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Overview

First part: Introduction to topological complexity
• Definition and basic properties
• Computations of topological complexity
• Collision-free motion planning

Second part: Recent topics related to topological complexity
• Topology and robot kinematics
• Parametrized topological complexity
• Geodesic complexity
• Spherical complexities
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Definition and basic properties



Topology and robot motion planning

Real-world situation
A robot is supposed to move autonomously from one location
to another in its workspace (e.g. warehouse, grid network, ...).

Topological motion planning problem
Let X be a path-connected topological space. Given x, y ∈ X,
find a path γ ∈ PX = C0([0, 1], X) with γ(0) = x and γ(1) = y.

Definition
Let X be a top. space, A ⊂ X × X. A motion planner over A is a
map s : A→ PX, such that (s(x, y))(0) = x, (s(x, y))(1) = y, for
all (x, y) ∈ A, i.e. a section over A of the fibration

π : PX → X × X, γ 7→ (γ(0), γ(1)).

For a robot to move autonomously in X, we need a motion
planner over X × X. 2



Existence of motion planners

Q: How "simple" can a motion planner over X × X be chosen?

Theorem (Farber, ’03)
Let X be a path-conn. top. space. There exists a continuous
motion planner over X × X if and only if X is contractible.
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Existence of motion planners

Q: How "simple" can a motion planner over X × X be chosen?
Theorem (Farber, ’03)
Let X be a path-conn. top. space. There exists a continuous
motion planner over X × X if and only if X is contractible.

Proof of "⇒".
Let s : X × X → PX be a continuous motion planner. Fix x0 ∈ X.
Define H : X × [0, 1]→ X, H(x, t) = (s(x0, x))(t). Then H is a
homotopy contracting X onto {x0}. 4



Topological complexity

We want robots to move predictably, so we want motion
planners to be continuous on large subsets of X × X and only
have few "jumps" in the path assigments.

Idea: Search for the lowest number of "jumps" of a motion
planner that is necessary by the topology of the space.
Definition (Farber ’03)
Let X be a path-connected top. space. The topological
complexity of X is given by TC(X) ∈ N ∪ {+∞},

TC(X) := inf
{

n ∈ N
∣∣∣ ∃ n⋃

j=1
Uj = X × X open cover, s.t.

∀j ∃sj : Uj → PX cont. motion planner
}
.
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Basic properties of topological complexity

Theorem
If X is a Euclidean neighborhood retract (e.g. a compact
manifold, a finite CW complex), then

TC(X) := inf
{

n ∈ N
∣∣∣ ∃ n⊔

j=1
Aj = X × X, s.t. Aj locally compact,

∀j ∃sj : Aj → PX cont. motion planner
}

Theorem TC(X) is a homotopy invariant, i.e. if X ' Y, then
TC(X) = TC(Y).

Theorem If X is an r-connected polyhedron, then

TC(X) ≤ 2dim X + 1
r + 1 + 1.

Remark TC(X) = 1 ⇔ X is contractible. 6



Approach to computing TC

Problem In general, TC(X) is hard to compute.
Usual strategy to compute it:
• Find a good upper bound for TC(X), e.g. by one of the

following:
• Apply the dim.-connectivity upper bound from above.
• Find an explicit open cover with k sets admitting

continuous motion planners. Then TC(X) ≤ k.
• Find a good lower bound for TC(X), e.g. by

• Cohomology methods (−→ later)
• Comparison to other fibrations (−→ later)

Try to find bounds with "lower bound = upper bound" to
compute TC(X).

Example It was only shown in 2016 by Cohen-Vandembroucq
that TC(Klein bottle) = 5. 7



Example: The topological complexity of spheres (1)

Since Sn is not contractible, TC(Sn) ≥ 2 for all n ∈ N. Define a
motion planner as follows:

A1 = {(x, y) ∈ Sn × Sn | y 6= −x}, s1 : A1 → PSn,

s1(x, y) = param. minimal great circle segment from x to y.
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Example: The topological complexity of spheres (2)

For n odd, fix a nowhere vanishing vector field X on Sn, put

A2 = {(x,−x) ∈ Sn × Sn | x ∈ Sn}, s2 : A2 → PSn,

s2(x,−x) = parametrized semicircle tangent to X(x).

Then A1 t A2 = Sn × Sn ⇒ TC(Sn) = 2.

For n even, fix a vector field X on Sn vanishing at a unique
point x0 ∈ Sn. Put

A2 = {(x,−x) | x ∈ Sn \ {x0}},

define s2 : U2 → PSn as the odd case. Put

A3 = {(x0,−x0)}, s3(x0,−x0) = some semicircle from x0 to −x0.

A1 t A2 t A3 = Sn × Sn ⇒ TC(Sn) ≤ 3.
Hence, TC(Sn) ∈ {2, 3} for even n. (→ later)
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Why study topological complexity?

• Practical applications in the design of automated
mechanical systems

• Connections with other problems from geometry, e.g.
TC(RPn) and existence of immersions RPn → Rk

(−→ details later)
• interesting in its own right as a homotopy invariant, e.g.

