger crystal rod diameter of 10 mm
(REA10008-3P200H, Cutting Edge Optronics) is ready to be imple-
mented. In the meantime, such an amplifier module has been incorpo-
rated and tested in a similar amplifier configuration producing 1064 nm
pulses with up to 130 mJ of pulse energy [86] (the maximum pump pulse
energy in the rubidium/cesium experiment was 40 mJ). The same com-
pany now also offers laser rod diameters of up to 15 mm diameter with
prospects for even larger-diameter rods in the near future. Therefore,
by implementing such an additional post-amplifier stage, amplified FC
pulse energies of tens of millijoules can straightforwardly be achieved.

In order to speed up the acquisition rate and gather more statistics,
the repetition rate of the system (currently working at 28 Hz) can be
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increased. In fact, a potential increase in repetition rate was one of the
main motivations for changing the pump amplifier to a completely diode-
pumped system. The pre-amplifier readily supports operation at 300 Hz
without any physical adjustment [91], and also the post-amplifier can be
operated at the same rate (see [86]), thus enabling an about ten times
higher acquisition rate than what has been used during the spectroscopy
experiments in this thesis. In order to change the repetition rate of
the post-amplifier, only the imaging within and directly after the post-
amplifier has to be changed to incorporate the increased thermal lensing.

7.2 Future spectroscopy targets

We have demonstrated that in terms of statistics and systematics, the
achievable accuracy of Ramsey-comb spectroscopy is on the same level
as the most precise traditional (i.e., FC) spectroscopy methods. How-
ever, the available high pulse energies makes it particularly interesting
to investigate transitions that are very weak and/or require nonlinear
wavelength conversion.

7.2.1 Molecular hydrogen

The two-photon X-EF transitions in molecular hydrogen and hydro-
gen like systems are particularly interesting targets for Ramsey-comb
spectroscopy. These transitions have recently been measured by our
group [30] with an accuracy of a few MHz using a narrowband, nanosec-
ond pulsed amplified dye laser and nonlinear crystals to produce the
required ultraviolet radiation around 200 nm. By using the method
of Ramsey-comb spectroscopy and the experimental system described
in this thesis, two of the main contributions to the error budget, the
uncertainty of the AC-Stark shift determination and frequency shifts
due to the chirp of the excitation pulses, would not be of concern any-
more. The biggest systematic uncertainty would likely be the residual
Doppler shift, which in [30] led to a systematic uncertainty of 1.1 MHz.
However, this shift can be calibrated considerably more accurately by
changing the velocity of the hydrogen molecules via seeding the hydro-
gen gas with heavier atoms and extrapolating to zero velocity (in [30]
this was not performed because the uncertainties from other systematic
effects dominated the systematic error budget). Therefore, an accuracy
of tens of kHz on these transitions seems feasible, a result, which apart
from stringently testing the theory of quantum electrodynamics (QED)
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in molecules would also put tighter constraints on speculative 5th forces
outside the standard model [122].

7.2.2 The helium ion

While precision spectroscopy on hydrogen currently makes QED the
most accurately tested theory in physics [123], helium exhibits a higher
nuclear charge, which results in an increased sensitivity to high-order
QED corrections [32]. A particular interesting transition would be the
two-photon 1S-2S transition in He+, which so far has not been mea-
sured at all. Similar to hydrogen, the simple, mono-electronic structure
of He+ allows for a very accurate calculation of its energy levels and
thus facilitates very stringent tests of QED by comparing theory and
experiments. It could also provide new insights into the highly-debated
proton-size puzzle [88, 110]. An additional advantage is that because
of its electrical charge, the helium ion can be trapped and (sympathet-
ically) cooled [124]. Hence, it allows for long interaction times and low
systematic uncertainties from second-order Doppler shifts. Direct exci-
tation of the 1S-2S transition requires two photons at 61 nm. While the
wavelength as such can be reached straightforwardly via high-harmonic
generation in a gas jet as employed in [92], producing sufficient power to
drive the weak non-resonant two-photon transition is still a challenge.





