LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
MachineCodeEmitter.h
Go to the documentation of this file.
1 //===-- llvm/CodeGen/MachineCodeEmitter.h - Code emission -------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines an abstract interface that is used by the machine code
11 // emission framework to output the code. This allows machine code emission to
12 // be separated from concerns such as resolution of call targets, and where the
13 // machine code will be written (memory or disk, f.e.).
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef LLVM_CODEGEN_MACHINECODEEMITTER_H
18 #define LLVM_CODEGEN_MACHINECODEEMITTER_H
19 
20 #include "llvm/Support/DataTypes.h"
21 #include "llvm/Support/DebugLoc.h"
22 #include <string>
23 
24 namespace llvm {
25 
26 class MachineBasicBlock;
27 class MachineConstantPool;
28 class MachineJumpTableInfo;
29 class MachineFunction;
30 class MachineModuleInfo;
31 class MachineRelocation;
32 class Value;
33 class GlobalValue;
34 class Function;
35 class MCSymbol;
36 
37 /// MachineCodeEmitter - This class defines two sorts of methods: those for
38 /// emitting the actual bytes of machine code, and those for emitting auxiliary
39 /// structures, such as jump tables, relocations, etc.
40 ///
41 /// Emission of machine code is complicated by the fact that we don't (in
42 /// general) know the size of the machine code that we're about to emit before
43 /// we emit it. As such, we preallocate a certain amount of memory, and set the
44 /// BufferBegin/BufferEnd pointers to the start and end of the buffer. As we
45 /// emit machine instructions, we advance the CurBufferPtr to indicate the
46 /// location of the next byte to emit. In the case of a buffer overflow (we
47 /// need to emit more machine code than we have allocated space for), the
48 /// CurBufferPtr will saturate to BufferEnd and ignore stores. Once the entire
49 /// function has been emitted, the overflow condition is checked, and if it has
50 /// occurred, more memory is allocated, and we reemit the code into it.
51 ///
53  virtual void anchor();
54 protected:
55  /// BufferBegin/BufferEnd - Pointers to the start and end of the memory
56  /// allocated for this code buffer.
57  uint8_t *BufferBegin, *BufferEnd;
58  /// CurBufferPtr - Pointer to the next byte of memory to fill when emitting
59  /// code. This is guaranteed to be in the range [BufferBegin,BufferEnd]. If
60  /// this pointer is at BufferEnd, it will never move due to code emission, and
61  /// all code emission requests will be ignored (this is the buffer overflow
62  /// condition).
63  uint8_t *CurBufferPtr;
64 
65 public:
66  virtual ~MachineCodeEmitter() {}
67 
68  /// startFunction - This callback is invoked when the specified function is
69  /// about to be code generated. This initializes the BufferBegin/End/Ptr
70  /// fields.
71  ///
72  virtual void startFunction(MachineFunction &F) = 0;
73 
74  /// finishFunction - This callback is invoked when the specified function has
75  /// finished code generation. If a buffer overflow has occurred, this method
76  /// returns true (the callee is required to try again), otherwise it returns
77  /// false.
78  ///
79  virtual bool finishFunction(MachineFunction &F) = 0;
80 
81  /// emitByte - This callback is invoked when a byte needs to be written to the
82  /// output stream.
83  ///
84  void emitByte(uint8_t B) {
85  if (CurBufferPtr != BufferEnd)
86  *CurBufferPtr++ = B;
87  }
88 
89  /// emitWordLE - This callback is invoked when a 32-bit word needs to be
90  /// written to the output stream in little-endian format.
91  ///
92  void emitWordLE(uint32_t W) {
93  if (4 <= BufferEnd-CurBufferPtr) {
95  } else {
97  }
98  }
99 
100  /// emitWordLEInto - This callback is invoked when a 32-bit word needs to be
101  /// written to an arbitrary buffer in little-endian format. Buf must have at
102  /// least 4 bytes of available space.
103  ///
104  static void emitWordLEInto(uint8_t *&Buf, uint32_t W) {
105  *Buf++ = (uint8_t)(W >> 0);
106  *Buf++ = (uint8_t)(W >> 8);
107  *Buf++ = (uint8_t)(W >> 16);
108  *Buf++ = (uint8_t)(W >> 24);
109  }
110 
111  /// emitWordBE - This callback is invoked when a 32-bit word needs to be
112  /// written to the output stream in big-endian format.
113  ///
114  void emitWordBE(uint32_t W) {
115  if (4 <= BufferEnd-CurBufferPtr) {
116  *CurBufferPtr++ = (uint8_t)(W >> 24);
117  *CurBufferPtr++ = (uint8_t)(W >> 16);
118  *CurBufferPtr++ = (uint8_t)(W >> 8);
119  *CurBufferPtr++ = (uint8_t)(W >> 0);
120  } else {
122  }
123  }
124 
125  /// emitDWordLE - This callback is invoked when a 64-bit word needs to be
126  /// written to the output stream in little-endian format.