Problem Let π be a discrete group. How can we express
TC(K(π, 1)) as an algebraic invariant of π?
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A similar invariant: Lusternik-Schnirelmann category

Definition Let X be a top. space. The Lusternik-Schnirelmann
category of X is given by cat(X) ∈ N ∪ {+∞},

cat(X) := inf
{

n ∈ N
∣∣∣ ∃ n⋃

j=1
Uj = X open cover, s.t.

inclUj : Uj ↪→ X is nullhomotopic ∀j
}
.

Motivated by connection to critical point theory:
Theorem (Lusternik-Schnirelmann ’34, Palais ’65)
Let M be a Hilbert manifold and let f ∈ C1,1(M) be bounded
from below and satisfy the Palais-Smale condition with
respect to a complete Finsler metric on M. Then

#Crit f ≥ cat(M).

−→ book by Cornea/Lupton/Oprea/Tanré (2003) 11



A more general notion: sectional category

Definition (A. Schwarz, ’61)
Let p : E→ B be a fibration. The sectional category or Schwarz
genus of p is given by

secat(p) = inf
{

n ∈ N
∣∣∣ ∃ n⋃

j=1
Uj = B open cover,

sj : Uj
C0
→ E, p ◦ sj = inclUj ∀j

}
.

Special cases:

TC(X) = secat
(
π : PX → X × X, γ 7→ (γ(0), γ(1))

)
,

cat(X) = secat
(

p : Px0X = {γ ∈ PX | γ(0) = x0} → X, γ 7→ γ(1)
)

Relations between cat and TC:

cat(X) ≤ TC(X) ≤ cat(X×X), TC(G) = cat(G) if G top. group. 12



A generalization: higher topological complexities

Imagine a robot is moving to a desired location in a
warehouse. What if the robot needs to pick up items on its
way?

Definition (Rudyak, ’10)
Let X be a path-conn. top. space, n ∈ N with n ≥ 2, consider

πn : PX → Xn, γ 7→
(
γ(0), γ

(
1

n−1

)
, . . . , γ

(
n−2
n−1

)
, γ(1)

)
.

The n-th topological complexity is defined by

TCn(X) := secat(πn : PX → Xn).
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A characterization of sectional category

For fibrations q1 : E1 → B and q2 : E2 → B let
q1 ∗f q2 : E1 ∗f E2 → B denote the fiberwise join of q1 and q2, i.e.
q1 ∗ q2 is a fibration with fiber over b ∈ B given by

(E1 ∗f E2)b = (E1)b ∗ (E2)b,

where ∗ denotes the join of two top. spaces.
Given a fibration p : E→ B, define pn : En → B, n ∈ N, by

p1 := p, pn := pn−1 ∗f p : En := En−1 ∗f E→ B ∀n > 1.

Theorem (Schwarz ’61)

secat(p : E→ B) = inf{n ∈ N | ∃s : B C0
→ En with pn ◦ s = idB}.

−→ Study secat(p) by means of obstruction theory and other
tools from homotopy theory.
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A lower bound by cohomology methods

Given a commutative ring R, a topological space Y and an
ideal I ⊂ H∗(Y; R), let

cl(I) := sup{n | ∃u1, . . . ,un ∈ I∩ H̃∗(Y; R), s.t. u1 ∪ · · · ∪ un 6= 0}.

Theorem (Schwarz, ’61)
Let p : E→ B be a fibration, R be a commutative ring. Then

secat(p) ≥ cl (ker [p∗ : H∗(B; R)→ H∗(E; R)]) + 1.

Put ZR(X) := ker [∆∗ : H∗(X × X; R)→ H∗(X; R)],

where ∆(x) = (x, x). We call elements of ZR(X) zero-divisors.
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A lower bound for topological complexity

Corollary (Farber, 2003) TC(X) ≥ cl(ZR(X)) + 1.
Proof.
Theorem⇒ TC(X) ≥ cl (ker[π∗ : H∗(X × X; R)→ H∗(PX; R)]) + 1.

Let f : X → PX, (f (x))(t) = x for all t ∈ [0, 1], x ∈ X (inclusion of
constant paths). Then the following diagram commutes:

X f //

∆ ""

PX

π{{
X × X

But f is a homotopy equivalence with homotopy inverse
ev0 : PX → X, ev0(γ) = γ(0).

Note If σ ∈ H∗(X; R), then σ̄ := 1× σ − σ × 1 ∈ ZR(X).
16



Improved lower bound using weights of cohomology classes

(Farber-Grant ’07, following Fadell-Husseini ’92, Rudyak ’99)

We can sharpen the lower bound by assigning weights to
cohomology classes,

wgt : H̃∗(X × X; R)→ N0,

with
wgt(u) ≥ 1 ⇔ u ∈ ZR(X),

such that if u1, . . . ,uk ∈ H̃∗(X × X; R) with u1 ∪ u2 ∪ · · · ∪ uk 6= 0,
then

TC(X) ≥
k∑

i=1
wgt(ui) + 1.
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Example: The topological complexity of spheres (3)

Have seen that TC(Sn) ∈ {2, 3} if n is even.

