LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
ConstantRange.cpp
Go to the documentation of this file.
1 //===-- ConstantRange.cpp - ConstantRange implementation ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Represent a range of possible values that may occur when the program is run
11 // for an integral value. This keeps track of a lower and upper bound for the
12 // constant, which MAY wrap around the end of the numeric range. To do this, it
13 // keeps track of a [lower, upper) bound, which specifies an interval just like
14 // STL iterators. When used with boolean values, the following are important
15 // ranges (other integral ranges use min/max values for special range values):
16 //
17 // [F, F) = {} = Empty set
18 // [T, F) = {T}
19 // [F, T) = {F}
20 // [T, T) = {F, T} = Full set
21 //
22 //===----------------------------------------------------------------------===//
23 
24 #include "llvm/IR/InstrTypes.h"
26 #include "llvm/Support/Debug.h"
28 using namespace llvm;
29 
30 /// Initialize a full (the default) or empty set for the specified type.
31 ///
32 ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) {
33  if (Full)
34  Lower = Upper = APInt::getMaxValue(BitWidth);
35  else
36  Lower = Upper = APInt::getMinValue(BitWidth);
37 }
38 
39 /// Initialize a range to hold the single specified value.
40 ///
42  : Lower(llvm_move(V)), Upper(Lower + 1) {}
43 
45  : Lower(llvm_move(L)), Upper(llvm_move(U)) {
46  assert(Lower.getBitWidth() == Upper.getBitWidth() &&
47  "ConstantRange with unequal bit widths");
48  assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) &&
49  "Lower == Upper, but they aren't min or max value!");
50 }
51 
53  const ConstantRange &CR) {
54  if (CR.isEmptySet())
55  return CR;
56 
57  uint32_t W = CR.getBitWidth();
58  switch (Pred) {
59  default: llvm_unreachable("Invalid ICmp predicate to makeICmpRegion()");
60  case CmpInst::ICMP_EQ:
61  return CR;
62  case CmpInst::ICMP_NE:
63  if (CR.isSingleElement())
64  return ConstantRange(CR.getUpper(), CR.getLower());
65  return ConstantRange(W);
66  case CmpInst::ICMP_ULT: {
67  APInt UMax(CR.getUnsignedMax());
68  if (UMax.isMinValue())
69  return ConstantRange(W, /* empty */ false);
70  return ConstantRange(APInt::getMinValue(W), UMax);
71  }
72  case CmpInst::ICMP_SLT: {
73  APInt SMax(CR.getSignedMax());
74  if (SMax.isMinSignedValue())
75  return ConstantRange(W, /* empty */ false);
76  return ConstantRange(APInt::getSignedMinValue(W), SMax);
77  }
78  case CmpInst::ICMP_ULE: {
79  APInt UMax(CR.getUnsignedMax());
80  if (UMax.isMaxValue())
81  return ConstantRange(W);
82  return ConstantRange(APInt::getMinValue(W), UMax + 1);
83  }
84  case CmpInst::ICMP_SLE: {
85  APInt SMax(CR.getSignedMax());
86  if (SMax.isMaxSignedValue())
87  return ConstantRange(W);
88  return ConstantRange(APInt::getSignedMinValue(W), SMax + 1);
89  }
90  case CmpInst::ICMP_UGT: {
91  APInt UMin(CR.getUnsignedMin());
92  if (UMin.isMaxValue())
93  return ConstantRange(W, /* empty */ false);
94  return ConstantRange(UMin + 1, APInt::getNullValue(W));
95  }
96  case CmpInst::ICMP_SGT: {
97  APInt SMin(CR.getSignedMin());
98  if (SMin.isMaxSignedValue())
99  return ConstantRange(W, /* empty */ false);
100  return ConstantRange(SMin + 1, APInt::getSignedMinValue(W));
101  }
102  case CmpInst::ICMP_UGE: {
103  APInt UMin(CR.getUnsignedMin());
104  if (UMin.isMinValue())
105  return ConstantRange(W);
106  return ConstantRange(UMin, APInt::getNullValue(W));
107  }
108  case CmpInst::ICMP_SGE: {
109  APInt SMin(CR.getSignedMin());
110  if (SMin.isMinSignedValue())
111  return ConstantRange(W);
112  return ConstantRange(SMin, APInt::getSignedMinValue(W));
113  }
114  }
115 }
116 
117 /// isFullSet - Return true if this set contains all of the elements possible
118 /// for this data-type
120  return Lower == Upper && Lower.isMaxValue();
121 }
122 
123 /// isEmptySet - Return true if this set contains no members.
