LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
APFloat.h
Go to the documentation of this file.
1 //== llvm/Support/APFloat.h - Arbitrary Precision Floating Point -*- C++ -*-==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief
12 /// This file declares a class to represent arbitrary precision floating point
13 /// values and provide a variety of arithmetic operations on them.
14 ///
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef LLVM_ADT_APFLOAT_H
18 #define LLVM_ADT_APFLOAT_H
19 
20 #include "llvm/ADT/APInt.h"
21 
22 namespace llvm {
23 
24 struct fltSemantics;
25 class APSInt;
26 class StringRef;
27 
28 /// Enum that represents what fraction of the LSB truncated bits of an fp number
29 /// represent.
30 ///
31 /// This essentially combines the roles of guard and sticky bits.
32 enum lostFraction { // Example of truncated bits:
33  lfExactlyZero, // 000000
34  lfLessThanHalf, // 0xxxxx x's not all zero
35  lfExactlyHalf, // 100000
36  lfMoreThanHalf // 1xxxxx x's not all zero
37 };
38 
39 /// \brief A self-contained host- and target-independent arbitrary-precision
40 /// floating-point software implementation.
41 ///
42 /// APFloat uses bignum integer arithmetic as provided by static functions in
43 /// the APInt class. The library will work with bignum integers whose parts are
44 /// any unsigned type at least 16 bits wide, but 64 bits is recommended.
45 ///
46 /// Written for clarity rather than speed, in particular with a view to use in
47 /// the front-end of a cross compiler so that target arithmetic can be correctly
48 /// performed on the host. Performance should nonetheless be reasonable,
49 /// particularly for its intended use. It may be useful as a base
50 /// implementation for a run-time library during development of a faster
51 /// target-specific one.
52 ///
53 /// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
54 /// implemented operations. Currently implemented operations are add, subtract,
55 /// multiply, divide, fused-multiply-add, conversion-to-float,
56 /// conversion-to-integer and conversion-from-integer. New rounding modes
57 /// (e.g. away from zero) can be added with three or four lines of code.
58 ///
59 /// Four formats are built-in: IEEE single precision, double precision,
60 /// quadruple precision, and x87 80-bit extended double (when operating with
61 /// full extended precision). Adding a new format that obeys IEEE semantics
62 /// only requires adding two lines of code: a declaration and definition of the
63 /// format.
64 ///
65 /// All operations return the status of that operation as an exception bit-mask,
66 /// so multiple operations can be done consecutively with their results or-ed
67 /// together. The returned status can be useful for compiler diagnostics; e.g.,
68 /// inexact, underflow and overflow can be easily diagnosed on constant folding,
69 /// and compiler optimizers can determine what exceptions would be raised by
70 /// folding operations and optimize, or perhaps not optimize, accordingly.
71 ///
72 /// At present, underflow tininess is detected after rounding; it should be
73 /// straight forward to add support for the before-rounding case too.
74 ///
75 /// The library reads hexadecimal floating point numbers as per C99, and
76 /// correctly rounds if necessary according to the specified rounding mode.
77 /// Syntax is required to have been validated by the caller. It also converts
78 /// floating point numbers to hexadecimal text as per the C99 %a and %A
79 /// conversions. The output precision (or alternatively the natural minimal
80 /// precision) can be specified; if the requested precision is less than the
81 /// natural precision the output is correctly rounded for the specified rounding
82 /// mode.
83 ///
84 /// It also reads decimal floating point numbers and correctly rounds according
85 /// to the specified rounding mode.
86 ///
87 /// Conversion to decimal text is not currently implemented.