Appendix A

Fourier transforms

For the convenience of the reader, this chapter contains a range of Fourier
transforms and functional relationships that were used in the course of
this thesis

A.1 Definition of the Fourier transform

The Fourier transform connecting the time- and frequency-domain repre-
sentations of reasonably well-behaved functions∗ is by convention defined
as [125]:

hf =FT {ht}(f) =
∫ +∞

−∞
ht(t)e

−i2πftdt, (A.1a)

ht =FT −1{hf}(t) =
∫ +∞

−∞
hf (f)e

i2πtfdf. (A.1b)

If we use angular instead of regular frequencies (ω = 2πf), the convention
changes accordingly to:

hω =FT {ht}(ω) =
∫ +∞

−∞
ht(t)e

−iωtdt, (A.2a)

ht =FT −1{hω}(t) =
1

2π

∫ +∞

−∞
hω(ω)e

iωtdω. (A.2b)

∗An all-encompassing condition for the existence of the Fourier transform of a
function h(x) is

∫∞
−∞ |h(x)|2dx < ∞.
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A.2 Lists of common Fourier transforms and
relationships

Most of the applied Fourier transforms throughout the thesis can be de-
duced from the following set of standard transforms (Tab. A.1) and rela-
tions (Tab. A.2), which can be found, e.g., in [125]; sinc(x) = sin(πx)/(πx)
and rect(t) is 1 for |t| < 1/2 and 0 otherwise.

ht(t) hf (f) hω(ω)

e−αt2
√

π
αe

−π2f2

α
√

π
αe

−ω2

4α

e−α|t| 2α
α2+4π2f2

2α
α2+ω2

rect(αt) 1
αsinc

(
f
α

)
1
αsinc

(
ω

2πα

)
sinc(αt) 1

αrect
(
f
α

)
1
αrect

(
ω

2πα

)
δ(t− α) e−iα2πf e−iαω

cos(αt) 1
2

[
δ
(
f − α

2π

)
+ δ

(
f + α

2π

)]
π [δ (ω − α) + δ (ω + α)]

sin(αt) 1
2i

[
δ
(
f − α

2π

)
− δ

(
f + α

2π

)]
π
i [δ (ω + α) + δ (ω − α)]

∞∑
n=−∞

δ(t− nT ) 1
T

∞∑
n=−∞

δ
(
f − n

T

)
2π
T

∞∑
n=−∞

δ
(
ω − 2πn

T

)
∣∣∣∣ ∞∑
n=0

δ(t− nT )

∣∣∣∣ ∣∣∣∣ 1T ∞∑
n=0

δ
(
f − n

T

)∣∣∣∣ ∣∣∣∣2πT ∞∑
n=0

δ
(
ω − 2πn

T

)∣∣∣∣
Table A.1: Set of Fourier-transform pairs that were commonly used in the
course of this thesis. The Fourier transforms of the time-domain function ht(t)
were converted to the frequency-domain representations hf (f) and hω(ω) via
Eqs. (A.1b) and (A.2b), respectively; α and T are positive real numbers.



A.2 Lists of common Fourier transforms and relationships 123

Time domain Frequency domain

ht(t) · h̃t(t) hf (f) ⋆ h̃f (f)
1
2πhω(ω) ⋆ h̃ω(ω)

ht(t) ⋆ h̃t(t) hf (f) · h̃f (f) hω(ω) · h̃ω(ω)

ht(t− α) e−iα2πf · hf (f) e−iαω · hω(ω)

ei2απt · ht(t) hf (f − α) hω(ω − 2πα)

Table A.2: Set of functional Fourier transform relationships between the
time and frequency domains (for both regular and angular frequencies), based
on the definitions in Eqs. (A.1) and (A.2); α is a positive real number.





Appendix B

Quantum interference
excitation with laser

pulses

In this chapter, we present the quantum-mechanical derivation leading
to the basic Ramsey-fringe expression Eq. (6.1), which was used as the
starting point for the Ramsey-comb framework as described in Ch. 6.

B.1 Single-pulse excitation

The state vector of an isolated two-level atomic system can be written
as:

|Ψ⟩ =
(
ce(t)
cg(t)

)
, (B.1)

where cg(t) and ce(t) denote the quantum-mechanical probability ampli-
tudes of finding the atom in the ground and excited states, respectively.
The energy of the system is determined by the Hamilton operator, which
in the case of an unperturbed two-level system is:

H0 = ~
(
−ωk/2 0

0 ωk/2

)
, (B.2)

with the transition frequency determined by the energy difference of the
two states, ωk = (Ee − Eg)/~ (see Fig. B.1); ~ is the reduced Planck
constant. The zero off-diagonal elements of H0 imply that there is no
interaction allowed between the two energy states. However, an exter-
nal electric field E(t) = E0e