124 ///
126  return Lower == Upper && Lower.isMinValue();
127 }
128 
129 /// isWrappedSet - Return true if this set wraps around the top of the range,
130 /// for example: [100, 8)
131 ///
133  return Lower.ugt(Upper);
134 }
135 
136 /// isSignWrappedSet - Return true if this set wraps around the INT_MIN of
137 /// its bitwidth, for example: i8 [120, 140).
138 ///
142 }
143 
144 /// getSetSize - Return the number of elements in this set.
145 ///
147  if (isFullSet()) {
148  APInt Size(getBitWidth()+1, 0);
149  Size.setBit(getBitWidth());
150  return Size;
151  }
152 
153  // This is also correct for wrapped sets.
154  return (Upper - Lower).zext(getBitWidth()+1);
155 }
156 
157 /// getUnsignedMax - Return the largest unsigned value contained in the
158 /// ConstantRange.
159 ///
161  if (isFullSet() || isWrappedSet())
163  return getUpper() - 1;
164 }
165 
166 /// getUnsignedMin - Return the smallest unsigned value contained in the
167 /// ConstantRange.
168 ///
170  if (isFullSet() || (isWrappedSet() && getUpper() != 0))
172  return getLower();
173 }
174 
175 /// getSignedMax - Return the largest signed value contained in the
176 /// ConstantRange.
177 ///
180  if (!isWrappedSet()) {
181  if (getLower().sle(getUpper() - 1))
182  return getUpper() - 1;
183  return SignedMax;
184  }
185  if (getLower().isNegative() == getUpper().isNegative())
186  return SignedMax;
187  return getUpper() - 1;
188 }
189 
190 /// getSignedMin - Return the smallest signed value contained in the
191 /// ConstantRange.
192 ///
195  if (!isWrappedSet()) {
196  if (getLower().sle(getUpper() - 1))
197  return getLower();
198  return SignedMin;
199  }
200  if ((getUpper() - 1).slt(getLower())) {
201  if (getUpper() != SignedMin)
202  return SignedMin;
203  }
204  return getLower();
205 }
206 
207 /// contains - Return true if the specified value is in the set.
208 ///
209 bool ConstantRange::contains(const APInt &V) const {
210  if (Lower == Upper)
211  return isFullSet();
212 
213  if (!isWrappedSet())
214  return Lower.ule(V) && V.ult(Upper);
215  return Lower.ule(V) || V.ult(Upper);
216 }
217 
218 /// contains - Return true if the argument is a subset of this range.
219 /// Two equal sets contain each other. The empty set contained by all other
220 /// sets.
221 ///
222 bool ConstantRange::contains(const ConstantRange &Other) const {
223  if (isFullSet() || Other.isEmptySet()) return true;
224  if (isEmptySet() || Other.isFullSet()) return false;
225 
226  if (!isWrappedSet()) {
227  if (Other.isWrappedSet())
228  return false;
229 
230  return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
231  }
232 
233  if (!Other.isWrappedSet())
234  return Other.getUpper().ule(Upper) ||
235  Lower.ule(Other.getLower());
236 
237  return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
238 }
239 
240 /// subtract - Subtract the specified constant from the endpoints of this
241 /// constant range.
243  assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
244  // If the set is empty or full, don't modify the endpoints.
245  if (Lower == Upper)
246  return *this;
247  return ConstantRange(Lower - Val, Upper - Val);
248 }
249 
250 /// \brief Subtract the specified range from this range (aka relative complement
251 /// of the sets).
253  return intersectWith(CR.inverse());
254 }
255 
256 /// intersectWith - Return the range that results from the intersection of this
257 /// range with another range. The resultant range is guaranteed to include all
258 /// elements contained in both input ranges, and to have the smallest possible
259 /// set size that does so. Because there may be two intersections with the
260 /// same set size, A.intersectWith(B) might not be equal to B.intersectWith(A).
262  assert(getBitWidth() == CR.getBitWidth() &&
263  "ConstantRange types don't agree!");
264 
265  // Handle common cases.