Let [Sn] ∈ Hn(Sn; R) be the fundamental class, put

σ := 1× [Sn]− [Sn]× 1 ∈ ZR(Sn).

Then

σ ∪ σ = −2 · [Sn]× [Sn] 6= 0 ⇒ cl(ZR(Sn)) ≥ 2.

By previous corollary, TC(Sn) ≥ 3. Hence,

TC(Sn) = 3 if n is even.
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Computations of topological
complexities



Robot arms (1)

Consider a robot arm moving in a plane, fixed at a base point,
but otherwise freely moving, consisting of m bars L1, . . . , Lm,
s.t. Li is connected to Li+1 by a flexible join for each
i ∈ {1, 2, . . . ,m− 1}.

(Picture stolen from Farber, Topological complexity of motion planning)

Its space of possible positions is given by Tm = (S1)m.

19



Robot arms (2)

Theorem If X, Y are ENRs, then TC(X × Y) ≤ TC(X) + TC(Y)− 1.

Iterating this result, we obtain

TC(Tm) ≤ m · TC(S1)− (m− 1) = m + 1.

The cohomology lower bound shows that TC(Tm) ≥ m + 1,
hence TC(Tm) = m + 1.

Assume now the same linkage is moving in three-dimensional
space. Its space of possible positions is

M = (S2)m.

Here, TC(M) ≤ m · TC(S2)−m + 1 = 2m + 1. Cohomology lower
bound yields TC(M) = 2m + 1.
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Grid networks

Consider an automatically guided vehicle moving along a wire
network that is fixed on the ground.
Theorem
If Γ is a finite graph (seen as a one-dim. CW complex), then

TC(Γ) =


1 if π1(Γ) = {1},
2 if π1(Γ) ∼= Z,

3 else.
Proof If π1(Γ) = {1}, then Γ is contractible⇒ TC(Γ) = 1.
If π1(Γ) ∼= Z, then Γ has the homotopy type of S1. ⇒ TC(S1) = 2.
If π1(Γ) /∈ {Z, {1}}, then π1(Γ) ∼= Z∗n = Z ∗ · · · ∗ Z for some
n ≥ 2 and Γ '

∨n
i=1 S1. Then cl(H∗(Γ; Z)) ≥ 2 and one derives

that cl(ZZ(Γ)) ≥ 2. ⇒ TC(Γ) ≥ 3.
Since TC(Γ) ≤ 2dim Γ + 1 = 3, the claim follows. 21



Real projective spaces (1)

Consider a metallic bar in 3-dim. space. whose center is fixed
at a revolving joint. Its space of positions corresponds to RP3.

Question What is TC(RPn)?
The lower and upper bounds from above only show

n + 1 ≤ TC(RPn) ≤ 2n + 1.

Theorem (Farber-Tabachnikov-Yuzvinsky ’03)

TC(RPn) =

In n ∈ {1, 3, 7},
In + 1 else,

where In = inf{k ∈ N | ∃ immersion RPn → Rk}.

"≤" is shown constructing explicit local motion planners via
an immersion RPn → Rk.
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Real projective spaces (2)

What about "≥"? (only method of proof in what follows)
Lemma
Let q : X̃ → X be a regular G-covering, let X̃ ×G X̃ := (X̃ × X̃)/ ∼,
where (x1, x2) ∼ (gx1,gx2) for all g ∈ G, x1, x2 ∈ X̃,
p : X̃ ×G X̃ → X × X be induced by q× q. Then

TC(X) ≥ secat(p : X̃ ×G X̃ → X × X).

Proof Let f : PX → X̃ ×G X̃, f (γ) = [(γ̃(0), γ̃(1))], where γ̃ a li�
of γ. Then p ◦ f = π.

⇒ If s : U→ PX is a local section of π, then f ◦ s is a local
section of p.

Apply lemma to two-fold covering q : Sn → RPn to obtain

TC(RPn) ≥ secat(p : Sn ×Z2 Sn → RPn × RPn).
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Real projective spaces (3)

Recall that

secat(p)

= inf{k ∈ N | ∃ cont. section of p∗k : (Sn ×Z2 Sn)∗k → RPn × RPn},

where p∗k is the k-fold fiberwise join of p with itself.

Let ξ → RPn be the tautological line bundle. One shows that
for each k ∈ N, p∗k is the unit sphere bundle of

k(ξ ⊗ ξ) =
k⊕

i=1
(ξ ⊗ ξ)→ RPn × RPn.

⇒ TC(RPn) ≥ inf{k ∈ N | ∃nowhere vanishing section of
k(ξ ⊗ ξ)→ RPn × RPn} =: An.
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Real projective spaces (4)

Show that

An ≥ inf{k ∈ N | ∃ non-singular f : Rn+1 × Rn+1 → Rk+1},

where f : Rn+1 × Rn+1 → Rk+1 is non-singular if

(i) f (λu, µv) = λµf (u, v) ∀λ, µ ∈ R, u, v ∈ Rn+1,
(ii) f (u, v) = 0 ⇔ u = 0 ∨ v = 0.