88 ///
89 /// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
90 /// signed exponent, and the significand as an array of integer parts. After
91 /// normalization of a number of precision P the exponent is within the range of
92 /// the format, and if the number is not denormal the P-th bit of the
93 /// significand is set as an explicit integer bit. For denormals the most
94 /// significant bit is shifted right so that the exponent is maintained at the
95 /// format's minimum, so that the smallest denormal has just the least
96 /// significant bit of the significand set. The sign of zeroes and infinities
97 /// is significant; the exponent and significand of such numbers is not stored,
98 /// but has a known implicit (deterministic) value: 0 for the significands, 0
99 /// for zero exponent, all 1 bits for infinity exponent. For NaNs the sign and
100 /// significand are deterministic, although not really meaningful, and preserved
101 /// in non-conversion operations. The exponent is implicitly all 1 bits.
102 ///
103 /// APFloat does not provide any exception handling beyond default exception
104 /// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
105 /// by encoding Signaling NaNs with the first bit of its trailing significand as
106 /// 0.
107 ///
108 /// TODO
109 /// ====
110 ///
111 /// Some features that may or may not be worth adding:
112 ///
113 /// Binary to decimal conversion (hard).
114 ///
115 /// Optional ability to detect underflow tininess before rounding.
116 ///
117 /// New formats: x87 in single and double precision mode (IEEE apart from
118 /// extended exponent range) (hard).
119 ///
120 /// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward.
121 ///
122 class APFloat {
123 public:
124 
125  /// A signed type to represent a floating point numbers unbiased exponent.
126  typedef signed short ExponentType;
127 
128  /// \name Floating Point Semantics.
129  /// @{
130 
131  static const fltSemantics IEEEhalf;
132  static const fltSemantics IEEEsingle;
133  static const fltSemantics IEEEdouble;
134  static const fltSemantics IEEEquad;
137 
138  /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with
139  /// anything real.
140  static const fltSemantics Bogus;
141 
142  /// @}
143 
144  static unsigned int semanticsPrecision(const fltSemantics &);
145 
146  /// IEEE-754R 5.11: Floating Point Comparison Relations.
147  enum cmpResult {
152  };
153 
154  /// IEEE-754R 4.3: Rounding-direction attributes.
161  };
162 
163  /// IEEE-754R 7: Default exception handling.
164  ///
165  /// opUnderflow or opOverflow are always returned or-ed with opInexact.
166  enum opStatus {
167  opOK = 0x00,
168  opInvalidOp = 0x01,
169  opDivByZero = 0x02,
170  opOverflow = 0x04,
171  opUnderflow = 0x08,
172  opInexact = 0x10
173  };
174 
175  /// Category of internally-represented number.
176  enum fltCategory {
181  };
182 
183  /// Convenience enum used to construct an uninitialized APFloat.
186  };
187 
188  /// \name Constructors
189  /// @{
190 
191  APFloat(const fltSemantics &); // Default construct to 0.0
192  APFloat(const fltSemantics &, StringRef);
193  APFloat(const fltSemantics &, integerPart);
195  APFloat(const fltSemantics &, const APInt &);
196  explicit APFloat(double d);
197  explicit APFloat(float f);
198  APFloat(const APFloat &);
199  ~APFloat();
200 
201  /// @}
202 
203  /// \brief Returns whether this instance allocated memory.
204  bool needsCleanup() const { return partCount() > 1; }
205 
206  /// \name Convenience "constructors"
207  /// @{
208 
209  /// Factory for Positive and Negative Zero.
210  ///
211  /// \param Negative True iff the number should be negative.
212  static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
213  APFloat Val(Sem, uninitialized);
214  Val.makeZero(Negative);
215  return Val;
216  }
217 
218  /// Factory for Positive and Negative Infinity.
219  ///
220  /// \param Negative True iff the number should be negative.
221  static APFloat getInf(const fltSemantics &Sem, bool Negative = false) {
222  APFloat Val(Sem, uninitialized);
223  Val.makeInf(Negative);
224  return Val;
225  }
226 
227  /// Factory for QNaN values.
228  ///
229  /// \param Negative - True iff the NaN generated should be negative.
230  /// \param type - The unspecified fill bits for creating the NaN, 0 by
231  /// default. The value is truncated as necessary.