−iωL t + E0
∗eiωLt, approximately resonant

with the atomic transition (ωL ≈ ωk), lifts this limitation by inducing a
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g

e

ωk=(Ee-Eg)/hωL

Δω

Figure B.1: Schematic of the abstract two-level atomic system used in
the derivation. Indicated are the external laser frequency ωL and its detuning
∆ω from the transition frequency ωk, which is related to the energy difference
between the excited (e) and ground (g) state; ~ is the reduced Planck constant.

coupling between the states. Since in many cases the size of the atom is
much smaller than the wavelength of the electromagnetic radiation, we
assume a pure dipole interaction that is described by the dipole operator
d21 connecting the lower and upper energy states [126]:

Hint(t) = −d21 ·E(t)

= −
(

0 d∗
21

d21 0

)
·
(
E0e

−iωLt +E∗
0e

iωLt
)

= −~
(

0 ΩRe
−iωLt + Ω̃Re

iωLt

Ω̃∗
Re

−iωLt +Ω∗
Re

iωLt 0

)
, (B.3)

where the Rabi frequency (ΩR = d21 ·E0/~) and the counter-rotating
frequency (Ω̃R = d21 ·E∗

0/~) were introduced in the last step. Con-
sequently, the complete Hamiltonian of the perturbed two-level system
is:

Htot(t) = H0(t) +Hint(t)

= −~
(

−ωk/2 ΩRe
−iωLt + Ω̃Re

iωLt

Ω̃∗
Re

−iωLt +Ω∗
Re

iωLt ωk/2

)
. (B.4)

As a first step to deal with the complex time dependence of Htot, we
transform to another, time-dependent frame of reference (“Schrödinger
picture”) via the unitary transformation described by:

U(t) =
(
e−iωLt/2 0

0 eiωLt/2

)
, (B.5)

which relates the initial state |Ψ⟩ with the transformed state
∣∣Ψ̄⟩ via the

matrix multiplication:

|Ψ⟩ (t) = U(t)
∣∣Ψ̄(t)

⟩
. (B.6)
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In order to transform the Hamiltonian, we insert Eq. (B.6) into the
Schrödinger equation:

i~
∂ |Ψ(t)⟩

∂t
= Htot(t) |Ψ(t)⟩ (B.7)

and multiply the resulting expression by the Hermitian conjugate of the
transformation matrix, U†(t). The result is the transformed Hamilto-
nian:

H̄tot(t) = −i~U(t)†U̇(t) + U(t)†Htot(t)U(t)

= −~
(

(ωL − ωk) /2 ΩR + Ω̃Re
i2ωLt

Ω̃∗
Re

−2iωLt +Ω∗
R − (ωL − ωk) /2

)
. (B.8)

The remaining time-dependent terms that oscillate at 2ωL are commonly
neglected since under the assumption ωL ≈ ωk they are assumed to aver-
age out quickly [127]. By applying this so-called “rotating-wave approx-
imation” (we implicitly neglect the previously defined counter-rotating
frequency Ω̃R = d21 ·E∗

0/~), the Hamiltonian is now completely time-
independent. Writing the difference between the transition and external
field frequencies as ∆ω = ωk − ωL (see Fig. B.1), we can express the
Hamiltonian in the compact form of:

H̄tot = −~
(
−∆ω/2 ΩR

Ω∗
R ∆ω/2

)
. (B.9)

The approximated, time-independent Hamiltonian allows a straightfor-
ward integration of the Schrödinger equation. For a square pulse of
length τp, we obtain the evolved state vector as a function of the initial
state as: ∣∣Ψ̄(τp)

⟩
= e−iH̄totτp/~

∣∣Ψ̄(0)
⟩
. (B.10)

In order to arrive at a more insightful representation of Eq. (B.10),
we rewrite the Hamiltonian as H̄tot = −~b · σ, with:

b =

Re{ΩR}
Im{ΩR}
−∆ω/2

 andσ =

σx
σy
σz

 , (B.11)

in which σ is a vector holding the Pauli matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (B.12)
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We can then expand the exponential operator according to [128]:

e−iH̄totτp/~ =eib·στp

=
∞∑
n=0

1

n!
(itb · σ)n

=cos (bτp)1+ i(b/b) · σsin (bτp) , (B.13)

where 1 denotes the identity matrix and the generalized Rabi frequency
is defined as:

b = |b| =
√

|ΩR|2 + (∆ω/2)2. (B.14)

We can now write the matrix describing the state evolution due to the
interaction with the light pulse as a function of the pulse duration τp in
the convenient form of:

