LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
BitVector.h
Go to the documentation of this file.
1 //===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the BitVector class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ADT_BITVECTOR_H
15 #define LLVM_ADT_BITVECTOR_H
16 
17 #include "llvm/Support/Compiler.h"
20 #include <algorithm>
21 #include <cassert>
22 #include <climits>
23 #include <cstdlib>
24 
25 namespace llvm {
26 
27 class BitVector {
28  typedef unsigned long BitWord;
29 
30  enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT };
31 
32  BitWord *Bits; // Actual bits.
33  unsigned Size; // Size of bitvector in bits.
34  unsigned Capacity; // Size of allocated memory in BitWord.
35 
36 public:
37  // Encapsulation of a single bit.
38  class reference {
39  friend class BitVector;
40 
41  BitWord *WordRef;
42  unsigned BitPos;
43 
44  reference(); // Undefined
45 
46  public:
47  reference(BitVector &b, unsigned Idx) {
48  WordRef = &b.Bits[Idx / BITWORD_SIZE];
49  BitPos = Idx % BITWORD_SIZE;
50  }
51 
53 
55  *this = bool(t);
56  return *this;
57  }
58 
59  reference& operator=(bool t) {
60  if (t)
61  *WordRef |= 1L << BitPos;
62  else
63  *WordRef &= ~(1L << BitPos);
64  return *this;
65  }
66 
67  operator bool() const {
68  return ((*WordRef) & (1L << BitPos)) ? true : false;
69  }
70  };
71 
72 
73  /// BitVector default ctor - Creates an empty bitvector.
74  BitVector() : Size(0), Capacity(0) {
75  Bits = 0;
76  }
77 
78  /// BitVector ctor - Creates a bitvector of specified number of bits. All
79  /// bits are initialized to the specified value.
80  explicit BitVector(unsigned s, bool t = false) : Size(s) {
81  Capacity = NumBitWords(s);
82  Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
83  init_words(Bits, Capacity, t);
84  if (t)
85  clear_unused_bits();
86  }
87 
88  /// BitVector copy ctor.
89  BitVector(const BitVector &RHS) : Size(RHS.size()) {
90  if (Size == 0) {
91  Bits = 0;
92  Capacity = 0;
93  return;
94  }
95 
96  Capacity = NumBitWords(RHS.size());
97  Bits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
98  std::memcpy(Bits, RHS.Bits, Capacity * sizeof(BitWord));
99  }
100 
101 #if LLVM_HAS_RVALUE_REFERENCES
102  BitVector(BitVector &&RHS)
103  : Bits(RHS.Bits), Size(RHS.Size), Capacity(RHS.Capacity) {
104  RHS.Bits = 0;
105  }
106 #endif
107 
109  std::free(Bits);
110  }
111 
112  /// empty - Tests whether there are no bits in this bitvector.
113  bool empty() const { return Size == 0; }
114 
115  /// size - Returns the number of bits in this bitvector.
116  unsigned size() const { return Size; }
117 
118  /// count - Returns the number of bits which are set.
119  unsigned count() const {
120  unsigned NumBits = 0;
121  for (unsigned i = 0; i < NumBitWords(size()); ++i)
122  if (sizeof(BitWord) == 4)
123  NumBits += CountPopulation_32((uint32_t)Bits[i]);
124  else if (sizeof(BitWord) == 8)
125  NumBits += CountPopulation_64(Bits[i]);
126  else
127  llvm_unreachable("Unsupported!");
128  return NumBits;
129  }
130 
131  /// any - Returns true if any bit is set.
132  bool any() const {
133  for (unsigned i = 0; i < NumBitWords(size()); ++i)
134  if (Bits[i] != 0)
135  return true;
136  return false;
137  }
138 
139  /// all - Returns true if all bits are set.
140  bool all() const {
141  for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i)
142  if (Bits[i] != ~0UL)
143  return false;
144 
145  // If bits remain check that they are ones. The unused bits are always zero.