127  ///
128  void emitDWordLE(uint64_t W) {
129  if (8 <= BufferEnd-CurBufferPtr) {
130  *CurBufferPtr++ = (uint8_t)(W >> 0);
131  *CurBufferPtr++ = (uint8_t)(W >> 8);
132  *CurBufferPtr++ = (uint8_t)(W >> 16);
133  *CurBufferPtr++ = (uint8_t)(W >> 24);
134  *CurBufferPtr++ = (uint8_t)(W >> 32);
135  *CurBufferPtr++ = (uint8_t)(W >> 40);
136  *CurBufferPtr++ = (uint8_t)(W >> 48);
137  *CurBufferPtr++ = (uint8_t)(W >> 56);
138  } else {
140  }
141  }
142 
143  /// emitDWordBE - This callback is invoked when a 64-bit word needs to be
144  /// written to the output stream in big-endian format.
145  ///
146  void emitDWordBE(uint64_t W) {
147  if (8 <= BufferEnd-CurBufferPtr) {
148  *CurBufferPtr++ = (uint8_t)(W >> 56);
149  *CurBufferPtr++ = (uint8_t)(W >> 48);
150  *CurBufferPtr++ = (uint8_t)(W >> 40);
151  *CurBufferPtr++ = (uint8_t)(W >> 32);
152  *CurBufferPtr++ = (uint8_t)(W >> 24);
153  *CurBufferPtr++ = (uint8_t)(W >> 16);
154  *CurBufferPtr++ = (uint8_t)(W >> 8);
155  *CurBufferPtr++ = (uint8_t)(W >> 0);
156  } else {
158  }
159  }
160 
161  /// emitAlignment - Move the CurBufferPtr pointer up to the specified
162  /// alignment (saturated to BufferEnd of course).
163  void emitAlignment(unsigned Alignment) {
164  if (Alignment == 0) Alignment = 1;
165 
166  if(Alignment <= (uintptr_t)(BufferEnd-CurBufferPtr)) {
167  // Move the current buffer ptr up to the specified alignment.
168  CurBufferPtr =
169  (uint8_t*)(((uintptr_t)CurBufferPtr+Alignment-1) &
170  ~(uintptr_t)(Alignment-1));
171  } else {
173  }
174  }
175 
176 
177  /// emitULEB128Bytes - This callback is invoked when a ULEB128 needs to be
178  /// written to the output stream.
179  void emitULEB128Bytes(uint64_t Value) {
180  do {
181  uint8_t Byte = Value & 0x7f;
182  Value >>= 7;
183  if (Value) Byte |= 0x80;
184  emitByte(Byte);
185  } while (Value);
186  }
187 
188  /// emitSLEB128Bytes - This callback is invoked when a SLEB128 needs to be
189  /// written to the output stream.
190  void emitSLEB128Bytes(uint64_t Value) {
191  uint64_t Sign = Value >> (8 * sizeof(Value) - 1);
192  bool IsMore;
193 
194  do {
195  uint8_t Byte = Value & 0x7f;
196  Value >>= 7;
197  IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
198  if (IsMore) Byte |= 0x80;
199  emitByte(Byte);
200  } while (IsMore);
201  }
202 
203  /// emitString - This callback is invoked when a String needs to be
204  /// written to the output stream.
205  void emitString(const std::string &String) {
206  for (unsigned i = 0, N = static_cast<unsigned>(String.size());
207  i < N; ++i) {
208  uint8_t C = String[i];
209  emitByte(C);
210  }
211  emitByte(0);
212  }
213 
214  /// emitInt32 - Emit a int32 directive.
215  void emitInt32(int32_t Value) {
216  if (4 <= BufferEnd-CurBufferPtr) {
217  *((uint32_t*)CurBufferPtr) = Value;
218  CurBufferPtr += 4;
219  } else {
221  }
222  }
223 
224  /// emitInt64 - Emit a int64 directive.
225  void emitInt64(uint64_t Value) {
226  if (8 <= BufferEnd-CurBufferPtr) {
227  *((uint64_t*)CurBufferPtr) = Value;
228  CurBufferPtr += 8;
229  } else {
231  }
232  }
233 
234  /// emitInt32At - Emit the Int32 Value in Addr.
235  void emitInt32At(uintptr_t *Addr, uintptr_t Value) {
236  if (Addr >= (uintptr_t*)BufferBegin && Addr < (uintptr_t*)BufferEnd)
237  (*(uint32_t*)Addr) = (uint32_t)Value;
238  }
239 
240  /// emitInt64At - Emit the Int64 Value in Addr.
241  void emitInt64At(uintptr_t *Addr, uintptr_t Value) {
242  if (Addr >= (uintptr_t*)BufferBegin && Addr < (uintptr_t*)BufferEnd)
243  (*(uint64_t*)Addr) = (uint64_t)Value;
244  }
245 
246  /// processDebugLoc - Records debug location information about a
247  /// MachineInstruction. This is called before emitting any bytes associated
248  /// with the instruction. Even if successive instructions have the same debug
249  /// location, this method will be called for each one.