232  static APFloat getNaN(const fltSemantics &Sem, bool Negative = false,
233  unsigned type = 0) {
234  if (type) {
235  APInt fill(64, type);
236  return getQNaN(Sem, Negative, &fill);
237  } else {
238  return getQNaN(Sem, Negative, 0);
239  }
240  }
241 
242  /// Factory for QNaN values.
243  static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false,
244  const APInt *payload = 0) {
245  return makeNaN(Sem, false, Negative, payload);
246  }
247 
248  /// Factory for SNaN values.
249  static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false,
250  const APInt *payload = 0) {
251  return makeNaN(Sem, true, Negative, payload);
252  }
253 
254  /// Returns the largest finite number in the given semantics.
255  ///
256  /// \param Negative - True iff the number should be negative
257  static APFloat getLargest(const fltSemantics &Sem, bool Negative = false);
258 
259  /// Returns the smallest (by magnitude) finite number in the given semantics.
260  /// Might be denormalized, which implies a relative loss of precision.
261  ///
262  /// \param Negative - True iff the number should be negative
263  static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false);
264 
265  /// Returns the smallest (by magnitude) normalized finite number in the given
266  /// semantics.
267  ///
268  /// \param Negative - True iff the number should be negative
269  static APFloat getSmallestNormalized(const fltSemantics &Sem,
270  bool Negative = false);
271 
272  /// Returns a float which is bitcasted from an all one value int.
273  ///
274  /// \param BitWidth - Select float type
275  /// \param isIEEE - If 128 bit number, select between PPC and IEEE
276  static APFloat getAllOnesValue(unsigned BitWidth, bool isIEEE = false);
277 
278  /// @}
279 
280  /// Used to insert APFloat objects, or objects that contain APFloat objects,
281  /// into FoldingSets.
282  void Profile(FoldingSetNodeID &NID) const;
283 
284  /// \brief Used by the Bitcode serializer to emit APInts to Bitcode.
285  void Emit(Serializer &S) const;
286 
287  /// \brief Used by the Bitcode deserializer to deserialize APInts.
288  static APFloat ReadVal(Deserializer &D);
289 
290  /// \name Arithmetic
291  /// @{
292 
293  opStatus add(const APFloat &, roundingMode);
297  /// IEEE remainder.
298  opStatus remainder(const APFloat &);
299  /// C fmod, or llvm frem.
300  opStatus mod(const APFloat &, roundingMode);
303  /// IEEE-754R 5.3.1: nextUp/nextDown.
304  opStatus next(bool nextDown);
305 
306  /// @}
307 
308  /// \name Sign operations.
309  /// @{
310 
311  void changeSign();
312  void clearSign();
313  void copySign(const APFloat &);
314 
315  /// @}
316 
317  /// \name Conversions
318  /// @{
319 
320  opStatus convert(const fltSemantics &, roundingMode, bool *);
321  opStatus convertToInteger(integerPart *, unsigned int, bool, roundingMode,
322  bool *) const;
323  opStatus convertToInteger(APSInt &, roundingMode, bool *) const;
326  bool, roundingMode);
328  bool, roundingMode);
330  APInt bitcastToAPInt() const;
331  double convertToDouble() const;
332  float convertToFloat() const;
333 
334  /// @}
335 
336  /// The definition of equality is not straightforward for floating point, so
337  /// we won't use operator==. Use one of the following, or write whatever it
338  /// is you really mean.
339  bool operator==(const APFloat &) const LLVM_DELETED_FUNCTION;
340 
341  /// IEEE comparison with another floating point number (NaNs compare
342  /// unordered, 0==-0).
343  cmpResult compare(const APFloat &) const;
344 
345  /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
346  bool bitwiseIsEqual(const APFloat &) const;
347 
348  /// Write out a hexadecimal representation of the floating point value to DST,
349  /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d.
350  /// Return the number of characters written, excluding the terminating NUL.
351  unsigned int convertToHexString(char *dst, unsigned int hexDigits,
352  bool upperCase, roundingMode) const;
353 
354  /// \name IEEE-754R 5.7.2 General operations.