146  if (unsigned Remainder = Size % BITWORD_SIZE)
147  return Bits[Size / BITWORD_SIZE] == (1UL << Remainder) - 1;
148 
149  return true;
150  }
151 
152  /// none - Returns true if none of the bits are set.
153  bool none() const {
154  return !any();
155  }
156 
157  /// find_first - Returns the index of the first set bit, -1 if none
158  /// of the bits are set.
159  int find_first() const {
160  for (unsigned i = 0; i < NumBitWords(size()); ++i)
161  if (Bits[i] != 0) {
162  if (sizeof(BitWord) == 4)
163  return i * BITWORD_SIZE + countTrailingZeros((uint32_t)Bits[i]);
164  if (sizeof(BitWord) == 8)
165  return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
166  llvm_unreachable("Unsupported!");
167  }
168  return -1;
169  }
170 
171  /// find_next - Returns the index of the next set bit following the
172  /// "Prev" bit. Returns -1 if the next set bit is not found.
173  int find_next(unsigned Prev) const {
174  ++Prev;
175  if (Prev >= Size)
176  return -1;
177 
178  unsigned WordPos = Prev / BITWORD_SIZE;
179  unsigned BitPos = Prev % BITWORD_SIZE;
180  BitWord Copy = Bits[WordPos];
181  // Mask off previous bits.
182  Copy &= ~0UL << BitPos;
183 
184  if (Copy != 0) {
185  if (sizeof(BitWord) == 4)
186  return WordPos * BITWORD_SIZE + countTrailingZeros((uint32_t)Copy);
187  if (sizeof(BitWord) == 8)
188  return WordPos * BITWORD_SIZE + countTrailingZeros(Copy);
189  llvm_unreachable("Unsupported!");
190  }
191 
192  // Check subsequent words.
193  for (unsigned i = WordPos+1; i < NumBitWords(size()); ++i)
194  if (Bits[i] != 0) {
195  if (sizeof(BitWord) == 4)
196  return i * BITWORD_SIZE + countTrailingZeros((uint32_t)Bits[i]);
197  if (sizeof(BitWord) == 8)
198  return i * BITWORD_SIZE + countTrailingZeros(Bits[i]);
199  llvm_unreachable("Unsupported!");
200  }
201  return -1;
202  }
203 
204  /// clear - Clear all bits.
205  void clear() {
206  Size = 0;
207  }
208 
209  /// resize - Grow or shrink the bitvector.
210  void resize(unsigned N, bool t = false) {
211  if (N > Capacity * BITWORD_SIZE) {
212  unsigned OldCapacity = Capacity;
213  grow(N);
214  init_words(&Bits[OldCapacity], (Capacity-OldCapacity), t);
215  }
216 
217  // Set any old unused bits that are now included in the BitVector. This
218  // may set bits that are not included in the new vector, but we will clear
219  // them back out below.
