LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
MCInstrItineraries.h
Go to the documentation of this file.
1 //===-- llvm/MC/MCInstrItineraries.h - Scheduling ---------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file describes the structures used for instruction
11 // itineraries, stages, and operand reads/writes. This is used by
12 // schedulers to determine instruction stages and latencies.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_MC_MCINSTRITINERARIES_H
17 #define LLVM_MC_MCINSTRITINERARIES_H
18 
19 #include "llvm/MC/MCSchedule.h"
20 #include <algorithm>
21 
22 namespace llvm {
23 
24 //===----------------------------------------------------------------------===//
25 /// Instruction stage - These values represent a non-pipelined step in
26 /// the execution of an instruction. Cycles represents the number of
27 /// discrete time slots needed to complete the stage. Units represent
28 /// the choice of functional units that can be used to complete the
29 /// stage. Eg. IntUnit1, IntUnit2. NextCycles indicates how many
30 /// cycles should elapse from the start of this stage to the start of
31 /// the next stage in the itinerary. A value of -1 indicates that the
32 /// next stage should start immediately after the current one.
33 /// For example:
34 ///
35 /// { 1, x, -1 }
36 /// indicates that the stage occupies FU x for 1 cycle and that
37 /// the next stage starts immediately after this one.
38 ///
39 /// { 2, x|y, 1 }
40 /// indicates that the stage occupies either FU x or FU y for 2
41 /// consecuative cycles and that the next stage starts one cycle
42 /// after this stage starts. That is, the stage requirements
43 /// overlap in time.
44 ///
45 /// { 1, x, 0 }
46 /// indicates that the stage occupies FU x for 1 cycle and that
47 /// the next stage starts in this same cycle. This can be used to
48 /// indicate that the instruction requires multiple stages at the
49 /// same time.
50 ///
51 /// FU reservation can be of two different kinds:
52 /// - FUs which instruction actually requires
53 /// - FUs which instruction just reserves. Reserved unit is not available for
54 /// execution of other instruction. However, several instructions can reserve
55 /// the same unit several times.
56 /// Such two types of units reservation is used to model instruction domain
57 /// change stalls, FUs using the same resource (e.g. same register file), etc.
58 
59 struct InstrStage {
61  Required = 0,
63  };
64 
65  unsigned Cycles_; ///< Length of stage in machine cycles
66  unsigned Units_; ///< Choice of functional units
67  int NextCycles_; ///< Number of machine cycles to next stage
68  ReservationKinds Kind_; ///< Kind of the FU reservation
69 
70  /// getCycles - returns the number of cycles the stage is occupied
71  unsigned getCycles() const {
72  return Cycles_;
73  }
74 
75  /// getUnits - returns the choice of FUs
76  unsigned getUnits() const {
77  return Units_;
78  }
79 
81  return Kind_;
82  }
83 
84  /// getNextCycles - returns the number of cycles from the start of
85  /// this stage to the start of the next stage in the itinerary
86  unsigned getNextCycles() const {
87  return (NextCycles_ >= 0) ? (unsigned)NextCycles_ : Cycles_;
88  }
89 };
90 
91 
92 //===----------------------------------------------------------------------===//
93 /// Instruction itinerary - An itinerary represents the scheduling
94 /// information for an instruction. This includes a set of stages
95 /// occupies by the instruction, and the pipeline cycle in which
96 /// operands are read and written.
97 ///
99  int NumMicroOps; ///< # of micro-ops, -1 means it's variable
100  unsigned FirstStage; ///< Index of first stage in itinerary
101  unsigned LastStage; ///< Index of last + 1 stage in itinerary
102  unsigned FirstOperandCycle; ///< Index of first operand rd/wr
103  unsigned LastOperandCycle; ///< Index of last + 1 operand rd/wr
104 };
105 
106 
107 //===----------------------------------------------------------------------===//
108 /// Instruction itinerary Data - Itinerary data supplied by a subtarget to be
109 /// used by a target.