266  if ( isEmptySet() || CR.isFullSet()) return *this;
267  if (CR.isEmptySet() || isFullSet()) return CR;
268 
269  if (!isWrappedSet() && CR.isWrappedSet())
270  return CR.intersectWith(*this);
271 
272  if (!isWrappedSet() && !CR.isWrappedSet()) {
273  if (Lower.ult(CR.Lower)) {
274  if (Upper.ule(CR.Lower))
275  return ConstantRange(getBitWidth(), false);
276 
277  if (Upper.ult(CR.Upper))
278  return ConstantRange(CR.Lower, Upper);
279 
280  return CR;
281  }
282  if (Upper.ult(CR.Upper))
283  return *this;
284 
285  if (Lower.ult(CR.Upper))
286  return ConstantRange(Lower, CR.Upper);
287 
288  return ConstantRange(getBitWidth(), false);
289  }
290 
291  if (isWrappedSet() && !CR.isWrappedSet()) {
292  if (CR.Lower.ult(Upper)) {
293  if (CR.Upper.ult(Upper))
294  return CR;
295 
296  if (CR.Upper.ule(Lower))
297  return ConstantRange(CR.Lower, Upper);
298 
299  if (getSetSize().ult(CR.getSetSize()))
300  return *this;
301  return CR;
302  }
303  if (CR.Lower.ult(Lower)) {
304  if (CR.Upper.ule(Lower))
305  return ConstantRange(getBitWidth(), false);
306 
307  return ConstantRange(Lower, CR.Upper);
308  }
309  return CR;
310  }
311 
312  if (CR.Upper.ult(Upper)) {
313  if (CR.Lower.ult(Upper)) {
314  if (getSetSize().ult(CR.getSetSize()))
315  return *this;
316  return CR;
317  }
318 
319  if (CR.Lower.ult(Lower))
320  return ConstantRange(Lower, CR.Upper);
321 
322  return CR;
323  }
324  if (CR.Upper.ule(Lower)) {
325  if (CR.Lower.ult(Lower))
326  return *this;
327 
328  return ConstantRange(CR.Lower, Upper);
329  }
330  if (getSetSize().ult(CR.getSetSize()))
331  return *this;
332  return CR;
333 }
334 
335 
336 /// unionWith - Return the range that results from the union of this range with
337 /// another range. The resultant range is guaranteed to include the elements of
338 /// both sets, but may contain more. For example, [3, 9) union [12,15) is
339 /// [3, 15), which includes 9, 10, and 11, which were not included in either
340 /// set before.
341 ///
343  assert(getBitWidth() == CR.getBitWidth() &&
344  "ConstantRange types don't agree!");
345 
346  if ( isFullSet() || CR.isEmptySet()) return *this;
347  if (CR.isFullSet() || isEmptySet()) return CR;
348 
349  if (!isWrappedSet() && CR.isWrappedSet()) return CR.unionWith(*this);
350 
351  if (!isWrappedSet() && !CR.isWrappedSet()) {
352  if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower)) {
353  // If the two ranges are disjoint, find the smaller gap and bridge it.
354  APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
355  if (d1.ult(d2))
356  return ConstantRange(Lower, CR.Upper);
357  return ConstantRange(CR.Lower, Upper);
358  }
359 
360  APInt L = Lower, U = Upper;
361  if (CR.Lower.ult(L))
362  L = CR.Lower;
363  if ((CR.Upper - 1).ugt(U - 1))
364  U = CR.Upper;
365 
366  if (L == 0 && U == 0)
367  return ConstantRange(getBitWidth());
368 
369  return ConstantRange(L, U);
370  }
371 
372  if (!CR.isWrappedSet()) {
373  // ------U L----- and ------U L----- : this
374  // L--U L--U : CR
375  if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
376  return *this;
377 
378  // ------U L----- : this
379  // L---------U : CR
380  if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
381  return ConstantRange(getBitWidth());
382 
383  // ----U L---- : this
384  // L---U : CR
385  // <d1> <d2>
386  if (Upper.ule(CR.Lower) && CR.Upper.ule(Lower)) {
387  APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
388  if (d1.ult(d2))
389  return ConstantRange(Lower, CR.Upper);
390  return ConstantRange(CR.Lower, Upper);
391  }
392 
393  // ----U L----- : this
394  // L----U : CR
395  if (Upper.ult(CR.Lower) && Lower.ult(CR.Upper))
396  return ConstantRange(CR.Lower, Upper);
397 
398  // ------U L---- : this
399  // L-----U : CR
400  assert(CR.Lower.ult(Upper) && CR.Upper.ult(Lower) &&
401  "ConstantRange::unionWith missed a case with one range wrapped");
402  return ConstantRange(Lower, CR.Upper);
403  }
404 
405  // ------U L---- and ------U L---- : this
406  // -U L----------- and ------------U L : CR
407  if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
408  return ConstantRange(getBitWidth());
409 
410  APInt L = Lower, U = Upper;
411  if (CR.Upper.ugt(U))
412  U = CR.Upper;
413  if (CR.Lower.ult(L))
414  L = CR.Lower;
415 
416  return ConstantRange(L, U);
417 }
418 
419 /// zeroExtend - Return a new range in the specified integer type, which must
420 /// be strictly larger than the current type. The returned range will
421 /// correspond to the possible range of values as if the source range had been
422 /// zero extended.