Use topological result by Adem-Gitler-James ’72 to connect
this to immersions RPn → Rk and derive the claim.

Remark (Gonzalez ’05) There is a connection between TC and
immersion dimension of lens spaces as well.
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Symplectic manifolds (1)

Let (M, ω) be a 2n-dimensional closed symplectic manifold,
i.e. ω ∈ Ω2(M) is a closed non-degenerate 2-form.

Then σ := 1× [ω]− [ω]× 1 ∈ H2(M×M; R) satisfies

σ2n = (−1)n
(

2n
n

)
[ω]n × [ω]n 6= 0,

so cl(ZR(M)) ≥ 2n and thus

TC(M) ≥ 2n + 1.

Theorem
If M is simply connected, then TC(M) = 2n + 1.

Proof.
By dimension/connectivity upper bound, TC(M) ≤ 2·2n+1

2 + 1,
hence TC(M) ≤ 2n + 1. Combine with lower bound from
above. 26



Symplectic manifolds (2)

(M, ω) closed symplectic manifold, dim M = 2n.
Theorem (Grant-M., 2018)
If f ∗ω = 0 for all f : T2 C0

→ M, then TC(M) = 4n + 1.

Method of proof Show that the condition on ω implies that
wgt(σ) ≥ 2, use lower bound by weights,
TC(M) ≥ 2n · wgt(σ) = 4n.

Open problem What is TC(M) in general?

Personal guess Should be related to existence of symplectic
torus actions.

Theorem (Grant, ’12)
If X is a closed manifold that admits a non-trivial smooth
semi-free Tk-action, then TC(X) ≤ 2dim X − k + 1.
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Collision-free motion planning
problem



Simultaneous motion planning for several objects

Motion planning for k robots moving in the same workspace X
corresponds to motion planning in Xk.

Problem Given starting points x1, . . . , xk ∈ X and y1, . . . , yk ∈ X,
find γ1, . . . , γk ∈ PX with γi(0) = xi and γi(1) = yi for all
i ∈ {1, 2, . . . , k}.

Additionally, the robots should not collide during their
movements.

Additional requirement γ1, . . . , γk should satisfy

γi(t) 6= γj(t) ∀i 6= j, t ∈ [0, 1].

→ Study configuration spaces of X.
28



Topological complexity of configuration spaces

Definition
Given a top. space X and k ∈ N, k ≥ 2, consider the
configuration space

F(X, k) := {(x1, . . . , xk) ∈ Xk | xi 6= xj ∀i 6= j}.

To study the collision-free motion planning problem, compute
TC(F(X, k)) for suitable spaces X.
Theorem (Farber-Grant ’09, Farber-Yuzvinsky ’04)

Let n, k ≥ 2. Then TC(F(Rn, k)) =

2k− 1 if n is odd,
2k− 2 if n is even.

.

Problem This result is obtained using sophisticated
techniques from algebraic topology. No explicit construction
method for motion planners... 29



Construction of motion planners for F(R2, k) (1)

(H. Mas-Ku, E. Torres-Giese, Motion planning algorithms for
configuration spaces, 2015)

Define a partial order on R2 by

(x1, y1) ≤ (x2, y2) :⇔ y1 < y2 ∨ (y1 = y2 ∧ x1 ≤ x2.)

Let q = (q1, . . . ,qk) ∈ F(R2, k) with q1 < q2 < · · · < qk.
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Construction of motion planners for F(R2, k) (2)

Then
∃r ∈ N, A(q) := (a1, . . . ,ar) ∈ Nr with |A(q)| := a1 + · · ·+ar = k,

π2(q1) = π2(q2) = · · · = π2(qa1) < π2(qa1+1),

π2(qa1+1) = π2(qa1+2) = · · · = π2(qa1+a2) < π2(qa1+a2+1)

...
π2(qa1+a2+···+ar−1+1) = . . . = π2(qk).

For A ∈
⋃k

r=1 Nr with |A| = k put
F(A) := {q = (q1, . . . ,qk) ∈ F(R2, k) | q1 < · · · < qk, A(q) = A}.

Aim Given A,B ∈
⋃k

r=1 Nr with |A| = |B| = k, want to define
motion planner sA,B : F(A)× F(B)→ P(F(R2, k)).
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Construction of motion planners for F(R2, k) (3)

Let x = (x1, . . . , xk) ∈ F(A), y = (y1, . . . , yk) ∈ F(B), put
p(x, y) := max{maxi |π1(xi)|,maxj |π1(yj)|}, where π1(a,b) = a.
Define h ∈ F(R2, k) ∩ ({p(x, y) + 1} × R) by arranging points as
in the picture (which is stolen from Mas-Ku, Torres-Giese)
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Construction of motion planners for F(R2, k) (4)

Define h′ ∈ F(R2, k) ∩ ({p(x, y) + 2} × R) in the same way with
respect to y. Consider the paths Qx, αx,y,Qy : [0, 1]→ F(R2, k)

given by

• Qx the straight line segment from x to h,
• Qy the straight line segment from y to h′,
• αx,y - the straight line segment from h to h′.