355  /// @{
356 
357  /// IEEE-754R isSignMinus: Returns true if and only if the current value is
358  /// negative.
359  ///
360  /// This applies to zeros and NaNs as well.
361  bool isNegative() const { return sign; }
362 
363  /// IEEE-754R isNormal: Returns true if and only if the current value is normal.
364  ///
365  /// This implies that the current value of the float is not zero, subnormal,
366  /// infinite, or NaN following the definition of normality from IEEE-754R.
367  bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
368 
369  /// Returns true if and only if the current value is zero, subnormal, or
370  /// normal.
371  ///
372  /// This means that the value is not infinite or NaN.
373  bool isFinite() const { return !isNaN() && !isInfinity(); }
374 
375  /// Returns true if and only if the float is plus or minus zero.
376  bool isZero() const { return category == fcZero; }
377 
378  /// IEEE-754R isSubnormal(): Returns true if and only if the float is a
379  /// denormal.
380  bool isDenormal() const;
381 
382  /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity.
383  bool isInfinity() const { return category == fcInfinity; }
384 
385  /// Returns true if and only if the float is a quiet or signaling NaN.
386  bool isNaN() const { return category == fcNaN; }
387 
388  /// Returns true if and only if the float is a signaling NaN.
389  bool isSignaling() const;
390 
391  /// @}
392 
393  /// \name Simple Queries
394  /// @{
395 
396  fltCategory getCategory() const { return category; }
397  const fltSemantics &getSemantics() const { return *semantics; }
398  bool isNonZero() const { return category != fcZero; }
399  bool isFiniteNonZero() const { return isFinite() && !isZero(); }
400  bool isPosZero() const { return isZero() && !isNegative(); }
401  bool isNegZero() const { return isZero() && isNegative(); }
402 
403  /// Returns true if and only if the number has the smallest possible non-zero
404  /// magnitude in the current semantics.
405  bool isSmallest() const;
406 
407  /// Returns true if and only if the number has the largest possible finite
408  /// magnitude in the current semantics.
409  bool isLargest() const;
410 
411  /// @}
412 
413  APFloat &operator=(const APFloat &);
414 
415  /// \brief Overload to compute a hash code for an APFloat value.
416  ///
417  /// Note that the use of hash codes for floating point values is in general
418  /// frought with peril. Equality is hard to define for these values. For
419  /// example, should negative and positive zero hash to different codes? Are
420  /// they equal or not? This hash value implementation specifically
421  /// emphasizes producing different codes for different inputs in order to
422  /// be used in canonicalization and memoization. As such, equality is
423  /// bitwiseIsEqual, and 0 != -0.
424  friend hash_code hash_value(const APFloat &Arg);
425 
426  /// Converts this value into a decimal string.
427  ///
428  /// \param FormatPrecision The maximum number of digits of
429  /// precision to output. If there are fewer digits available,
430  /// zero padding will not be used unless the value is
431  /// integral and small enough to be expressed in
432  /// FormatPrecision digits. 0 means to use the natural
433  /// precision of the number.
434  /// \param FormatMaxPadding The maximum number of zeros to
435  /// consider inserting before falling back to scientific
436  /// notation. 0 means to always use scientific notation.
437  ///
438  /// Number Precision MaxPadding Result
439  /// ------ --------- ---------- ------
440  /// 1.01E+4 5 2 10100
441  /// 1.01E+4 4 2 1.01E+4
442  /// 1.01E+4 5 1 1.01E+4
443  /// 1.01E-2 5 2 0.0101
444  /// 1.01E-2 4 2 0.0101
445  /// 1.01E-2 4 1 1.01E-2
446  void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
447  unsigned FormatMaxPadding = 3) const;
448 
449  /// If this value has an exact multiplicative inverse, store it in inv and
450  /// return true.
451  bool getExactInverse(APFloat *inv) const;
452 
453 private:
454 
455  /// \name Simple Queries
456  /// @{
457 
458  integerPart *significandParts();
459  const integerPart *significandParts() const;
460  unsigned int partCount() const;
461 
462  /// @}
463 
464  /// \name Significand operations.