423 ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
424  if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false);
425 
426  unsigned SrcTySize = getBitWidth();
427  assert(SrcTySize < DstTySize && "Not a value extension");
428  if (isFullSet() || isWrappedSet()) {
429  // Change into [0, 1 << src bit width)
430  APInt LowerExt(DstTySize, 0);
431  if (!Upper) // special case: [X, 0) -- not really wrapping around
432  LowerExt = Lower.zext(DstTySize);
433  return ConstantRange(LowerExt, APInt::getOneBitSet(DstTySize, SrcTySize));
434  }
435 
436  return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
437 }
438 
439 /// signExtend - Return a new range in the specified integer type, which must
440 /// be strictly larger than the current type. The returned range will
441 /// correspond to the possible range of values as if the source range had been
442 /// sign extended.
443 ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
444  if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false);
445 
446  unsigned SrcTySize = getBitWidth();
447  assert(SrcTySize < DstTySize && "Not a value extension");
448 
449  // special case: [X, INT_MIN) -- not really wrapping around
450  if (Upper.isMinSignedValue())
451  return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize));
452 
453  if (isFullSet() || isSignWrappedSet()) {
454  return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
455  APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
456  }
457 
458  return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
459 }
460 
461 /// truncate - Return a new range in the specified integer type, which must be
462 /// strictly smaller than the current type. The returned range will
463 /// correspond to the possible range of values as if the source range had been
464 /// truncated to the specified type.
465 ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
466  assert(getBitWidth() > DstTySize && "Not a value truncation");
467  if (isEmptySet())
468  return ConstantRange(DstTySize, /*isFullSet=*/false);
469  if (isFullSet())
470  return ConstantRange(DstTySize, /*isFullSet=*/true);
471 
472  APInt MaxValue = APInt::getMaxValue(DstTySize).zext(getBitWidth());
473  APInt MaxBitValue(getBitWidth(), 0);
474  MaxBitValue.setBit(DstTySize);
475 
476  APInt LowerDiv(Lower), UpperDiv(Upper);
477  ConstantRange Union(DstTySize, /*isFullSet=*/false);
478 
479  // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
480  // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
481  // then we do the union with [MaxValue, Upper)
482  if (isWrappedSet()) {
483  // if Upper is greater than Max Value, it covers the whole truncated range.
484  if (Upper.uge(MaxValue))
485  return ConstantRange(DstTySize, /*isFullSet=*/true);
486 
487  Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize));
488  UpperDiv = APInt::getMaxValue(getBitWidth());
489 
490  // Union covers the MaxValue case, so return if the remaining range is just
491  // MaxValue.
492  if (LowerDiv == UpperDiv)
493  return Union;
494  }
495 
496  // Chop off the most significant bits that are past the destination bitwidth.
497  if (LowerDiv.uge(MaxValue)) {
498  APInt Div(getBitWidth(), 0);
499  APInt::udivrem(LowerDiv, MaxBitValue, Div, LowerDiv);
500  UpperDiv = UpperDiv - MaxBitValue * Div;
501  }
502 
503  if (UpperDiv.ule(MaxValue))
504  return ConstantRange(LowerDiv.trunc(DstTySize),
505  UpperDiv.trunc(DstTySize)).unionWith(Union);
506 
507  // The truncated value wrapps around. Check if we can do better than fullset.
508  APInt UpperModulo = UpperDiv - MaxBitValue;
509  if (UpperModulo.ult(LowerDiv))
510  return ConstantRange(LowerDiv.trunc(DstTySize),
511  UpperModulo.trunc(DstTySize)).unionWith(Union);
512 
513  return ConstantRange(DstTySize, /*isFullSet=*/true);
514 }
515 
516 /// zextOrTrunc - make this range have the bit width given by \p DstTySize. The
517 /// value is zero extended, truncated, or left alone to make it that width.