220  if (N > Size)
221  set_unused_bits(t);
222 
223  // Update the size, and clear out any bits that are now unused
224  unsigned OldSize = Size;
225  Size = N;
226  if (t || N < OldSize)
227  clear_unused_bits();
228  }
229 
230  void reserve(unsigned N) {
231  if (N > Capacity * BITWORD_SIZE)
232  grow(N);
233  }
234 
235  // Set, reset, flip
237  init_words(Bits, Capacity, true);
238  clear_unused_bits();
239  return *this;
240  }
241 
242  BitVector &set(unsigned Idx) {
243  Bits[Idx / BITWORD_SIZE] |= 1L << (Idx % BITWORD_SIZE);
244  return *this;
245  }
246 
247  /// set - Efficiently set a range of bits in [I, E)
248  BitVector &set(unsigned I, unsigned E) {
249  assert(I <= E && "Attempted to set backwards range!");
250  assert(E <= size() && "Attempted to set out-of-bounds range!");
251 
252  if (I == E) return *this;
253 
254  if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
255  BitWord EMask = 1UL << (E % BITWORD_SIZE);
256  BitWord IMask = 1UL << (I % BITWORD_SIZE);
257  BitWord Mask = EMask - IMask;
258  Bits[I / BITWORD_SIZE] |= Mask;
259  return *this;
260  }
261 
262  BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
263  Bits[I / BITWORD_SIZE] |= PrefixMask;
264  I = RoundUpToAlignment(I, BITWORD_SIZE);
265 
266  for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
267  Bits[I / BITWORD_SIZE] = ~0UL;
268 
269  BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
270  Bits[I / BITWORD_SIZE] |= PostfixMask;
271 
272  return *this;
273  }
274 
276  init_words(Bits, Capacity, false);
277  return *this;
278  }
279 
280  BitVector &reset(unsigned Idx) {
281  Bits[Idx / BITWORD_SIZE] &= ~(1L << (Idx % BITWORD_SIZE));
282  return *this;
283  }
284 
285  /// reset - Efficiently reset a range of bits in [I, E)
286  BitVector &reset(unsigned I, unsigned E) {
287  assert(I <= E && "Attempted to reset backwards range!");
288  assert(E <= size() && "Attempted to reset out-of-bounds range!");
289 
290  if (I == E) return *this;
291 
292  if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
293  BitWord EMask = 1UL << (E % BITWORD_SIZE);
294  BitWord IMask = 1UL << (I % BITWORD_SIZE);
295  BitWord Mask = EMask - IMask;
296  Bits[I / BITWORD_SIZE] &= ~Mask;
297  return *this;
298  }
299 
300  BitWord PrefixMask = ~0UL << (I % BITWORD_SIZE);
301  Bits[I / BITWORD_SIZE] &= ~PrefixMask;
302  I = RoundUpToAlignment(I, BITWORD_SIZE);
303 
304  for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
305  Bits[I / BITWORD_SIZE] = 0UL;
306 
307  BitWord PostfixMask = (1UL << (E % BITWORD_SIZE)) - 1;
308  Bits[I / BITWORD_SIZE] &= ~PostfixMask;
309 
310  return *this;
311  }
312 
314  for (unsigned i = 0; i < NumBitWords(size()); ++i)
315  Bits[i] = ~Bits[i];
316  clear_unused_bits();
317  return *this;
318  }
319 
320  BitVector &flip(unsigned Idx) {
321  Bits[Idx / BITWORD_SIZE] ^= 1L << (Idx % BITWORD_SIZE);
322  return *this;
323  }
324 
325  // Indexing.
326  reference operator[](unsigned Idx) {
327  assert (Idx < Size && "Out-of-bounds Bit access.");
328  return reference(*this, Idx);
329  }
330 
331  bool operator[](unsigned Idx) const {
332  assert (Idx < Size && "Out-of-bounds Bit access.");
333  BitWord Mask = 1L << (Idx % BITWORD_SIZE);
334  return (Bits[Idx / BITWORD_SIZE] & Mask) != 0;
335  }
336 
337  bool test(unsigned Idx) const {
338  return (*this)[Idx];
339  }
340 
341  /// Test if any common bits are set.
342  bool anyCommon(const BitVector &RHS) const {
343  unsigned ThisWords = NumBitWords(size());
344  unsigned RHSWords = NumBitWords(RHS.size());
345  for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i)
346  if (Bits[i] & RHS.Bits[i])
347  return true;
348  return false;
349  }
350 
351  // Comparison operators.
352  bool operator==(const BitVector &RHS) const {
353  unsigned ThisWords = NumBitWords(size());
354  unsigned RHSWords = NumBitWords(RHS.size());
355  unsigned i;
356  for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
357  if (Bits[i] != RHS.Bits[i])
358  return false;
359 
360  // Verify that any extra words are all zeros.
361  if (i != ThisWords) {
362  for (; i != ThisWords; ++i)
363  if (Bits[i])
364  return false;
365  } else if (i != RHSWords) {
366  for (; i != RHSWords; ++i)
367  if (RHS.Bits[i])
368  return false;
369  }
370  return true;
371  }
372 
373  bool operator!=(const BitVector &RHS) const {
374  return !(*this == RHS);
375  }
376 
377  /// Intersection, union, disjoint union.