Mpulse = eia·στp

=

(
cos(aτp)− i∆ω

2a sin(aτp) iΩR
a sin(aτp)

i
Ω∗

R
a sin(aτp) cos(aτp) + i∆ω

2a sin(aτp)

)
. (B.15)

Within the underlying approximations (dipole interaction, rotating-wave
approximation and square, monochromatic excitation pulses), Mpulse

enables us to calculate the state vector of an atomic system after exci-
tation with the first laser pulse:∣∣Ψ̄(τp)

⟩
= Mpulse

∣∣Ψ̄(0)
⟩
. (B.16)

B.2 Ramsey fringes from a coherent
double-pulse sequence

In order to incorporate a second interaction with a delayed excitation
pulse, we need to account for the free evolution T − τp of the atomic
state in between the pulses (see Fig. B.2). Neglecting spontaneous decay
and other external influences such as dephasing due to the movement of
the atoms (Doppler broadening), the free evolution matrix Mfree can
be derived from Mpulse for ΩR = 0, i.e., in the absence of an external
electric field:

Mfree =

(
e−i(∆t−τp)∆ω/2 0

0 ei(∆t−τp)∆ω/2

)
. (B.17)
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Figure B.2: Schematic of the two square pulses (each of length τp and
delayed by ∆t) as assumed in the derivation.

Now we can derive the atomic state vector directly after the second
excitation pulse from a series of matrix multiplications:∣∣Ψ̄(∆t+ τp)

⟩
= MpulseMfreeMpulse

∣∣Ψ̄(0)
⟩
. (B.18)

If we assume the atom to be initially in the ground state (cg(0) = 1,
ce(0) = 0, see Eq. (B.1)), the excited-state amplitude will be:

ce(∆t+ τp) = i
2ΩR

b
sin(bτp)

[
cos(bτp)cos

(
ωk∆t− τp∆ω

2

)
−∆ω

2b
sin(bτp)sin

(
ωk∆t− τp∆ω

2

)]
. (B.19)

The absolute value squared of Eq. (B.19) is (with δex = ωL∆t) equiva-
lent to Eq. (6.1), which in Ch. 6 was used as the starting point for the
derivation of the Ramsey-comb framework.

When the external laser field is exactly resonant (∆ω = 0 and hence
b = ΩR), Eq. (B.19) collapses to:

ce(∆t+ τp) = i2sin(ΩRτp)cos(ΩRτp)cos (ωk∆t/2) . (B.20)

The experimentally measurable quantity, however, is not ce but the
upper-state population P ∝ |ce|2, hence for the dependence on the inter-
pulse delay ∆t we find:

P (∆t) ∝ 1 + cos(ωk∆t) . (B.21)

The characteristic periodic pattern of P is usually referred to as Ramsey
fringes [2].

Finally, it should be noted that the derivations in this chapter are
based on the somewhat unphysical assumption of square excitation-pulse
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envelopes. In order to study the influence of more realistic pulse shapes
one can numerically integrate a set of Bloch equations for the density
matrix of the system [129–131]. It can be shown that while the temporal
pulse envelope E0 has an influence on the signal amplitude, it does not
introduce further phase shifts of the Ramsey fringes. Even a temporal
chirp, i.e., a time-depending instantaneous frequency, does not affect the
phase as long as both excitation pulses are equally chirped [132].
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Summary

The most accurate, absolute measurements that we can perform are
time/frequency measurements simply because the physical unit of the
second is the most accurately defined SI-unit. Since 1967, the second is
defined as the duration of 9,192,631,770 periods of a hyperfine transition
frequency in 133Cs and commercial products are available for distributing
this frequency standard at the 10−13-level in many metrology laborato-
ries around the world. With the help of optical frequency combs (FC)
based on mode-locked lasers, this remarkable accuracy can be transferred
all the way from the microwave to the optical domain, thus enabling
high-precision spectroscopy on atomic and molecular systems. Beyond
their use as calibration tools for referencing continuous-wave lasers, FCs
can also be employed themselves as the spectroscopy lasers. This very
successful technique of direct FC spectroscopy combines high accuracy
with high laser intensities and broad wavelength coverage from the pulsed
laser oscillators. However, there are a range of applications that require
even higher intensities, e.g. for the excitation of very weak transitions
or in order to convert the wavelength of the FC to spectral regions
inaccessible by laser oscillators.