518 ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
519  unsigned SrcTySize = getBitWidth();
520  if (SrcTySize > DstTySize)
521  return truncate(DstTySize);
522  if (SrcTySize < DstTySize)
523  return zeroExtend(DstTySize);
524  return *this;
525 }
526 
527 /// sextOrTrunc - make this range have the bit width given by \p DstTySize. The
528 /// value is sign extended, truncated, or left alone to make it that width.
529 ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
530  unsigned SrcTySize = getBitWidth();
531  if (SrcTySize > DstTySize)
532  return truncate(DstTySize);
533  if (SrcTySize < DstTySize)
534  return signExtend(DstTySize);
535  return *this;
536 }
537 
539 ConstantRange::add(const ConstantRange &Other) const {
540  if (isEmptySet() || Other.isEmptySet())
541  return ConstantRange(getBitWidth(), /*isFullSet=*/false);
542  if (isFullSet() || Other.isFullSet())
543  return ConstantRange(getBitWidth(), /*isFullSet=*/true);
544 
545  APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize();
546  APInt NewLower = getLower() + Other.getLower();
547  APInt NewUpper = getUpper() + Other.getUpper() - 1;
548  if (NewLower == NewUpper)
549  return ConstantRange(getBitWidth(), /*isFullSet=*/true);
550 
551  ConstantRange X = ConstantRange(NewLower, NewUpper);
552  if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y))
553  // We've wrapped, therefore, full set.
554  return ConstantRange(getBitWidth(), /*isFullSet=*/true);
555 
556  return X;
557 }
558 
560 ConstantRange::sub(const ConstantRange &Other) const {
561  if (isEmptySet() || Other.isEmptySet())
562  return ConstantRange(getBitWidth(), /*isFullSet=*/false);
563  if (isFullSet() || Other.isFullSet())
564  return ConstantRange(getBitWidth(), /*isFullSet=*/true);
565 
566  APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize();
567  APInt NewLower = getLower() - Other.getUpper() + 1;
568  APInt NewUpper = getUpper() - Other.getLower();
569  if (NewLower == NewUpper)
570  return ConstantRange(getBitWidth(), /*isFullSet=*/true);
571 
572  ConstantRange X = ConstantRange(NewLower, NewUpper);
573  if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y))
574  // We've wrapped, therefore, full set.
575  return ConstantRange(getBitWidth(), /*isFullSet=*/true);
576 
577  return X;
578 }
579 
582  // TODO: If either operand is a single element and the multiply is known to
583  // be non-wrapping, round the result min and max value to the appropriate
584  // multiple of that element. If wrapping is possible, at least adjust the
585  // range according to the greatest power-of-two factor of the single element.
586 
587  if (isEmptySet() || Other.isEmptySet())
588  return ConstantRange(getBitWidth(), /*isFullSet=*/false);
589 
590  APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
591  APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
592  APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
593  APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
594 
595  ConstantRange Result_zext = ConstantRange(this_min * Other_min,
596  this_max * Other_max + 1);
597  return Result_zext.truncate(getBitWidth());
598 }
599 
601 ConstantRange::smax(const ConstantRange &Other) const {
602  // X smax Y is: range(smax(X_smin, Y_smin),
603  // smax(X_smax, Y_smax))
604  if (isEmptySet() || Other.isEmptySet())
605  return ConstantRange(getBitWidth(), /*isFullSet=*/false);
606  APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
607  APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
608  if (NewU == NewL)
609  return ConstantRange(getBitWidth(), /*isFullSet=*/true);
610  return ConstantRange(NewL, NewU);
611 }
612 
614 ConstantRange::umax(const ConstantRange &Other) const {
615  // X umax Y is: range(umax(X_umin, Y_umin),
616  // umax(X_umax, Y_umax))
617  if (isEmptySet() || Other.isEmptySet())
618  return ConstantRange(getBitWidth(), /*isFullSet=*/false);
620  APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
621  if (NewU == NewL)
622  return ConstantRange(getBitWidth(), /*isFullSet=*/true);
623  return ConstantRange(NewL, NewU);
624 }
625 
628  if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax() == 0)
629  return ConstantRange(getBitWidth(), /*isFullSet=*/false);
630  if (RHS.isFullSet())
631  return ConstantRange(getBitWidth(), /*isFullSet=*/true);
632 
633  APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());
634 
635  APInt RHS_umin = RHS.getUnsignedMin();
636  if (RHS_umin == 0) {
637  // We want the lowest value in RHS excluding zero. Usually that would be 1
638  // except for a range in the form of [X, 1) in which case it would be X.