250  virtual void processDebugLoc(DebugLoc DL, bool BeforePrintintInsn) {}
251 
252  /// emitLabel - Emits a label
253  virtual void emitLabel(MCSymbol *Label) = 0;
254 
255  /// allocateSpace - Allocate a block of space in the current output buffer,
256  /// returning null (and setting conditions to indicate buffer overflow) on
257  /// failure. Alignment is the alignment in bytes of the buffer desired.
258  virtual void *allocateSpace(uintptr_t Size, unsigned Alignment) {
259  emitAlignment(Alignment);
260  void *Result;
261 
262  // Check for buffer overflow.
263  if (Size >= (uintptr_t)(BufferEnd-CurBufferPtr)) {
265  Result = 0;
266  } else {
267  // Allocate the space.
268  Result = CurBufferPtr;
269  CurBufferPtr += Size;
270  }
271 
272  return Result;
273  }
274 
275  /// StartMachineBasicBlock - This should be called by the target when a new
276  /// basic block is about to be emitted. This way the MCE knows where the
277  /// start of the block is, and can implement getMachineBasicBlockAddress.
278  virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) = 0;
279 
280  /// getCurrentPCValue - This returns the address that the next emitted byte
281  /// will be output to.
282  ///
283  virtual uintptr_t getCurrentPCValue() const {
284  return (uintptr_t)CurBufferPtr;
285  }
286 
287  /// getCurrentPCOffset - Return the offset from the start of the emitted
288  /// buffer that we are currently writing to.
289  virtual uintptr_t getCurrentPCOffset() const {
290  return CurBufferPtr-BufferBegin;
291  }
292 
293  /// earlyResolveAddresses - True if the code emitter can use symbol addresses
294  /// during code emission time. The JIT is capable of doing this because it
295  /// creates jump tables or constant pools in memory on the fly while the
296  /// object code emitters rely on a linker to have real addresses and should
297  /// use relocations instead.
298  virtual bool earlyResolveAddresses() const = 0;
299 
300  /// addRelocation - Whenever a relocatable address is needed, it should be
301  /// noted with this interface.
302  virtual void addRelocation(const MachineRelocation &MR) = 0;
303 
304  /// FIXME: These should all be handled with relocations!
305 
306  /// getConstantPoolEntryAddress - Return the address of the 'Index' entry in
307  /// the constant pool that was last emitted with the emitConstantPool method.
308  ///
309  virtual uintptr_t getConstantPoolEntryAddress(unsigned Index) const = 0;
310 
311  /// getJumpTableEntryAddress - Return the address of the jump table with index
312  /// 'Index' in the function that last called initJumpTableInfo.
313  ///
314  virtual uintptr_t getJumpTableEntryAddress(unsigned Index) const = 0;
315 
316  /// getMachineBasicBlockAddress - Return the address of the specified
317  /// MachineBasicBlock, only usable after the label for the MBB has been
318  /// emitted.
319  ///
320  virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const= 0;
321 
322  /// getLabelAddress - Return the address of the specified Label, only usable
323  /// after the LabelID has been emitted.
324  ///
325  virtual uintptr_t getLabelAddress(MCSymbol *Label) const = 0;
326 
327  /// Specifies the MachineModuleInfo object. This is used for exception handling
328  /// purposes.
329  virtual void setModuleInfo(MachineModuleInfo* Info) = 0;
330 };
331 
332 } // End llvm namespace
333 
334 #endif
void emitAlignment(unsigned Alignment)
void emitInt64At(uintptr_t *Addr, uintptr_t Value)
emitInt64At - Emit the Int64 Value in Addr.
F(f)
void emitInt32At(uintptr_t *Addr, uintptr_t Value)
emitInt32At - Emit the Int32 Value in Addr.
void emitString(const std::string &String)
static void emitWordLEInto(uint8_t *&Buf, uint32_t W)
void emitInt64(uint64_t Value)
emitInt64 - Emit a int64 directive.
virtual uintptr_t getJumpTableEntryAddress(unsigned Index) const =0
virtual uintptr_t getLabelAddress(MCSymbol *Label) const =0
virtual void startFunction(MachineFunction &F)=0
virtual void processDebugLoc(DebugLoc DL, bool BeforePrintintInsn)
virtual uintptr_t getCurrentPCValue() const
virtual void setModuleInfo(MachineModuleInfo *Info)=0
virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const =0
virtual uintptr_t getCurrentPCOffset() const
void emitULEB128Bytes(uint64_t Value)
virtual bool earlyResolveAddresses() const =0
void emitInt32(int32_t Value)
emitInt32 - Emit a int32 directive.
void emitSLEB128Bytes(uint64_t Value)
virtual void addRelocation(const MachineRelocation &MR)=0
virtual void emitLabel(MCSymbol *Label)=0
emitLabel - Emits a label
virtual void * allocateSpace(uintptr_t Size, unsigned Alignment)
virtual uintptr_t getConstantPoolEntryAddress(unsigned Index) const =0
FIXME: These should all be handled with relocations!
#define N
virtual bool finishFunction(MachineFunction &F)=0
LLVM Value Representation.
Definition: Value.h:66
virtual void StartMachineBasicBlock(MachineBasicBlock *MBB)=0