465  /// @{
466 
467  integerPart addSignificand(const APFloat &);
468  integerPart subtractSignificand(const APFloat &, integerPart);
469  lostFraction addOrSubtractSignificand(const APFloat &, bool subtract);
470  lostFraction multiplySignificand(const APFloat &, const APFloat *);
471  lostFraction divideSignificand(const APFloat &);
472  void incrementSignificand();
473  void initialize(const fltSemantics *);
474  void shiftSignificandLeft(unsigned int);
475  lostFraction shiftSignificandRight(unsigned int);
476  unsigned int significandLSB() const;
477  unsigned int significandMSB() const;
478  void zeroSignificand();
479  /// Return true if the significand excluding the integral bit is all ones.
480  bool isSignificandAllOnes() const;
481  /// Return true if the significand excluding the integral bit is all zeros.
482  bool isSignificandAllZeros() const;
483 
484  /// @}
485 
486  /// \name Arithmetic on special values.
487  /// @{
488 
489  opStatus addOrSubtractSpecials(const APFloat &, bool subtract);
490  opStatus divideSpecials(const APFloat &);
491  opStatus multiplySpecials(const APFloat &);
492  opStatus modSpecials(const APFloat &);
493 
494  /// @}
495 
496  /// \name Special value setters.
497  /// @{
498 
499  void makeLargest(bool Neg = false);
500  void makeSmallest(bool Neg = false);
501  void makeNaN(bool SNaN = false, bool Neg = false, const APInt *fill = 0);
502  static APFloat makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative,
503  const APInt *fill);
504  void makeInf(bool Neg = false);
505  void makeZero(bool Neg = false);
506 
507  /// @}
508 
509  /// \name Miscellany
510  /// @{
511 
512  bool convertFromStringSpecials(StringRef str);
513  opStatus normalize(roundingMode, lostFraction);
514  opStatus addOrSubtract(const APFloat &, roundingMode, bool subtract);
515  cmpResult compareAbsoluteValue(const APFloat &) const;
516  opStatus handleOverflow(roundingMode);
517  bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const;
518  opStatus convertToSignExtendedInteger(integerPart *, unsigned int, bool,
519  roundingMode, bool *) const;
520  opStatus convertFromUnsignedParts(const integerPart *, unsigned int,
521  roundingMode);
522  opStatus convertFromHexadecimalString(StringRef, roundingMode);
523  opStatus convertFromDecimalString(StringRef, roundingMode);
524  char *convertNormalToHexString(char *, unsigned int, bool,
525  roundingMode) const;
526  opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int,
527  roundingMode);
528 
529  /// @}
530 
531  APInt convertHalfAPFloatToAPInt() const;
532  APInt convertFloatAPFloatToAPInt() const;
533  APInt convertDoubleAPFloatToAPInt() const;
534  APInt convertQuadrupleAPFloatToAPInt() const;
535  APInt convertF80LongDoubleAPFloatToAPInt() const;
536  APInt convertPPCDoubleDoubleAPFloatToAPInt() const;
537  void initFromAPInt(const fltSemantics *Sem, const APInt &api);
538  void initFromHalfAPInt(const APInt &api);
539  void initFromFloatAPInt(const APInt &api);
540  void initFromDoubleAPInt(const APInt &api);
541  void initFromQuadrupleAPInt(const APInt &api);
542  void initFromF80LongDoubleAPInt(const APInt &api);
543  void initFromPPCDoubleDoubleAPInt(const APInt &api);
544 
545  void assign(const APFloat &);
546  void copySignificand(const APFloat &);
547  void freeSignificand();
548 
549  /// The semantics that this value obeys.
550  const fltSemantics *semantics;
551 
552  /// A binary fraction with an explicit integer bit.
553  ///
554  /// The significand must be at least one bit wider than the target precision.
555  union Significand {
556  integerPart part;
557  integerPart *parts;
558  } significand;
559 
560  /// The signed unbiased exponent of the value.
