LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
EquivalenceClasses.h
Go to the documentation of this file.
1 //===-- llvm/ADT/EquivalenceClasses.h - Generic Equiv. Classes --*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Generic implementation of equivalence classes through the use Tarjan's
11 // efficient union-find algorithm.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_ADT_EQUIVALENCECLASSES_H
16 #define LLVM_ADT_EQUIVALENCECLASSES_H
17 
18 #include "llvm/Support/DataTypes.h"
19 #include <cassert>
20 #include <set>
21 
22 namespace llvm {
23 
24 /// EquivalenceClasses - This represents a collection of equivalence classes and
25 /// supports three efficient operations: insert an element into a class of its
26 /// own, union two classes, and find the class for a given element. In
27 /// addition to these modification methods, it is possible to iterate over all
28 /// of the equivalence classes and all of the elements in a class.
29 ///
30 /// This implementation is an efficient implementation that only stores one copy
31 /// of the element being indexed per entry in the set, and allows any arbitrary
32 /// type to be indexed (as long as it can be ordered with operator<).
33 ///
34 /// Here is a simple example using integers:
35 ///
36 /// \code
37 /// EquivalenceClasses<int> EC;
38 /// EC.unionSets(1, 2); // insert 1, 2 into the same set
39 /// EC.insert(4); EC.insert(5); // insert 4, 5 into own sets
40 /// EC.unionSets(5, 1); // merge the set for 1 with 5's set.
41 ///
42 /// for (EquivalenceClasses<int>::iterator I = EC.begin(), E = EC.end();
43 /// I != E; ++I) { // Iterate over all of the equivalence sets.
44 /// if (!I->isLeader()) continue; // Ignore non-leader sets.
45 /// for (EquivalenceClasses<int>::member_iterator MI = EC.member_begin(I);
46 /// MI != EC.member_end(); ++MI) // Loop over members in this set.
47 /// cerr << *MI << " "; // Print member.
48 /// cerr << "\n"; // Finish set.
49 /// }
50 /// \endcode
51 ///
52 /// This example prints:
53 /// 4
54 /// 5 1 2
55 ///
56 template <class ElemTy>
58  /// ECValue - The EquivalenceClasses data structure is just a set of these.
59  /// Each of these represents a relation for a value. First it stores the
60  /// value itself, which provides the ordering that the set queries. Next, it
61  /// provides a "next pointer", which is used to enumerate all of the elements
62  /// in the unioned set. Finally, it defines either a "end of list pointer" or
63  /// "leader pointer" depending on whether the value itself is a leader. A
64  /// "leader pointer" points to the node that is the leader for this element,
65  /// if the node is not a leader. A "end of list pointer" points to the last
66  /// node in the list of members of this list. Whether or not a node is a
67  /// leader is determined by a bit stolen from one of the pointers.
68  class ECValue {
69  friend class EquivalenceClasses;
70  mutable const ECValue *Leader, *Next;
71  ElemTy Data;
72  // ECValue ctor - Start out with EndOfList pointing to this node, Next is
73  // Null, isLeader = true.
74  ECValue(const ElemTy &Elt)
75  : Leader(this), Next((ECValue*)(intptr_t)1), Data(Elt) {}
76 
77  const ECValue *getLeader() const {
78  if (isLeader()) return this;
79  if (Leader->isLeader()) return Leader;
80  // Path compression.
81  return Leader = Leader->getLeader();
82  }
83  const ECValue *getEndOfList() const {
84  assert(isLeader() && "Cannot get the end of a list for a non-leader!");
85  return Leader;
86  }
87 
88  void setNext(const ECValue *NewNext) const {
89  assert(getNext() == 0 && "Already has a next pointer!");
90  Next = (const ECValue*)((intptr_t)NewNext | (intptr_t)isLeader());
91  }
92  public:
93  ECValue(const ECValue &RHS) : Leader(this), Next((ECValue*)(intptr_t)1),
94  Data(RHS.Data) {
95  // Only support copying of singleton nodes.
96  assert(RHS.isLeader() && RHS.getNext() == 0 && "Not a singleton!");
97  }
98 
99  bool operator<(const ECValue &UFN) const { return Data < UFN.Data; }
100 
101  bool isLeader() const { return (intptr_t)Next & 1; }
102  const ElemTy &getData() const { return Data; }
103 
104  const ECValue *getNext() const {
105  return (ECValue*)((intptr_t)Next & ~(intptr_t)1);
106  }
107 
108  template<typename T>
109  bool operator<(const T &Val) const { return Data < Val; }
110  };
111 
112  /// TheMapping - This implicitly provides a mapping from ElemTy values to the
113  /// ECValues, it just keeps the key as part of the value.
114  std::set<ECValue> TheMapping;
115 
116 public:
119  operator=(RHS);
120  }
121 
123  TheMapping.clear();
124  for (iterator I = RHS.begin(), E = RHS.end(); I != E; ++I)
125  if (I->isLeader()) {
127  member_iterator LeaderIt = member_begin(insert(*MI));
128  for (++MI; MI != member_end(); ++MI)
129  unionSets(LeaderIt, member_begin(insert(*MI)));
130  }
131  return *this;
132  }
133 
134  //===--------------------------------------------------------------------===//
135  // Inspection methods
136  //
137 
138  /// iterator* - Provides a way to iterate over all values in the set.
139  typedef typename std::set<ECValue>::const_iterator iterator;
140  iterator begin() const { return TheMapping.begin(); }
141  iterator end() const { return TheMapping.end(); }
142 
143  bool empty() const { return TheMapping.empty(); }
144 
145  /// member_* Iterate over the members of an equivalence class.
146  ///
147  class member_iterator;
149  // Only leaders provide anything to iterate over.