In order to reach ultrahigh pulse intensities and energies, our group
has followed the unique approach of coherently amplifying only selected
(two) pulses derived from a regular FC pulse train. Because the average
power can be kept low, this approach allows for a significantly higher
amplification level than alternative methods based on, e.g., full repetition
rate amplification in conjunction with enhancement cavities. While
leading to the first high-precision measurement in the extreme ultraviolet
wavelength region <60 nm, the initial approach nevertheless sacrificed
part of the beauty of the underlying FC as only single, isolated transitions
could be measured and the accuracy was limited by the maximum delay
and phase shifts during the amplification process. To overcome this
limitations a novel spectroscopic method has been developed, “Ramsey-
comb spectroscopy”, which is introduced and demonstrated in the course
of this thesis. Although the Ramsey-comb method still relies on amplified
FC pulse pairs, the new ability to coherently change the inter-pulse delay
over a wide range enables a fundamentally new way of measuring and
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analyzing the spectroscopic signals. We show that the combination of
high-energy laser pulses with the accuracy and resolution of FCs provides
an extremely versatile tool for high-precision spectroscopy. A more
detailed introduction and motivation for producing high peak power FC
pulses is given in Ch. 1 along with a short outline of the thesis, whose
content is summarized in the following paragraphs.

In order to efficiently discuss the technical and conceptual challenges
in the course of this thesis, first some particularly relevant background
is reviewed in Ch. 2. Starting from Maxwell’s fundamental equations,
the concept of temporal and spectral envelopes for laser pulses is derived
and applied to study physical effects such as propagation and dispersion.
Going from single pulses to pulse sequences, one of the key elements of
the Ramsey-comb method is introduced, the optical FC, including a
discussion of how FCs are implemented in practice. Finally, the theory
of two different approaches for amplifying laser pulses is introduced: the
concept of optical parametric amplification, which enables the phase-
coherent amplification of FC pulses, and the more conventional amplifi-
cation in laser gain media, which is employed to create the high-energy
pump pulses for the parametric amplification.

Realizing Ramsey-comb spectroscopy requires a complex experimen-
tal laser system for producing high-energy, multi-delay coherent laser
pulse pairs. The description of the developed system starts in Ch. 3,
which contains a detailed discussion of the pump amplifier system for
producing the high-energy pump pulse pairs for the parametric am-
plifier. First, the home-built, passively mode-locked pump oscillator
is described, whose output is adjusted in terms of pulse duration and
center wavelength. From the full pulse train, two pulses are selected
via programmable pulse pickers at variable delays. Subsequently, these
pulses are amplified in a two-stage, ultrahigh-gain pre-amplifier, boosting
the pulse energy from less than 100 pJ to the 1 mJ-level. The pre-
amplifier is followed by either a flashlamp-pumped or a diode-pumped
post-amplifier. Altogether, the developed laser amplifier system is ca-
pable of producing 1064 nm pump pulse pairs at the 100 mJ-level with
inter-pulse delays of multiples of the cavity round-trip time (∼8 ns) of the
master pump oscillator well into the microsecond range. Furthermore,
the inter-pulse delay can quickly be changed while keeping the optical
paths in the amplifier the same, thus minimizing wavefront deviations
for the second pump pulse as a function of delay time.

The amplified pump pulse pairs from the system described in Ch. 3
are used to pump an optical parametric amplifier, which in turn selec-
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tively amplifies pulse pairs from a synchronized FC oscillator operating
at the same repetition rate as the pump oscillator. The performance of
the parametric amplifier system, in particular the phase stability of the
mJ-level amplified FC pulses, is the main subject of Ch. 4. First, the
home-built Ti:sapphire FC is described, which acts as the seed for the
parametric amplifier. A technical overview of the parametric amplifier
system and the electronic synchronization scheme is then followed by
an extensive study of the phase shift induced by the amplifier, both
via numerical simulations and direct measurements. It is established
that although the amplified FC pulses can exhibit a differential phase
shift of a few 100 mrad, this phase shift remains effectively constant
when changing the inter-pulse delay. This important outcome makes the
experimental system suitable for high-accuracy Ramsey-comb spectros-
copy.