561  ExponentType exponent;
562 
563  /// What kind of floating point number this is.
564  ///
565  /// Only 2 bits are required, but VisualStudio incorrectly sign extends it.
566  /// Using the extra bit keeps it from failing under VisualStudio.
567  fltCategory category : 3;
568 
569  /// Sign bit of the number.
570  unsigned int sign : 1;
571 };
572 
573 /// See friend declaration above.
574 ///
575 /// This additional declaration is required in order to compile LLVM with IBM
576 /// xlC compiler.
577 hash_code hash_value(const APFloat &Arg);
578 } // namespace llvm
579 
580 #endif // LLVM_ADT_APFLOAT_H
opStatus divide(const APFloat &, roundingMode)
Definition: APFloat.cpp:1675
bool isNonZero() const
Definition: APFloat.h:398
bool isNaN() const
Returns true if and only if the float is a quiet or signaling NaN.
Definition: APFloat.h:386
APFloat & operator=(const APFloat &)
Definition: APFloat.cpp:673
void Profile(FoldingSetNodeID &NID) const
Definition: APFloat.cpp:815
static const fltSemantics IEEEdouble
Definition: APFloat.h:133
APFloat(const fltSemantics &)
Definition: APFloat.cpp:788
void clearSign()
Definition: APFloat.cpp:1596
static APFloat getZero(const fltSemantics &Sem, bool Negative=false)
Definition: APFloat.h:212
static const fltSemantics Bogus
Definition: APFloat.h:140
bool isSignaling() const
Returns true if and only if the float is a signaling NaN.
Definition: APFloat.cpp:3743
bool isFiniteNonZero() const
Definition: APFloat.h:399
opStatus convertFromString(StringRef, roundingMode)
Definition: APFloat.cpp:2611
bool bitwiseIsEqual(const APFloat &) const
Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
Definition: APFloat.cpp:755
static const fltSemantics x87DoubleExtended
Definition: APFloat.h:136
signed short ExponentType
A signed type to represent a floating point numbers unbiased exponent.
Definition: APFloat.h:126
opStatus convertToInteger(integerPart *, unsigned int, bool, roundingMode, bool *) const
Definition: APFloat.cpp:2157
static APFloat getQNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=0)
Factory for QNaN values.
Definition: APFloat.h:243
static const fltSemantics IEEEquad
Definition: APFloat.h:134
static APFloat getSNaN(const fltSemantics &Sem, bool Negative=false, const APInt *payload=0)
Factory for SNaN values.
Definition: APFloat.h:249
void copySign(const APFloat &)
Definition: APFloat.cpp:1603
This file implements a class to represent arbitrary precision integral constant values and operations...
uninitializedTag
Convenience enum used to construct an uninitialized APFloat.
Definition: APFloat.h:184
opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int, bool, roundingMode)
Definition: APFloat.cpp:2286
bool isFinite() const
Definition: APFloat.h:373
bool operator==(const APFloat &) const LLVM_DELETED_FUNCTION
static APFloat getSmallest(const fltSemantics &Sem, bool Negative=false)
Definition: APFloat.cpp:3387
hash_code hash_value(const APFloat &Arg)
Definition: APFloat.cpp:2814
static unsigned int semanticsPrecision(const fltSemantics &)
Definition: APFloat.cpp:826
double convertToDouble() const
Definition: APFloat.cpp:3082
static APFloat getInf(const fltSemantics &Sem, bool Negative=false)
Definition: APFloat.h:221
unsigned int convertToHexString(char *dst, unsigned int hexDigits, bool upperCase, roundingMode) const
Definition: APFloat.cpp:2663
opStatus mod(const APFloat &, roundingMode)
C fmod, or llvm frem.
Definition: APFloat.cpp:1731
opStatus convertFromAPInt(const APInt &, bool, roundingMode)
Definition: APFloat.cpp:2238
A self-contained host- and target-independent arbitrary-precision floating-point software implementat...