With ∗ denoting concatenation, put

sA,B(x, y) := Qx ∗ αx,y ∗ Qy.

In this way, we obtain a continuous motion planner
sA,B : F(A)× F(B)→ P(F(R2, k)).
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Construction of motion planners for F(R2, k) (5)

For x = (x1, . . . , xk) ∈ F(R2, k), ∃!σx ∈ Σk with

xσx(1) < xσx(2) < · · · < xσx(k).

For σ ∈ Σk and A as above put

F(A, σ) := {x = (x1, . . . , xk) ∈F(R2, k) | σx = σ,

(xσ(1), . . . , xσ(k)) ∈ F(A)}.

Define sA,B,σ,τ : F(A, σ)× F(B, τ)→ P(F(R2, k)) by reordering
the coordinates, applying sA.B and reordering the paths. Put

Fi :=
⋃

(A,B)∈Ni

⋃
σ,τ∈Σk

(F(A, σ)× F(B, τ)).
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Construction of motion planners for F(R2, k) (6)

One shows that

F(R2, k)× F(R2, k) =
2k⊔

i=2
Fi

and that the sA.B,σ,τ assemble to form continuous motion
planners

si : Fi → P(F(R2, k)).

Thus, have explicit continuous motion planners over sets in a
decomposition of (F(R2, k))2 with 2k− 1 open sets.

(⇒ TC(F(R2, k)) ≤ 2k− 1.)

This method was generalized by Farber (’17) to F(Rn, k).
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Variations of topological complexity

• Symmetric motion planning (Farber-Grant ’07)
Consider only motion planners s : X × X → PX with:
• s(x, x) = constant path for all x ∈ X,
• s(x, y) = inverse path of s(y, x) for all x, y ∈ X.

• Equivariant topological complexities Di�erent
approaches to G-spaces and motion planners "behaving
well" w.r.t. group actions.
• (Colman-Grant ’12) Equivariant TC
• (Lubawski-Marzantowicz ’14) Invariant TC
• (Dranishnikov ’15) Strongly equivariant TC
• (Blaszczyk-Kaluba ’18) E�ective TC

• Simplicial complexity (Gonzalez ’18)
• combinatorial approach to motion planning in simplicial

complexes
• algorithmic methods to construct piecewise linear motion

planners 36
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Second part: Recent topics related to topological complexity

1. Topology and robot kinematics (Pavesic, Murillo/Wu)
2. Parametrized motion planning

(Cohen/Farber/Weinberger)
3. Geodesic complexity (Recio-Mitter)
4. Spherical complexities (M.)
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1. Topology and robot kinematics



Motivation

(after Pavešić ’17, ’18; Murillo-Wu ’17)

Consider a robot manipulator with an end e�ector, i.e. some
device/sensor/...., manipulating or measuring something.

In practice, we are only interested in the position of the
end-e�ector. For example, if one uses a robot arm holding a
screwdriver, on is o�en not interested in the position of the
arm (i.e. the particular joints), but only in the position of the
screwdriver.

Idea In practice, don’t need motions between any two
positions of the robot, we just need to get to each position of
the end e�ector. Formalize this.

39



Forward kinematics

With each robot manipulator with end e�ector, we associate
two spaces:

• C - the configuration space, the space of possible
configurations/positions of the robot,

• W - the work space, the space of possible positions of
the end e�ector.

The forward kinematic map or work map is a continuous map
f : C → W associating with every configuration of the robot
the corresponding position of the end e�ector.

40



Example for forward kinematics

Example A robot arm with one joint, rotating as indicated in
the picture:

(stolen from P. Pavešić, A topologist’s view of kinematic maps and manipulation

complexity, many more examples in there)

Here, C = S1 × S1 andW = S2, so the forward kinematic map is
f : S1 × S1 → S2.
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Inverse kinematics and topology

Would like a continuous map s :W → C associating with each
position of the end e�ector a corresponding configuration, i.e.
a continuous section of f .

Theorem (Gottlieb ’86)
Let n ∈ N, let W = S2, W = SO(3) or W = SE(3). A continuous
map f : (S1)n → W does not admit a continuous global section.

(Proof by standard algebraic topology).
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Motion planning and the work map

Given an inital configuration c ∈ C and a desired end e�ector
position w ∈ W , we want to move the robot from c to a
configuration c′ ∈ C with f (c′) = w.

Abstract problem Let C and W be path-connected top. spaces
and f : C → W be continuous and surjective. Given c ∈ C and
w ∈ W, find γ : [0, 1]

C0
→ C with γ(0) = c and f (γ(1)) = w.

Let π : PC → C × C, π(γ) = (γ(0), γ(1)), put
πf := (idC × f ) ◦ π : PC → C ×W. Want local sections of πf .

Problem In general, πf is not a fibration, so techniques for
secat(πf ) might be non-available.