Having concluded the detailed description of the developed laser
system, Ch. 5 shows the capabilities of Ramsey-comb spectroscopy via
a measurement of complex two-photon transitions in atomic rubidium
and cesium. Owing to the good signal-to-noise ratio and a counter-
propagating excitation scheme to reduce Doppler broadening, Ramsey
signals are obtained at more than 40 different macro delays (in steps
of 8 ns), which in the case of rubidium is more than four times the
lifetime of the upper state. With the help of a novel time-domain fitting
algorithm, the excited transition frequencies are determined with an
accuracy better than 10 kHz including systematic uncertainties. For the
weak transitions in cesium, this accuracy level represents a more than
thirty-fold improvement to previous spectroscopic results. This shows
that the Ramsey-comb method can significantly outperform traditional
forms of spectroscopy on transitions that are too weak to be easily excited
with conventional unamplified FCs or continuous-wave lasers.

After its first introduction in the previous chapter, a more compre-
hensive analytical framework of the Ramsey-comb method is presented
in Ch. 6. Starting from Ramsey’s originally derived equation describing
excitation with separated oscillating fields, Ramsey signals from different
macro delays are combined on a global time axis. In the frequency
domain, this combination of individual measurements can be used to
derive a “synthetic” excitation spectrum that resembles spectra obtained
from traditional direct FC spectroscopy. However, it is shown that as
opposed to traditional FC spectra, the spectral analysis is affected by
additional interferences that severely complicate the frequency deter-
mination if more than one resonance is excited. Fortunately, the time-
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domain analysis is found to be much more robust as it relies solely on the
temporal phases of the individual Ramsey scans. This has the additional
advantage of being insensitive towards common spectral line-broadening
effects and (transition-independent) constant phase shifts, due to, e.g.,
the amplification process or the AC-Stark effect from the excitation pul-
ses themselves. Finally, the performance of the presented time-domain
fitting approach is investigated via numerical simulations for different pa-
rameter sets including cases of transition-dependent broadening mecha-
nisms and phase shifts. Within the simulation uncertainties of a few kHz,
no sizeable systematic effects on the fitting results are encountered.

The thesis is concluded by an outlook in Ch. 7, which describes
possible upgrades of the experimental system as well as interesting future
targets for Ramsey-comb spectroscopy such as H2 and He+.



Samenvatting

De Nederlandse titel van dit proefschrift is “Ramsey-kamspectroscopie”.

De meest nauwkeurige absolute metingen die we kunnen uitvoeren
zijn tijd- of frequentiemetingen, simpelweg omdat de fysische eenheid van
de seconde de meest accuraat gedefinieerde SI-eenheid is. Sinds 1967 is
de seconde gedefinieerd als de duur van 9,192,631,770 periodes van een
hyperfijnovergang in 133Cs, en commerciële producten zijn beschikbaar
voor de distributie van deze frequentiestandaard op een niveau van 10−13

in vele metrologielaboratoria over de wereld. Met behulp van opti-
sche frequentiekammen (FK), gebaseerd op gepulste lasers, kan deze bij-
zondere nauwkeurigheid overgebracht worden van het microgolfdomein
naar optische frequenties, en dus hoge-precisie spectroscopie op atomaire
en moleculaire systemen mogelijk maken. Buiten het gebruik als ij-
kingsgereedschap voor het kalibreren van continue lasers kunnen FK’s
ook zelf gebruikt worden als spectroscopielasers. Deze succesvolle tech-
niek van directe FK-spectroscopie combineert een hoge nauwkeurigheid
met de hoge laserintensiteiten en het grote golflengtebereik van gepulste
laseroscillatoren. Er zijn echter vele toepassingen die nog hogere inten-
siteiten nodig hebben, bijvoorbeeld voor de excitatie van zeer zwakke
overgangen of om de golflengtes van de FK naar spectrale gebieden over
te brengen die onbereikbaar zijn voor oscillatoren zelf.