379  unsigned ThisWords = NumBitWords(size());
380  unsigned RHSWords = NumBitWords(RHS.size());
381  unsigned i;
382  for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
383  Bits[i] &= RHS.Bits[i];
384 
385  // Any bits that are just in this bitvector become zero, because they aren't
386  // in the RHS bit vector. Any words only in RHS are ignored because they
387  // are already zero in the LHS.
388  for (; i != ThisWords; ++i)
389  Bits[i] = 0;
390 
391  return *this;
392  }
393 
394  /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
395  BitVector &reset(const BitVector &RHS) {
396  unsigned ThisWords = NumBitWords(size());
397  unsigned RHSWords = NumBitWords(RHS.size());
398  unsigned i;
399  for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
400  Bits[i] &= ~RHS.Bits[i];
401  return *this;
402  }
403 
404  /// test - Check if (This - RHS) is zero.
405  /// This is the same as reset(RHS) and any().
406  bool test(const BitVector &RHS) const {
407  unsigned ThisWords = NumBitWords(size());
408  unsigned RHSWords = NumBitWords(RHS.size());
409  unsigned i;
410  for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
411  if ((Bits[i] & ~RHS.Bits[i]) != 0)
412  return true;
413 
414  for (; i != ThisWords ; ++i)
415  if (Bits[i] != 0)
416  return true;
417 
418  return false;
419  }
420 
422  if (size() < RHS.size())
423  resize(RHS.size());
424  for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
425  Bits[i] |= RHS.Bits[i];
426  return *this;
427  }
428 
430  if (size() < RHS.size())
431  resize(RHS.size());
432  for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
433  Bits[i] ^= RHS.Bits[i];
434  return *this;
435  }
436 
437  // Assignment operator.
438  const BitVector &operator=(const BitVector &RHS) {
439  if (this == &RHS) return *this;
440 
441  Size = RHS.size();
442  unsigned RHSWords = NumBitWords(Size);
443  if (Size <= Capacity * BITWORD_SIZE) {
444  if (Size)
445  std::memcpy(Bits, RHS.Bits, RHSWords * sizeof(BitWord));
446  clear_unused_bits();
447  return *this;
448  }
449 
450  // Grow the bitvector to have enough elements.
451  Capacity = RHSWords;
452  BitWord *NewBits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
453  std::memcpy(NewBits, RHS.Bits, Capacity * sizeof(BitWord));
454 
455  // Destroy the old bits.
456  std::free(Bits);
457  Bits = NewBits;
458 
459  return *this;
460  }
461 
462 #if LLVM_HAS_RVALUE_REFERENCES
463  const BitVector &operator=(BitVector &&RHS) {
464  if (this == &RHS) return *this;
465 
466  std::free(Bits);
467  Bits = RHS.Bits;
468  Size = RHS.Size;
469  Capacity = RHS.Capacity;
470 
471  RHS.Bits = 0;
472 
473  return *this;
474  }
475 #endif
476 
477  void swap(BitVector &RHS) {
478  std::swap(Bits, RHS.Bits);
479  std::swap(Size, RHS.Size);
480  std::swap(Capacity, RHS.Capacity);
481  }
482 
483  //===--------------------------------------------------------------------===//
484  // Portable bit mask operations.
485  //===--------------------------------------------------------------------===//
486  //
487  // These methods all operate on arrays of uint32_t, each holding 32 bits. The
488  // fixed word size makes it easier to work with literal bit vector constants
489  // in portable code.
490  //
491  // The LSB in each word is the lowest numbered bit. The size of a portable
492  // bit mask is always a whole multiple of 32 bits. If no bit mask size is
493  // given, the bit mask is assumed to cover the entire BitVector.
494 
495  /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
496  /// This computes "*this |= Mask".