639  if (RHS.getUpper() == 1)
640  RHS_umin = RHS.getLower();
641  else
642  RHS_umin = APInt(getBitWidth(), 1);
643  }
644 
645  APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
646 
647  // If the LHS is Full and the RHS is a wrapped interval containing 1 then
648  // this could occur.
649  if (Lower == Upper)
650  return ConstantRange(getBitWidth(), /*isFullSet=*/true);
651 
652  return ConstantRange(Lower, Upper);
653 }
654 
657  if (isEmptySet() || Other.isEmptySet())
658  return ConstantRange(getBitWidth(), /*isFullSet=*/false);
659 
660  // TODO: replace this with something less conservative
661 
663  if (umin.isAllOnesValue())
664  return ConstantRange(getBitWidth(), /*isFullSet=*/true);
665  return ConstantRange(APInt::getNullValue(getBitWidth()), umin + 1);
666 }
667 
670  if (isEmptySet() || Other.isEmptySet())
671  return ConstantRange(getBitWidth(), /*isFullSet=*/false);
672 
673  // TODO: replace this with something less conservative
674 
676  if (umax.isMinValue())
677  return ConstantRange(getBitWidth(), /*isFullSet=*/true);
679 }
680 
682 ConstantRange::shl(const ConstantRange &Other) const {
683  if (isEmptySet() || Other.isEmptySet())
684  return ConstantRange(getBitWidth(), /*isFullSet=*/false);
685 
686  APInt min = getUnsignedMin().shl(Other.getUnsignedMin());
687  APInt max = getUnsignedMax().shl(Other.getUnsignedMax());
688 
689  // there's no overflow!
691  if (Zeros.ugt(Other.getUnsignedMax()))
692  return ConstantRange(min, max + 1);
693 
694  // FIXME: implement the other tricky cases
695  return ConstantRange(getBitWidth(), /*isFullSet=*/true);
696 }
697 
699 ConstantRange::lshr(const ConstantRange &Other) const {
700  if (isEmptySet() || Other.isEmptySet())
701  return ConstantRange(getBitWidth(), /*isFullSet=*/false);
702 
703  APInt max = getUnsignedMax().lshr(Other.getUnsignedMin());
704  APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
705  if (min == max + 1)
706  return ConstantRange(getBitWidth(), /*isFullSet=*/true);
707 
708  return ConstantRange(min, max + 1);
709 }
710 
712  if (isFullSet())
713  return ConstantRange(getBitWidth(), /*isFullSet=*/false);
714  if (isEmptySet())
715  return ConstantRange(getBitWidth(), /*isFullSet=*/true);
716  return ConstantRange(Upper, Lower);
717 }
718 
719 /// print - Print out the bounds to a stream...
720 ///
722  if (isFullSet())
723  OS << "full-set";
724  else if (isEmptySet())
725  OS << "empty-set";
726  else
727  OS << "[" << Lower << "," << Upper << ")";
728 }
729 
730 /// dump - Allow printing from a debugger easily...
731 ///
732 void ConstantRange::dump() const {
733  print(dbgs());
734 }
APInt getSignedMin() const
ConstantRange sextOrTrunc(uint32_t BitWidth) const
void setBit(unsigned bitPosition)
Set a given bit to 1.
Definition: APInt.cpp:583
uint32_t getBitWidth() const
Definition: ConstantRange.h:87
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Get a value with low bits set.
Definition: APInt.h:528
unsigned less or equal
Definition: InstrTypes.h:677
unsigned less than
Definition: InstrTypes.h:676
APInt getSignedMax() const
bool isSingleElement() const
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition: APInt.h:423
ConstantRange smax(const ConstantRange &Other) const
#define llvm_move(value)
Definition: Compiler.h:108
ConstantRange truncate(uint32_t BitWidth) const
#define llvm_unreachable(msg)
APInt LLVM_ATTRIBUTE_UNUSED_RESULT lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition: APInt.cpp:1127
APInt umax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be unsigned.