Om ultrahoge pulsintensiteiten en energieën te bereiken heeft onze
groep een unieke aanpak gebruikt waarbij (twee) geselecteerde pulsen
uit een FK-pulstrein coherent worden versterkt. Omdat het gemiddelde
vermogen laag gehouden kan worden, maakt deze aanpak een significant
grotere versterking mogelijk dan alternatieve methoden, zoals bijvoor-
beeld gebaseerd op versterking op de volle repetitiefrequentie gecombi-
neerd met verdere versterking in trilholtes. Ook al heeft de oorspronke-
lijke aanpak geleid tot de eerste hoge-precisiemetingen in het extreem-
ultraviolette golflengtegebied <60 nm, toch moest er wat van de ele-
gantie van de FK worden opgeofferd omdat alleen individuele, geïsoleerde
overgangen gemeten konden worden en de nauwkeurigheid gelimiteerd
werd door de maximale pulsafstand en faseverschuivingen bij het ver-
sterkingsproces. Om deze beperkingen te overwinnen is een nieuwe
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methode ontwikkeld, “Ramsey-kamspectroscopie”, die geïntroduceerd en
gedemonstreerd wordt in dit proefschrift. Ondanks dat de Ramsey-
kammethode nog steeds gebaseerd is op versterkte FK-pulsparen, biedt
de nieuwe mogelijkheid om de vertraging tussen pulsen coherent te ver-
anderen over een groot bereik een fundamentele nieuwe methode om
spectroscopische signalen te meten en analyseren. We laten zien dat
de combinatie van hoge-energie laserpulsen met de nauwkeurigheid en
resolutie van FK’s zorgt voor een extreem veelzijdig gereedschap voor
hoge-precisie-spectroscopie. Een meer gedetailleerde introductie en mo-
tivatie voor het maken van pulsen met hoog piekvermogen wordt gegeven
in Hfdst. 1, samen met een kort overzicht van het proefschrift, waarvan
de inhoud wordt samengevat in de volgende paragrafen.

Om de technische en conceptuele uitdagingen van het werk efficiënt te
kunnen bediscussiëren wordt eerst een overzicht van de relevante achter-
grondinformatie gegeven in Hfdst. 2. Beginnend met de fundamentele
vergelijkingen van Maxwell wordt het concept van temporele en spectrale
vormen van laserpulsen afgeleid en toegepast om fysische effecten zoals
propagatie en dispersie te bestuderen. Bij de overstap van enkele pul-
sen naar pulssequenties wordt één van de belangrijkste elementen van
de Ramsey-kammethode geïntroduceerd, de optische FK, inclusief een
discussie over hoe FK’s in de praktijk geïmplementeerd worden. Als
laatste wordt de theorie van twee verschillende methoden voor het ver-
sterken van laserpulsen geïntroduceerd: Het concept van parametrische
versterking, die het fase-coherent versterken van FK-pulsen mogelijk
maakt, en de meer conventionele versterking in laserversterkingsmedia,
die wordt gebruikt om “pomp”-pulsen met hoge energie te genereren voor
de parametrische versterking.

Het realiseren van Ramsey-kamspectroscopie vereist een complex ex-
perimenteel lasersysteem voor het produceren van hoge-energie laser-
pulsparen met variabele vertraging. De beschrijving van het systeem
begint in Hfdst. 3, die een gedetailleerde discussie bevat van het pomp-
versterkersysteem voor het produceren van pulsparen met hoge energie
voor de parametrische versterker. Eerst wordt de door ons gebouwde
passief-“modengekoppelde” gepulste pomp-oscillator beschreven waarvan
de pulsduur en centrale golflengte aangepast kan worden. Van de vol-
ledige pulstrein worden twee pulsen geselecteerd op een variabele ti-
jdafstand via programmeerbare pulskiezers. Daarna worden deze pul-
sen versterkt in een tweetraps-voorversterker met hoge versterking die
de pulsenergie opstuwt van minder dan 100 pJ tot het 1 mJ-niveau.
De voorversterker wordt gevolgd door een flitslamp- of diodegepompte
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naversterker. Het laserversterkingssysteem is in staat om 1064 nm pomp-
pulsparen op 100 mJ-niveau te produceren met een vertraging tussen
de pulsen die kan oplopen tot vele microseconden, in stappen van de
omlooptijd (∼8 ns) van de hoofd-pomposcillator. Bovendien kan de tijd
tussen pulsen snel veranderd worden terwijl het optische pad in de ver-
sterker hetzelfde blijft, waarmee golffrontverstoringen geminimaliseerd
worden voor de tweede pomppuls als functie van de vertragingstijd.