110 ///
112 public:
113  const MCSchedModel *SchedModel; ///< Basic machine properties.
114  const InstrStage *Stages; ///< Array of stages selected
115  const unsigned *OperandCycles; ///< Array of operand cycles selected
116  const unsigned *Forwardings; ///< Array of pipeline forwarding pathes
117  const InstrItinerary *Itineraries; ///< Array of itineraries selected
118 
119  /// Ctors.
120  ///
121  InstrItineraryData() : SchedModel(&MCSchedModel::DefaultSchedModel),
122  Stages(0), OperandCycles(0),
123  Forwardings(0), Itineraries(0) {}
124 
126  const unsigned *OS, const unsigned *F)
127  : SchedModel(SM), Stages(S), OperandCycles(OS), Forwardings(F),
128  Itineraries(SchedModel->InstrItineraries) {}
129 
130  /// isEmpty - Returns true if there are no itineraries.
131  ///
132  bool isEmpty() const { return Itineraries == 0; }
133 
134  /// isEndMarker - Returns true if the index is for the end marker
135  /// itinerary.
136  ///
137  bool isEndMarker(unsigned ItinClassIndx) const {
138  return ((Itineraries[ItinClassIndx].FirstStage == ~0U) &&
139  (Itineraries[ItinClassIndx].LastStage == ~0U));
140  }
141 
142  /// beginStage - Return the first stage of the itinerary.
143  ///
144  const InstrStage *beginStage(unsigned ItinClassIndx) const {
145  unsigned StageIdx = Itineraries[ItinClassIndx].FirstStage;
146  return Stages + StageIdx;
147  }
148 
149  /// endStage - Return the last+1 stage of the itinerary.
150  ///
151  const InstrStage *endStage(unsigned ItinClassIndx) const {
152  unsigned StageIdx = Itineraries[ItinClassIndx].LastStage;
153  return Stages + StageIdx;
154  }
155 
156  /// getStageLatency - Return the total stage latency of the given
157  /// class. The latency is the maximum completion time for any stage
158  /// in the itinerary.
159  ///
160  /// If no stages exist, it defaults to one cycle.
161  unsigned getStageLatency(unsigned ItinClassIndx) const {
162  // If the target doesn't provide itinerary information, use a simple
163  // non-zero default value for all instructions.
164  if (isEmpty())
165  return 1;
166 
167  // Calculate the maximum completion time for any stage.
168  unsigned Latency = 0, StartCycle = 0;
169  for (const InstrStage *IS = beginStage(ItinClassIndx),
170  *E = endStage(ItinClassIndx); IS != E; ++IS) {
171  Latency = std::max(Latency, StartCycle + IS->getCycles());
172  StartCycle += IS->getNextCycles();
173  }
174  return Latency;
175  }
176 
177  /// getOperandCycle - Return the cycle for the given class and
178  /// operand. Return -1 if no cycle is specified for the operand.
179  ///
180  int getOperandCycle(unsigned ItinClassIndx, unsigned OperandIdx) const {
181  if (isEmpty())
182  return -1;
183 
184  unsigned FirstIdx = Itineraries[ItinClassIndx].FirstOperandCycle;
185  unsigned LastIdx = Itineraries[ItinClassIndx].LastOperandCycle;
186  if ((FirstIdx + OperandIdx) >= LastIdx)
187  return -1;
188 
189  return (int)OperandCycles[FirstIdx + OperandIdx];
190  }
191 
192  /// hasPipelineForwarding - Return true if there is a pipeline forwarding
193  /// between instructions of itinerary classes DefClass and UseClasses so that
194  /// value produced by an instruction of itinerary class DefClass, operand
195  /// index DefIdx can be bypassed when it's read by an instruction of
196  /// itinerary class UseClass, operand index UseIdx.
