LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
BlockFrequency.cpp
Go to the documentation of this file.
1 //====--------------- lib/Support/BlockFrequency.cpp -----------*- C++ -*-====//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements Block Frequency class.
11 //
12 //===----------------------------------------------------------------------===//
13 
17 #include <cassert>
18 
19 using namespace llvm;
20 
21 /// Multiply FREQ by N and store result in W array.
22 static void mult96bit(uint64_t freq, uint32_t N, uint32_t W[3]) {
23  uint64_t u0 = freq & UINT32_MAX;
24  uint64_t u1 = freq >> 32;
25 
26  // Represent 96-bit value as W[2]:W[1]:W[0];
27  uint64_t t = u0 * N;
28  uint64_t k = t >> 32;
29  W[0] = t;
30  t = u1 * N + k;
31  W[1] = t;
32  W[2] = t >> 32;
33 }
34 
35 /// Divide 96-bit value stored in W[2]:W[1]:W[0] by D. Since our word size is a
36 /// 32 bit unsigned integer, we can use a short division algorithm.
37 static uint64_t divrem96bit(uint32_t W[3], uint32_t D, uint32_t *Rout) {
38  // We assume that W[2] is non-zero since if W[2] is not then the user should
39  // just use hardware division.
40  assert(W[2] && "This routine assumes that W[2] is non-zero since if W[2] is "
41  "zero, the caller should just use 64/32 hardware.");
42  uint32_t Q[3] = { 0, 0, 0 };
43 
44  // The generalized short division algorithm sets i to m + n - 1, where n is
45  // the number of words in the divisior and m is the number of words by which
46  // the divident exceeds the divisor (i.e. m + n == the length of the dividend
47  // in words). Due to our assumption that W[2] is non-zero, we know that the
48  // dividend is of length 3 implying since n is 1 that m = 2. Thus we set i to
49  // m + n - 1 = 2 + 1 - 1 = 2.
50  uint32_t R = 0;
51  for (int i = 2; i >= 0; --i) {
52  uint64_t PartialD = uint64_t(R) << 32 | W[i];
53  if (PartialD == 0) {
54  Q[i] = 0;
55  R = 0;
56  } else if (PartialD < D) {
57  Q[i] = 0;
58  R = uint32_t(PartialD);
59  } else if (PartialD == D) {
60  Q[i] = 1;
61  R = 0;
62  } else {
63  Q[i] = uint32_t(PartialD / D);
64  R = uint32_t(PartialD - (Q[i] * D));
65  }
66  }
67 
68  // If Q[2] is non-zero, then we overflowed.
69  uint64_t Result;
70  if (Q[2]) {
71  Result = UINT64_MAX;
72  R = D;
73  } else {
74  // Form the final uint64_t result, avoiding endianness issues.
75  Result = uint64_t(Q[0]) | (uint64_t(Q[1]) << 32);
76  }
77 
78  if (Rout)
79  *Rout = R;
80 
81  return Result;
82 }
83 
84 uint32_t BlockFrequency::scale(uint32_t N, uint32_t D) {
85  assert(D != 0 && "Division by zero");
86 
87  // Calculate Frequency * N.
88  uint64_t MulLo = (Frequency & UINT32_MAX) * N;
89  uint64_t MulHi = (Frequency >> 32) * N;
90  uint64_t MulRes = (MulHi << 32) + MulLo;
91 
92  // If the product fits in 64 bits, just use built-in division.
93  if (MulHi <= UINT32_MAX && MulRes >= MulLo) {
94  Frequency = MulRes / D;
95  return MulRes % D;
96  }
97 
98  // Product overflowed, use 96-bit operations.
99  // 96-bit value represented as W[2]:W[1]:W[0].
100  uint32_t W[3];
101  uint32_t R;
102  mult96bit(Frequency, N, W);
103  Frequency = divrem96bit(W, D, &R);
104  return R;
105 }
106 
108  scale(Prob.getNumerator(), Prob.getDenominator());
109  return *this;
110 }
111 
112 const BlockFrequency
114  BlockFrequency Freq(Frequency);
115  Freq *= Prob;
116  return Freq;
117 }
118 
120  scale(Prob.getDenominator(), Prob.getNumerator());
121  return *this;
122 }
123 
125  BlockFrequency Freq(Frequency);
126  Freq /= Prob;
127  return Freq;
128 }
129 
131  uint64_t Before = Freq.Frequency;
132  Frequency += Freq.Frequency;
133 
134  // If overflow, set frequency to the maximum value.
135  if (Frequency < Before)
136  Frequency = UINT64_MAX;
137 
138  return *this;
139 }
140 
141 const BlockFrequency
143  BlockFrequency Freq(Frequency);
144  Freq += Prob;
145  return Freq;
146 }
147 
148 uint32_t BlockFrequency::scale(const BranchProbability &Prob) {
149  return scale(Prob.getNumerator(), Prob.getDenominator());
150 }
151 
153  // Convert fixed-point number to decimal.
154  OS << Frequency / getEntryFrequency() << ".";
155  uint64_t Rem = Frequency % getEntryFrequency();
156  uint64_t Eps = 1;
157  do {
158  Rem *= 10;
159  Eps *= 10;
160  OS << Rem / getEntryFrequency();
161  Rem = Rem % getEntryFrequency();
162  } while (Rem >= Eps/2);
163 }
164 
165 namespace llvm {
166 
168  Freq.print(OS);
169  return OS;
170 }
171 
172 }
BlockFrequency & operator+=(const BlockFrequency &Freq)
Adds another block frequency using saturating arithmetic.
uint32_t getNumerator() const
static uint64_t getEntryFrequency()
Returns the frequency of the entry block of the function.
BlockFrequency & operator/=(const BranchProbability &Prob)
Divide by a non-zero branch probability using saturating arithmetic.
block freq
const BlockFrequency operator+(const BlockFrequency &Freq) const
void print(raw_ostream &OS) const
const BlockFrequency operator*(const BranchProbability &Prob) const
BlockFrequency & operator*=(const BranchProbability &Prob)
Multiplies with a branch probability. The computation will never overflow.
BlockFrequency operator/(const BranchProbability &Prob) const
uint32_t getDenominator() const
#define N
raw_ostream & operator<<(raw_ostream &OS, const APInt &I)
Definition: APInt.h:1688
static uint64_t divrem96bit(uint32_t W[3], uint32_t D, uint32_t *Rout)
static void mult96bit(uint64_t freq, uint32_t N, uint32_t W[3])
Multiply FREQ by N and store result in W array.