De versterkte pulsparen van het systeem wat beschreven wordt in
Hfdst. 3 kunnen worden gebruikt om een optische parametrische ver-
sterker mee te pompen, die op zijn beurt selectief pulsparen van een
gesynchroniseerde frequentiekamoscillator versterkt die op dezelfde re-
petitiefrequentie opereert als de oscillator van het pomplasersysteem.
De prestaties van het parametrische-versterkersysteem, in het bijzonder
de fasestabiliteit van de tot mJ-niveau versterkte pulsen, is het hoofd-
onderwerp van Hfdst. 4. Als eerste wordt de zelfgebouwde Ti:saffier-
FK beschreven die dienst doet als beginpunt (“kiem”) voor de para-
metrische versterker. Een technisch overzicht van het parametrische-
versterkersysteem en de opstelling voor de elektronische synchronisatie
wordt dan gevolgd door een uitgebreide studie via zowel numerieke si-
mulaties als directe metingen van de faseverschuiving die geïntroduceerd
wordt door de versterker. Het wordt bevestigd dat zelfs als de ver-
sterkte FK-pulsen een differentieel faseverschil hebben van 100 mrad, dat
dit faseverschil afdoende constant blijft wanneer de tijdafstand tussen
de pulsen veranderd wordt. Dit belangrijke resultaat maakt het ex-
perimentele systeem geschikt voor Ramsey-kamspectroscopie met hoge
nauwkeurigheid.

Na de gedetailleerde beschrijving van het ontwikkelde lasersysteem,
laat Hfdst. 5 zien wat de mogelijkheden zijn van Ramsey-kamspectrosco-
pie via een meting van complexe twee-fotonovergangen in atomair ru-
bidium en cesium. Vanwege de goede signaal-ruisverhouding, en een
configuratie met laserbundels in tegenovergestelde richting om Doppler-
verbreding te reduceren, kunnen Ramsey-signalen verkregen worden op
meer dan 40 verschillende macrovertragingen (in stappen van 8 ns), wat
in het geval van rubidium meer dan vier keer de levensduur van de
bovenste toestand is. Met behulp van een nieuw tijddomein-fitalgoritme
worden de frequenties van de aangeslagen overgangen bepaald met een
nauwkeurigheid beter dan 10 kHz, inclusief systematische onzekerheden.
Voor de zwakke overgangen in cesium is dit een meer dan dertigvoudige
verbetering van eerdere spectroscopische resultaten. Dit laat zien dat de
Ramsey-kammethode traditionele vormen van spectroscopie kan overtr-
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effen bij overgangen die te zwak zijn om makkelijk geëxciteerd te worden
met conventionele onversterkte FK’s (of continue lasers).

Na de eerste introductie in het vorige hoofdstuk, wordt een uitgebrei-
der analytisch raamwerk gepresenteerd van de Ramsey-kammethode in
Hfdst. 6. Beginnend met Ramsey’s originele afgeleide vergelijking die het
exciteren met gescheiden oscillerende velden beschrijft, worden Ramsey-
signalen met verschillende macrovertragingen gecombineerd op een glo-
bale tijdas. In het frequentiedomein kan deze combinatie van individu-
ele meetresultaten gebruikt worden om een “synthetisch” excitatiespec-
trum af te leiden dat lijkt op spectra die verkregen worden met tradi-
tionele directe-kamspectroscopie. Echter, er wordt gedemonstreerd dat
in tegenstelling tot traditionele FK-spectra, de spectrale analyse beïn-
vloed wordt door extra interferenties die de frequentiebepaling ernstig
compliceren als er meer dan één resonantie aangeslagen wordt. Gelukkig
blijkt de tijddomein-analyse een stuk robuuster te zijn omdat die alleen
op de temporele fases van de individuele Ramsey-metingen berust. Dit
heeft als extra voordeel dat het niet gevoelig is voor algemene spectraal-
lijnverbredingseffecten en (overgangsonafhankelijke) constante fasever-
schuivingen zoals door het versterkingsproces, of het AC-Stark-effect als
gevolg van de excitatiepulsen zelf. Als laatste worden de prestaties van
het tijddomein-fitten onderzocht via numerieke simulaties voor verschil-
lende parameterverzamelingen, inclusief gevallen van overgangsafhanke-
lijke verbredingsmechanismen en faseveranderingen. Binnen de simula-
tieonnauwkeurigheden van een paar kHz worden geen aanzienlijke sys-
tematische effecten op de fitresultaten gevonden.

Het proefschrift wordt afgerond met een vooruitblik in Hfdst. 7
waarin mogelijke verbeteringen van het experimentele systeem worden
beschreven, evenals interessante toekomstige doelen voor Ramsey-kam-
spectroscopie zoals H2 en He+.



Dankwoord

So here we are, the most-read part of a thesis. Not many people, in
particular not the smart ones, would try to get a PhD without the help
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top of this I will always remember a lot of nice conversations over a beer
and listening to some great vinyl.

J., again less for work-related but all the more from the social point
of view it is a real pitty to move away from such a nice, smart and caring
person with a refreshing idealistic attitude. Let’s keep in touch.
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155
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