Definition: APInt.h:1705
enable_if_c< std::numeric_limits< T >::is_integer &&!std::numeric_limits< T >::is_signed, std::size_t >::type countLeadingZeros(T Val, ZeroBehavior ZB=ZB_Width)
Count number of 0's from the most significant bit to the least stopping at the first 1...
Definition: MathExtras.h:120
ConstantRange signExtend(uint32_t BitWidth) const
ConstantRange multiply(const ConstantRange &Other) const
bool contains(const APInt &Val) const
ConstantRange unionWith(const ConstantRange &CR) const
APInt LLVM_ATTRIBUTE_UNUSED_RESULT shl(unsigned shiftAmt) const
Left-shift function.
Definition: APInt.h:856
ConstantRange subtract(const APInt &CI) const
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition: APInt.cpp:515
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Get a value with high bits set.
Definition: APInt.h:510
* if(!EatIfPresent(lltok::kw_thread_local)) return false
ConstantRange intersectWith(const ConstantRange &CR) const
APInt LLVM_ATTRIBUTE_UNUSED_RESULT trunc(unsigned width) const
Truncate to new width.
Definition: APInt.cpp:919
bool isFullSet() const
ConstantRange lshr(const ConstantRange &Other) const
bool isWrappedSet() const
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
Definition: APInt.h:476
APInt LLVM_ATTRIBUTE_UNUSED_RESULT sext(unsigned width) const
Sign extend to a new width.
Definition: APInt.cpp:942
ConstantRange udiv(const ConstantRange &Other) const
ConstantRange(uint32_t BitWidth, bool isFullSet=true)
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1252
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
Definition: APInt.h:1116
bool isMaxValue() const
Determine if this is the largest unsigned value.
Definition: APInt.h:350
ConstantRange sub(const ConstantRange &Other) const
void print(raw_ostream &OS) const
ConstantRange zeroExtend(uint32_t BitWidth) const
bool isEmptySet() const
ConstantRange difference(const ConstantRange &CR) const
Subtract the specified range from this range (aka relative complement of the sets).
ConstantRange add(const ConstantRange &Other) const
signed greater than
Definition: InstrTypes.h:678
bool ugt(const APInt &RHS) const
Unsigned greather than comparison.
Definition: APInt.h:1084
bool isSignWrappedSet() const
APInt getSetSize() const
ConstantRange inverse() const
signed less than
Definition: InstrTypes.h:680
const APInt & getLower() const
Definition: ConstantRange.h:79
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
Definition: APInt.h:430
APInt umin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be signed.
Definition: APInt.h:1702
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
APInt smax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be signed.
Definition: APInt.h:1699
ConstantRange binaryOr(const ConstantRange &Other) const
signed less or equal
Definition: InstrTypes.h:681
Class for arbitrary precision integers.
Definition: APInt.h:75
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
Definition: APInt.h:418
bool isMinValue() const
Determine if this is the smallest unsigned value.
Definition: APInt.h:365
ConstantRange shl(const ConstantRange &Other) const
ConstantRange umax(const ConstantRange &Other) const
bool isAllOnesValue() const
Determine if all bits are set.
Definition: APInt.h:340
bool isMinSignedValue() const
Determine if this is the smallest signed value.
Definition: APInt.h:371
APInt LLVM_ATTRIBUTE_UNUSED_RESULT udiv(const APInt &RHS) const
Unsigned division operation.
Definition: APInt.cpp:1842
unsigned greater or equal
Definition: InstrTypes.h:675
static ConstantRange makeICmpRegion(unsigned Pred, const ConstantRange &Other)
ConstantRange binaryAnd(const ConstantRange &Other) const
const APInt & getUpper() const
Definition: ConstantRange.h:83
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition: APInt.h:433
static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
Dual division/remainder interface.
Definition: APInt.cpp:1938
ConstantRange zextOrTrunc(uint32_t BitWidth) const
unsigned greater than
Definition: InstrTypes.h:674
APInt LLVM_ATTRIBUTE_UNUSED_RESULT zext(unsigned width) const
Zero extend to a new width.
Definition: APInt.cpp:983
static APInt getNullValue(unsigned numBits)
Get the '0' value.
Definition: APInt.h:457
APInt getUnsignedMax() const
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition: APInt.h:1052
static RegisterPass< NVPTXAllocaHoisting > X("alloca-hoisting","Hoisting alloca instructions in non-entry ""blocks to the entry block")
signed greater or equal
Definition: InstrTypes.h:679
APInt getUnsignedMin() const