497  void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
498  applyMask<true, false>(Mask, MaskWords);
499  }
500 
501  /// clearBitsInMask - Clear any bits in this vector that are set in Mask.
502  /// Don't resize. This computes "*this &= ~Mask".
503  void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
504  applyMask<false, false>(Mask, MaskWords);
505  }
506 
507  /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
508  /// Don't resize. This computes "*this |= ~Mask".
509  void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
510  applyMask<true, true>(Mask, MaskWords);
511  }
512 
513  /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
514  /// Don't resize. This computes "*this &= Mask".
515  void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
516  applyMask<false, true>(Mask, MaskWords);
517  }
518 
519 private:
520  unsigned NumBitWords(unsigned S) const {
521  return (S + BITWORD_SIZE-1) / BITWORD_SIZE;
522  }
523 
524  // Set the unused bits in the high words.
525  void set_unused_bits(bool t = true) {
526  // Set high words first.
527  unsigned UsedWords = NumBitWords(Size);
528  if (Capacity > UsedWords)
529  init_words(&Bits[UsedWords], (Capacity-UsedWords), t);
530 
531  // Then set any stray high bits of the last used word.
532  unsigned ExtraBits = Size % BITWORD_SIZE;
533  if (ExtraBits) {
534  BitWord ExtraBitMask = ~0UL << ExtraBits;
535  if (t)
536  Bits[UsedWords-1] |= ExtraBitMask;
537  else
538  Bits[UsedWords-1] &= ~ExtraBitMask;
539  }
540  }
541 
542  // Clear the unused bits in the high words.
543  void clear_unused_bits() {
544  set_unused_bits(false);
545  }
546 
547  void grow(unsigned NewSize) {
548  Capacity = std::max(NumBitWords(NewSize), Capacity * 2);
549  Bits = (BitWord *)std::realloc(Bits, Capacity * sizeof(BitWord));
550 
551  clear_unused_bits();
552  }
553 
554  void init_words(BitWord *B, unsigned NumWords, bool t) {
555  memset(B, 0 - (int)t, NumWords*sizeof(BitWord));
556  }
557 
558  template<bool AddBits, bool InvertMask>
559  void applyMask(const uint32_t *Mask, unsigned MaskWords) {
560  assert(BITWORD_SIZE % 32 == 0 && "Unsupported BitWord size.");
561  MaskWords = std::min(MaskWords, (size() + 31) / 32);
562  const unsigned Scale = BITWORD_SIZE / 32;
563  unsigned i;
564  for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) {
565  BitWord BW = Bits[i];
566  // This inner loop should unroll completely when BITWORD_SIZE > 32.
567  for (unsigned b = 0; b != BITWORD_SIZE; b += 32) {
568  uint32_t M = *Mask++;
569  if (InvertMask) M = ~M;
570  if (AddBits) BW |= BitWord(M) << b;
571  else BW &= ~(BitWord(M) << b);
572  }
573  Bits[i] = BW;
574  }
575  for (unsigned b = 0; MaskWords; b += 32, --MaskWords) {
576  uint32_t M = *Mask++;
577  if (InvertMask) M = ~M;
578  if (AddBits) Bits[i] |= BitWord(M) << b;
579  else Bits[i] &= ~(BitWord(M) << b);
580  }
581  if (AddBits)
582  clear_unused_bits();
583  }
584 };
585 
586 } // End llvm namespace
587 
588 namespace std {
589  /// Implement std::swap in terms of BitVector swap.
590  inline void
592  LHS.swap(RHS);
593  }
594 }
595 
596 #endif
BitVector & reset(const BitVector &RHS)
reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
Definition: BitVector.h:395
void resize(unsigned N, bool t=false)
resize - Grow or shrink the bitvector.
Definition: BitVector.h:210
void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords=~0u)
Definition: BitVector.h:503
void reserve(unsigned N)
Definition: BitVector.h:230
BitVector & set()
Definition: BitVector.h:236
int find_first() const
Definition: BitVector.h:159
bool none() const
none - Returns true if none of the bits are set.