197  bool hasPipelineForwarding(unsigned DefClass, unsigned DefIdx,
198  unsigned UseClass, unsigned UseIdx) const {
199  unsigned FirstDefIdx = Itineraries[DefClass].FirstOperandCycle;
200  unsigned LastDefIdx = Itineraries[DefClass].LastOperandCycle;
201  if ((FirstDefIdx + DefIdx) >= LastDefIdx)
202  return false;
203  if (Forwardings[FirstDefIdx + DefIdx] == 0)
204  return false;
205 
206  unsigned FirstUseIdx = Itineraries[UseClass].FirstOperandCycle;
207  unsigned LastUseIdx = Itineraries[UseClass].LastOperandCycle;
208  if ((FirstUseIdx + UseIdx) >= LastUseIdx)
209  return false;
210 
211  return Forwardings[FirstDefIdx + DefIdx] ==
212  Forwardings[FirstUseIdx + UseIdx];
213  }
214 
215  /// getOperandLatency - Compute and return the use operand latency of a given
216  /// itinerary class and operand index if the value is produced by an
217  /// instruction of the specified itinerary class and def operand index.
218  int getOperandLatency(unsigned DefClass, unsigned DefIdx,
219  unsigned UseClass, unsigned UseIdx) const {
220  if (isEmpty())
221  return -1;
222 
223  int DefCycle = getOperandCycle(DefClass, DefIdx);
224  if (DefCycle == -1)
225  return -1;
226 
227  int UseCycle = getOperandCycle(UseClass, UseIdx);
228  if (UseCycle == -1)
229  return -1;
230 
231  UseCycle = DefCycle - UseCycle + 1;
232  if (UseCycle > 0 &&
233  hasPipelineForwarding(DefClass, DefIdx, UseClass, UseIdx))
234  // FIXME: This assumes one cycle benefit for every pipeline forwarding.
235  --UseCycle;
236  return UseCycle;
237  }
238 
239  /// getNumMicroOps - Return the number of micro-ops that the given class
240  /// decodes to. Return -1 for classes that require dynamic lookup via
241  /// TargetInstrInfo.
242  int getNumMicroOps(unsigned ItinClassIndx) const {
243  if (isEmpty())
244  return 1;
245  return Itineraries[ItinClassIndx].NumMicroOps;
246  }
247 };
248 
249 } // End llvm namespace
250 
251 #endif
const unsigned * OperandCycles
Array of operand cycles selected.
int getNumMicroOps(unsigned ItinClassIndx) const
unsigned Units_
Choice of functional units.
const unsigned * Forwardings
Array of pipeline forwarding pathes.
int NextCycles_
Number of machine cycles to next stage.
unsigned getCycles() const
getCycles - returns the number of cycles the stage is occupied
F(f)
const MCSchedModel * SchedModel
Basic machine properties.
ReservationKinds getReservationKind() const
bool isEndMarker(unsigned ItinClassIndx) const
int NumMicroOps
of micro-ops, -1 means it's variable
int getOperandCycle(unsigned ItinClassIndx, unsigned OperandIdx) const
unsigned FirstOperandCycle
Index of first operand rd/wr.
const InstrItinerary * Itineraries
Array of itineraries selected.
const InstrStage * beginStage(unsigned ItinClassIndx) const
unsigned getUnits() const
getUnits - returns the choice of FUs
unsigned LastOperandCycle
Index of last + 1 operand rd/wr.
unsigned FirstStage
Index of first stage in itinerary.
ReservationKinds Kind_
Kind of the FU reservation.
unsigned getStageLatency(unsigned ItinClassIndx) const
unsigned Cycles_
Length of stage in machine cycles.
unsigned getNextCycles() const
InstrItineraryData(const MCSchedModel *SM, const InstrStage *S, const unsigned *OS, const unsigned *F)
const InstrStage * endStage(unsigned ItinClassIndx) const
unsigned LastStage
Index of last + 1 stage in itinerary.
int getOperandLatency(unsigned DefClass, unsigned DefIdx, unsigned UseClass, unsigned UseIdx) const
bool hasPipelineForwarding(unsigned DefClass, unsigned DefIdx, unsigned UseClass, unsigned UseIdx) const
const InstrStage * Stages
Array of stages selected.