Definition: APFloat.h:122
friend hash_code hash_value(const APFloat &Arg)
Overload to compute a hash code for an APFloat value.
bool isNegZero() const
Definition: APFloat.h:401
static APFloat getSmallestNormalized(const fltSemantics &Sem, bool Negative=false)
Definition: APFloat.cpp:3397
cmpResult compare(const APFloat &) const
Definition: APFloat.cpp:1859
fltCategory
Category of internally-represented number.
Definition: APFloat.h:176
opStatus fusedMultiplyAdd(const APFloat &, const APFloat &, roundingMode)
Definition: APFloat.cpp:1771
static APFloat ReadVal(Deserializer &D)
Used by the Bitcode deserializer to deserialize APInts.
opStatus convert(const fltSemantics &, roundingMode, bool *)
Definition: APFloat.cpp:1938
void changeSign()
Definition: APFloat.cpp:1589
fltCategory getCategory() const
Definition: APFloat.h:396
static const fltSemantics IEEEhalf
Definition: APFloat.h:131
bool needsCleanup() const
Returns whether this instance allocated memory.
Definition: APFloat.h:204
opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int, bool, roundingMode)
Definition: APFloat.cpp:2258
bool isPosZero() const
Definition: APFloat.h:400
static const fltSemantics PPCDoubleDouble
Definition: APFloat.h:135
roundingMode
IEEE-754R 4.3: Rounding-direction attributes.
Definition: APFloat.h:155
lostFraction
Definition: APFloat.h:32
bool isNegative() const
Definition: APFloat.h:361
opStatus add(const APFloat &, roundingMode)
Definition: APFloat.cpp:1642
bool isDenormal() const
Definition: APFloat.cpp:687
opStatus multiply(const APFloat &, roundingMode)
Definition: APFloat.cpp:1656
static APFloat getAllOnesValue(unsigned BitWidth, bool isIEEE=false)
Definition: APFloat.cpp:3320
#define LLVM_DELETED_FUNCTION
Definition: Compiler.h:137
Class for arbitrary precision integers.
Definition: APInt.h:75
APInt bitcastToAPInt() const
Definition: APFloat.cpp:3050
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Definition: APFloat.cpp:3377
An opaque object representing a hash code.
Definition: Hashing.h:79
static APFloat getNaN(const fltSemantics &Sem, bool Negative=false, unsigned type=0)
Definition: APFloat.h:232
void toString(SmallVectorImpl< char > &Str, unsigned FormatPrecision=0, unsigned FormatMaxPadding=3) const
Definition: APFloat.cpp:3511
static const fltSemantics IEEEsingle
Definition: APFloat.h:132
opStatus roundToIntegral(roundingMode)
Definition: APFloat.cpp:1815
float convertToFloat() const
Definition: APFloat.cpp:3073
void Emit(Serializer &S) const
Used by the Bitcode serializer to emit APInts to Bitcode.
bool isSmallest() const
Definition: APFloat.cpp:694
bool isZero() const
Returns true if and only if the float is plus or minus zero.
Definition: APFloat.h:376
bool isLargest() const
Definition: APFloat.cpp:747
bool isInfinity() const
IEEE-754R isInfinite(): Returns true if and only if the float is infinity.
Definition: APFloat.h:383
opStatus next(bool nextDown)
IEEE-754R 5.3.1: nextUp/nextDown.
Definition: APFloat.cpp:3756
opStatus remainder(const APFloat &)
IEEE remainder.
Definition: APFloat.cpp:1694
cmpResult
IEEE-754R 5.11: Floating Point Comparison Relations.
Definition: APFloat.h:147
bool getExactInverse(APFloat *inv) const
Definition: APFloat.cpp:3714
const fltSemantics & getSemantics() const
Definition: APFloat.h:397
opStatus subtract(const APFloat &, roundingMode)
Definition: APFloat.cpp:1649
bool isNormal() const
Definition: APFloat.h:367
uint64_t integerPart
Definition: APInt.h:35