Approach of Murillo-Wu: (roughly) search for sections up to
homotopy.
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Topological complexity of a map

Definition (Pavešić ’17)
Let C and W be path-connected top. spaces, f : C → W cont.
and surjective, πf : PC → C ×W. Then TC(f ) ∈ N ∪ {+∞} is

TC(f ) := inf{n ∈ N | ∃∅ = Q0 ⊂ Q1 ⊆ Q2 ⊆ · · · ⊆ Qn = C ×W

closed, s.t. ∀j ∃sj : Qj r Qj−1
C0
→ PC with πf ◦ sj = inclQjrQj−1}.

Theorem If f is a fibration and W is a metrizable ANR, then
TC(f ) = secat(πf ). In particular, if C = W, then TC(idC) = TC(C).

Aim Compute TC(f ) for examples occuring in actual problems
from kinematics and find explicit motion planners with TC(f )

domains of continuity.

In example from picture, Pavešić computed that TC(f ) ≤ 4.
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2. Parametrized motion planning



Motivation

(after Cohen-Farber-Weinberger ’20)

In several practical situations, one needs to do motion
planning depending on parameters that might change
occasionally, e.g.:

• a robot in a warehouse containing shelves, stacks of
items or other obstacles, whose position might change,

• a submarine in the ocean with mines dri�ing and floating
around.

In both cases, need to do motion planning in X \Q for Q a finite
subset, but we want to keep our motion planners (as) "stable"
(as possible) under small changes of the position of Q.
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Collision-free motion planning with obstacles

Theorem (Fadell-Neuwirth ’62)
Let X be a manifold (without boundary) with dim X ≥ 2. Then

p : F(X,m + n)→ F(X,m),

p(x1, . . . , xm, xm+1, . . . , xm+n) = (x1, . . . , xm),

is a fiber bundle whose fiber is homeomorphic to

F(X \ Qm,n),

where Qm ⊂ X is a set with m elements.

To do collision-free motion planning in X with m obstacles
corresponds to motion planning "inside a fiber" of p.

−→ want a notion of TC that is "stable under changing fibers"
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Parametrized topological complexity

Definition (Cohen-Farber-Weinberger, September 2020)
Let p : E→ B be a fibration with path-connected fiber and put
I := [0, 1]. Let E×B E = {(e1, e2) ∈ E× E | p(e1) = p(e2)} and put

EI
B := {γ ∈ C0(I, E) | ∃b ∈ B s.t. γ(I) ⊂ p−1({b})}.

Then Π : EI
B → E×B E, Π(γ) = (γ(0), γ(1)), is a well-defined

fibration and we put

TC[p : E→ B] := secat(Π : EI
B → E×B E)

= inf
{

n ∈ N
∣∣∣ ∃ n⋃

j=1
Uj = E×B E open cover, s.t. ∀j ∃sj : Uj → EI

B

with Π ◦ sj = inclUj

}
.
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Observations about parametrized TC

Let p : E→ B be a fibration with path-connected fiber F.

• TC[p : E→ B] ≥ TC(F) and TC[p : E→ B]− TC(F) can
become arbitrarily big.

• If p is a principal G-bundle, then

TC[p : E→ B] = TC(G) = cat(G).

• An upper bound: If p : E→ B is a fiber bundle, E, B and F
are CW complexes and F is r-connected, then

TC[p : E→ B] ≤ 2dim F + dim B + 1
r + 1 + 1.

• A lower bound: Let ∆B : E→ E×B E, ∆B(e) = (e, e). Then

TC[p : E→ B] ≥ cl (ker [∆∗B : H∗(E×B E; R)→ H∗(E; R)]) + 1.
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Parametrized TC of configuration spaces

Study the Fadell-Neuwirth fibrations
p : F(Rk,m + n)→ F(Rk,m), corresponding to collision-free
motion planning for n robots in Rk with m mobile obstacles.

Theorem (Cohen-Farber-Weinberger ’20)

a) Let k ≥ 3 be odd, m ≥ 2 and n ≥ 1. Then

TC[p : F(Rk,m + n)→ F(Rk,m)] = 2n + m.

b) For m,n ∈ N it holds that

TC[p : F(R2,m + n)→ F(R2,m)] = 2n + m− 1.
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Comparison with TC of the fiber

The fiber of p : F(Rk,m + n)→ F(Rk,m) is F(Rk \ Qm,n), where
Qm ⊂ Rk with |Qm| = m.

Theorem (Farber-Grant-Yuzvinsky, ’07)
Let m ∈ N.

a) TC(F(R3 \ Qm,n)) = 2n + 1.

b) TC(F(R2 \ Qm,n)) =

2n if m = 1,
2n + 1 if m ≥ 2.

Thus,

TC[p : F(R3,m + n)→ F(R3,m)]− TC(F(R3 \ Qm,n)) = m− 1

which becomes arbitrarily big for m→∞.
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3. Geodesic complexity



The problem with topological motion planning
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Motivation

(after David Recio-Mitter, ’20)

Problem Motion planners with few domains of continuity
may consist of paths that are not feasible or very ine�icient.