Definition: BitVector.h:153
bool anyCommon(const BitVector &RHS) const
Test if any common bits are set.
Definition: BitVector.h:342
int find_next(unsigned Prev) const
Definition: BitVector.h:173
BitVector & set(unsigned Idx)
Definition: BitVector.h:242
BitVector(const BitVector &RHS)
BitVector copy ctor.
Definition: BitVector.h:89
void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords=~0u)
Definition: BitVector.h:509
bool any() const
any - Returns true if any bit is set.
Definition: BitVector.h:132
void clear()
clear - Clear all bits.
Definition: BitVector.h:205
#define llvm_unreachable(msg)
void swap(BitVector &RHS)
Definition: BitVector.h:477
BitVector & operator&=(const BitVector &RHS)
Intersection, union, disjoint union.
Definition: BitVector.h:378
reference(BitVector &b, unsigned Idx)
Definition: BitVector.h:47
BitVector & operator|=(const BitVector &RHS)
Definition: BitVector.h:421
enable_if_c< std::numeric_limits< T >::is_integer &&!std::numeric_limits< T >::is_signed, std::size_t >::type countTrailingZeros(T Val, ZeroBehavior ZB=ZB_Width)
Count number of 0's from the least significant bit to the most stopping at the first 1...
Definition: MathExtras.h:49
bool all() const
all - Returns true if all bits are set.
Definition: BitVector.h:140
BitVector()
BitVector default ctor - Creates an empty bitvector.
Definition: BitVector.h:74
bool operator[](unsigned Idx) const
Definition: BitVector.h:331
BitVector & flip(unsigned Idx)
Definition: BitVector.h:320
unsigned count() const
count - Returns the number of bits which are set.
Definition: BitVector.h:119
void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords=~0u)
Definition: BitVector.h:515
BitVector & set(unsigned I, unsigned E)
set - Efficiently set a range of bits in [I, E)
Definition: BitVector.h:248
bool empty() const
empty - Tests whether there are no bits in this bitvector.
Definition: BitVector.h:113
void free(void *ptr);
BitVector & operator^=(const BitVector &RHS)
Definition: BitVector.h:429
void *realloc(void *ptr, size_t size);
BitVector(unsigned s, bool t=false)
Definition: BitVector.h:80
BitVector & reset()
Definition: BitVector.h:275
for(unsigned i=0, e=MI->getNumOperands();i!=e;++i)
unsigned CountPopulation_64(uint64_t Value)
Definition: MathExtras.h:429
BitVector & reset(unsigned I, unsigned E)
reset - Efficiently reset a range of bits in [I, E)
Definition: BitVector.h:286
const BitVector & operator=(const BitVector &RHS)
Definition: BitVector.h:438
unsigned CountPopulation_32(uint32_t Value)
Definition: MathExtras.h:417
reference operator[](unsigned Idx)
Definition: BitVector.h:326
bool test(unsigned Idx) const
Definition: BitVector.h:337
BitVector & flip()
Definition: BitVector.h:313
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:591
uint64_t RoundUpToAlignment(uint64_t Value, uint64_t Align)
Definition: MathExtras.h:565
void *malloc(size_t size);
bool test(const BitVector &RHS) const
Definition: BitVector.h:406
reference & operator=(bool t)
Definition: BitVector.h:59
#define I(x, y, z)
Definition: MD5.cpp:54
#define N
reference & operator=(reference t)
Definition: BitVector.h:54
BitVector & reset(unsigned Idx)
Definition: BitVector.h:280
bool operator!=(const BitVector &RHS) const
Definition: BitVector.h:373
bool operator==(const BitVector &RHS) const
Definition: BitVector.h:352
void setBitsInMask(const uint32_t *Mask, unsigned MaskWords=~0u)
Definition: BitVector.h:497
unsigned size() const
size - Returns the number of bits in this bitvector.
Definition: BitVector.h:116