150  return member_iterator(I->isLeader() ? &*I : 0);
151  }
153  return member_iterator(0);
154  }
155 
156  /// findValue - Return an iterator to the specified value. If it does not
157  /// exist, end() is returned.
158  iterator findValue(const ElemTy &V) const {
159  return TheMapping.find(V);
160  }
161 
162  /// getLeaderValue - Return the leader for the specified value that is in the
163  /// set. It is an error to call this method for a value that is not yet in
164  /// the set. For that, call getOrInsertLeaderValue(V).
165  const ElemTy &getLeaderValue(const ElemTy &V) const {
167  assert(MI != member_end() && "Value is not in the set!");
168  return *MI;
169  }
170 
171  /// getOrInsertLeaderValue - Return the leader for the specified value that is
172  /// in the set. If the member is not in the set, it is inserted, then
173  /// returned.
174  const ElemTy &getOrInsertLeaderValue(const ElemTy &V) {
176  assert(MI != member_end() && "Value is not in the set!");
177  return *MI;
178  }
179 
180  /// getNumClasses - Return the number of equivalence classes in this set.
181  /// Note that this is a linear time operation.
182  unsigned getNumClasses() const {
183  unsigned NC = 0;
184  for (iterator I = begin(), E = end(); I != E; ++I)
185  if (I->isLeader()) ++NC;
186  return NC;
187  }
188 
189 
190  //===--------------------------------------------------------------------===//
191  // Mutation methods
192 
193  /// insert - Insert a new value into the union/find set, ignoring the request
194  /// if the value already exists.
195  iterator insert(const ElemTy &Data) {
196  return TheMapping.insert(ECValue(Data)).first;
197  }
198 
199  /// findLeader - Given a value in the set, return a member iterator for the
200  /// equivalence class it is in. This does the path-compression part that
201  /// makes union-find "union findy". This returns an end iterator if the value
202  /// is not in the equivalence class.
203  ///
205  if (I == TheMapping.end()) return member_end();
206  return member_iterator(I->getLeader());
207  }
208  member_iterator findLeader(const ElemTy &V) const {
209  return findLeader(TheMapping.find(V));
210  }
211 
212 
213  /// union - Merge the two equivalence sets for the specified values, inserting
214  /// them if they do not already exist in the equivalence set.
215  member_iterator unionSets(const ElemTy &V1, const ElemTy &V2) {
216  iterator V1I = insert(V1), V2I = insert(V2);
217  return unionSets(findLeader(V1I), findLeader(V2I));
218  }
220  assert(L1 != member_end() && L2 != member_end() && "Illegal inputs!");
221  if (L1 == L2) return L1; // Unifying the same two sets, noop.
222 
223  // Otherwise, this is a real union operation. Set the end of the L1 list to
224  // point to the L2 leader node.
225  const ECValue &L1LV = *L1.Node, &L2LV = *L2.Node;
226  L1LV.getEndOfList()->setNext(&L2LV);
227 
228  // Update L1LV's end of list pointer.
229  L1LV.Leader = L2LV.getEndOfList();
230 
231  // Clear L2's leader flag:
232  L2LV.Next = L2LV.getNext();
233 
234  // L2's leader is now L1.
235  L2LV.Leader = &L1LV;
236  return L1;
237  }
238 
239  class member_iterator : public std::iterator<std::forward_iterator_tag,
240  const ElemTy, ptrdiff_t> {
241  typedef std::iterator<std::forward_iterator_tag,
242  const ElemTy, ptrdiff_t> super;
243  const ECValue *Node;
244  friend class EquivalenceClasses;
245  public:
246  typedef size_t size_type;
247  typedef typename super::pointer pointer;
248  typedef typename super::reference reference;
249 
250  explicit member_iterator() {}
251  explicit member_iterator(const ECValue *N) : Node(N) {}
252  member_iterator(const member_iterator &I) : Node(I.Node) {}
253 
255  assert(Node != 0 && "Dereferencing end()!");
256  return Node->getData();
257  }
258  reference operator->() const { return operator*(); }
259 
261  assert(Node != 0 && "++'d off the end of the list!");
262  Node = Node->getNext();
263  return *this;
264  }
265 
266  member_iterator operator++(int) { // postincrement operators.
267  member_iterator tmp = *this;
268  ++*this;
269  return tmp;
270  }
271 
272  bool operator==(const member_iterator &RHS) const {
273  return Node == RHS.Node;
274  }
275  bool operator!=(const member_iterator &RHS) const {
276  return Node != RHS.Node;
277  }
278  };
279 };
280 
281 } // End llvm namespace
282 
283 #endif
member_iterator findLeader(const ElemTy &V) const
void operator<(const Optional< T > &X, const Optional< U > &Y)
Poison comparison between two Optional objects. Clients needs to explicitly compare the underlying va...
bool operator!=(const member_iterator &RHS) const
member_iterator unionSets(const ElemTy &V1, const ElemTy &V2)
member_iterator member_begin(iterator I) const
bool operator==(const member_iterator &RHS) const
member_iterator member_end() const
EquivalenceClasses(const EquivalenceClasses &RHS)
iterator findValue(const ElemTy &V) const
iterator insert(const ElemTy &Data)
std::set< ECValue >::const_iterator iterator
iterator* - Provides a way to iterate over all values in the set.
unsigned getNumClasses() const
const EquivalenceClasses & operator=(const EquivalenceClasses &RHS)
const ElemTy & getOrInsertLeaderValue(const ElemTy &V)
#define NC
Definition: regutils.h:39
member_iterator findLeader(iterator I) const
member_iterator unionSets(member_iterator L1, member_iterator L2)
#define I(x, y, z)
Definition: MD5.cpp:54
#define N
const ElemTy & getLeaderValue(const ElemTy &V) const