Idea Make the additional requirement that all paths should
have minimal length.
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Shortest paths in metric spaces

Definition
Let (X,d) be a metric space and γ : [0, 1]→ X be a rectifiable
curve.

a) γ is called a shortest path if `(γ) = d(γ(0), γ(1)), where
`(γ) = length of γ.

b) γ is called a minimal geodesic if ∃λ ≥ 0 with

d(γ(t1), γ(t2)) = λ|t1 − t2| ∀t1, t2 ∈ [0, 1].

(minimal geodesic⇒ shortest path)
c) (X,d) is called geodesic if for any two x, y ∈ X there exists

a minimal geodesic from x to y.
Idea Study only motion planners s : A→ PX for which s(x, y)

is a shortest path from x to y for all (x, y) ∈ A. 53



Definition of geodesic complexity

Definition (Recio-Mitter ’20)
Let (X,d) a geodesic space, GX := {minimal geodesics in X}
and π : GX → X × X, π(γ) = (γ(0), γ(1)). The geodesic
complexity of X is given by

GC(X) := inf
{

n ∈ N
∣∣∣ ∃ n⊔

j=1
Aj = X × X, s.t. Aj locally compact,

∀j ∃sj : Aj → GX with π ◦ sj = inclAj

}
.

Remark (1) (observed by Recio-Mitter) Would obtain the
same number if we replaced GX by {shortest paths in X}.

(2) In Riemannian manifolds, get the usual definition of
minimal geodesics.

(3) TC(X) ≤ GC(X) if X is an ENR (e.g. a Riemannian manifold). 54



Properties of geodesic complexity

Technical di�iculty π : GX → X × X is not a fibration, so can
not use general results on secat etc.

Theorem GC(Sn) = TC(Sn) for all n ∈ N.

Proof Follows since the motion planners from part 1 are
geodesic.

Theorem GC(RPn) = TC(RPn) for all n ∈ N.

Question Are there examples with TC(X) < GC(X)? If so, how
big can GC(X)− TC(X) become?
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Geodesic complexity and the cut locus (1)

Definition
Let (X,d) be a metric space, x ∈ X. The cut locus of x is

Cx := {y ∈ X | ∃ more than one minimal geodesic from x to y}.

The total cut locus of X is given by C ⊂ X × X

C :=
⋃
x∈X

({x} × Cx.)

Theorem (Blaszczyk/Carrasquel-Vera ’18, Recio-Mitter ’20)
There exists a continuous s : (X × X) r C → GX with
π ◦ s = incl(X×X)rC.

Proof Put s(x, y) := the unique minimal geodesic from x to y
for all (x, y) /∈ C.
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Geodesic complexity and the cut locus (2)

⇒ Geodesic motion planning is completely determined by the
total cut locus.

Problem The total cut locus can be very complicated, only
very few explicit results.

Approach by Recio-Mitter Derive lower and upper bounds for
GC(X) using stratifications of the total cut locus with "good
properties".
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Overview of results on geodesic complexity

Theorem (Recio-Mitter ’20)
Consider T2 with the flat Riemannian metric gf and the metric
ge obtained from embedding T2 in R3. Then

GC(T2,gf ) = TC(T2) = 3, GC(T2,ge) = 4.

Theorem (Recio-Mitter ’20)

a) For every k ∈ N there exists a closed Riemannian manifold
(M,g) with

GC(M,g)− TC(M) ≥ k

(Here, one might choose M = Sk+3 with a suitable metric.)
b) For each k ∈ N there exists a metric gk on Rk+1 with

GC(Rk+1,gk) ≥ k + 1 (while TC(Rk+1) = 1).
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4. Spherical complexities



A warning

Warning: shameless self-promotion!

a�er:

M., Spherical complexities with applications to closed
geodesics, to appear in Algebr. Geom. Topol., 2019.

M., Existence results for closed Finsler geodesics via spherical
complexities, Calc. Var., 2020.
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Estimating numbers of critical points

Theorem (Lusternik-Schnirelmann ’34, Palais ’65)
Let M be a Hilbert manifold and let f ∈ C1,1(M) be bounded
from below and satisfy the Palais-Smale condition with
respect to a complete Finsler metric on M. Then

#Crit f ≥ cat(M).

Method of proof Study catM(f−1((−∞,a]) for increasing a, use
minimax methods.

Problem When studying G-invariant functions on Hilbert
manifolds, where G a Lie group, one wants to count G-orbits of
critical points à la Lusternik-Schnirelmann.

Helpful approach Study equivariant versions of LS-category,
approach of Clapp-Puppe, Bartsch, ... 60



Example: the closed geodesics problem

Let M be a closed manifold, F : TM→ [0,+∞) be a Finsler
metric (e.g. F(x, v) =

√
gx(v, v) for g Riemannian metric),

ΛM := H1(S1,M) = W1,2(S1,M)(' C0(S1,M)),

EF : ΛM→ R, EF(γ) =

∫ 1

0
F(γ(t), γ̇(t))2 dt.

Then ΛM is a Hilbert manifold, EF is C1,1 and S1-invariant and
satisfies the Palais-Smale condition (Mercuri, ’77).

Crit EF = {closed geodesics of F} ∪ {constant loops}.

Two problems for L-S approach:

1. Critical points occur in S1-orbits.
2. {constant loops in M} is a critical submanifold of ΛM.

How to disregard these phenomena?
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Definition of spherical complexities (M., 2019)

Let X top. space, n ∈ N0, Bn+1X := C0(Bn+1, X),
SnX := {f ∈ C0(Sn, X) | f is nullhomotopic}.

Definition
Let A ⊂ SnX. A sphere filling on A is a continuous map
s : A→ Bn+1X with s(γ)|Sn = γ for all γ ∈ A.

SCn,X(A) :=inf
{

r ∈ N
∣∣∣ ∃ r⋃

j=1
Uj ⊃ A open cover, sphere fillings

sj : Uj → Bn+1X ∀j ∈ {1, 2, . . . , r}
}
∈ N ∪ {∞}.

Call SCn(X) := SCn,X(SnX) the n-spherical complexity of X.

Remark SC0(X) = TC(X), the topological complexity of X.
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Properties of spherical complexities

Let X be a metrizable ANR (e.g. a locally finite CW complex).

Proposition Let cn : X → SnX, (cn(x))(p) = x for all p ∈ Sn,
x ∈ X. Then SCn,X(cn(X)) = 1.

Consider the le� O(n + 1)-actions on SnX and Bn+1X by
reparametrization, i.e.

(A · γ)(p) = γ(A−1p) ∀γ ∈ SnX, A ∈ O(n + 1), p ∈ Sn.

Proposition Let G ⊂ O(n + 1) be a closed subgroup and
γ ∈ SnX and let Gγ denote its isotropy group. If Gγ is trivial or
n = 1, then SCn,X(G · γ) = 1.

Proof for Gγ trivial: Take β ∈ Bn+1X with β|Sn = γ, put

s : G · γ → Bn+1X, s(A · γ) = A · β ∀A ∈ G. 63



A Lusternik-Schnirelmann-type theorem for SCn

Theorem (M., 2019)
Let G ⊂ O(n + 1) be a closed subgroup,M⊂ SnX be a
G-invariant Hilbert manifold, f ∈ C1,1(M) be G-invariant. Put
f a := f−1((−∞,a]). Let

ν(f ,a) := #{non-constant G-orbits in Crit f ∩ f a}.

If
• f satisfies the Palais-Smale condition w.r.t. a complete

Finsler metric onM,
• f is constant on cn(X),
• G acts freely on Crit f ∩ f a or n = 1,

then SCn,X(f a) ≤ ν(f ,a) + 1.
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Main theorem for closed geodesics

Let M be a closed manifold, F : TM→ [0,+∞) be a Finsler
metric and let EF : H1(S1,M) ∩ S1M→ R be its energy
functional.

Theorem
Let ν(F,a) be the number of SO(2)-orbits of non-constant
contractible closed geodesics of F of energy ≤ a. Then

ν(F,a) ≥ SC1,M(Ea
F)− 1.

If F is reversible, the same holds for the number of O(2)-orbits
of contractible closed geodesics.

Remark The counting does not distinguish iterates of the
same prime closed geodesic.
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Results on closed geodesics

Theorem (Lusternik-Fet, ’51, for Riemannian manifolds)
Every Finsler metric on a closed manifold admits a
non-constant closed geodesic.

Definition Two closed geodesics γ1, γ2 : S1 → X are
geometrically distinct if γ1(S1) 6= γ2(S1). They are called
positively distinct if they are either geom. distinct or
∃A ∈ O(2) \ SO(2) with γ1 = A · γ2.

• Bangert-Long, 2007: every Finsler metric on S2 has two
positively distinct ones

• Rademacher, 2009: every bumpy Finsler metric on Sn has
two positively distinct ones

• etc., Long-Duan 2009 for S3, Wang 2019 for pinched
metrics on Sn, ...
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New results using spherical complexities

Theorem (M., 2020)
Let M be a closed oriented manifold, F : TM→ [0,+∞) be a
Finsler metric of reversibility λ and flag curvature K. Let `F > 0
be the length of the shortest non-const. closed geodesic of F.

a) If M = S2d, d ≥ 2, 0 < K ≤ 1 and F ≤ 1+λ
λ

√g1, then F
admits two pos. distinct closed geodesics of length < 2`F .
(g1 = round metric of constant curvature 1)

b) If M = S2d+1, d ∈ N, λ2

(1+λ)2 < K ≤ 1 and F ≤ (k+1)(1+λ)
mλ

√g1,
then F admits d 2m

k e pos. distinct closed geodesics of
length < (k + 1)`F.

c) If M = CPn or M = HPn, n ≥ 3, 0 < K ≤ 1 and F ≤ 1+λ
λ

√g1,
then ∃ two pos. distinct closed geodesics of length < 2`F .
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Spherical complexities and closed geodesics

Thank you for your attention!
For more video talks on TC and related topics, see

http://www.birs.ca/events/2020/5-day-workshops/20w5194

BIRS Online Workshop "Topological Complexity and Motion
Planning", September 2020.

http://www.birs.ca/events/2020/5-day-workshops/20w5194
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