LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
TypeBuilder.h
Go to the documentation of this file.
1 //===---- llvm/TypeBuilder.h - Builder for LLVM types -----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the TypeBuilder class, which is used as a convenient way to
11 // create LLVM types with a consistent and simplified interface.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_IR_TYPEBUILDER_H
16 #define LLVM_IR_TYPEBUILDER_H
17 
18 #include "llvm/IR/DerivedTypes.h"
19 #include "llvm/IR/LLVMContext.h"
20 #include <climits>
21 
22 namespace llvm {
23 
24 /// TypeBuilder - This provides a uniform API for looking up types
25 /// known at compile time. To support cross-compilation, we define a
26 /// series of tag types in the llvm::types namespace, like i<N>,
27 /// ieee_float, ppc_fp128, etc. TypeBuilder<T, false> allows T to be
28 /// any of these, a native C type (whose size may depend on the host
29 /// compiler), or a pointer, function, or struct type built out of
30 /// these. TypeBuilder<T, true> removes native C types from this set
31 /// to guarantee that its result is suitable for cross-compilation.
32 /// We define the primitive types, pointer types, and functions up to
33 /// 5 arguments here, but to use this class with your own types,
34 /// you'll need to specialize it. For example, say you want to call a
35 /// function defined externally as:
36 ///
37 /// struct MyType {
38 /// int32 a;
39 /// int32 *b;
40 /// void *array[1]; // Intended as a flexible array.
41 /// };
42 /// int8 AFunction(struct MyType *value);
43 ///
44 /// You'll want to use
45 /// Function::Create(TypeBuilder<types::i<8>(MyType*), true>::get(), ...)
46 /// to declare the function, but when you first try this, your compiler will
47 /// complain that TypeBuilder<MyType, true>::get() doesn't exist. To fix this,
48 /// write:
49 ///
50 /// namespace llvm {
51 /// template<bool xcompile> class TypeBuilder<MyType, xcompile> {
52 /// public:
53 /// static StructType *get(LLVMContext &Context) {
54 /// // If you cache this result, be sure to cache it separately
55 /// // for each LLVMContext.
56 /// return StructType::get(
57 /// TypeBuilder<types::i<32>, xcompile>::get(Context),
58 /// TypeBuilder<types::i<32>*, xcompile>::get(Context),
59 /// TypeBuilder<types::i<8>*[], xcompile>::get(Context),
60 /// NULL);
61 /// }
62 ///
63 /// // You may find this a convenient place to put some constants
64 /// // to help with getelementptr. They don't have any effect on
65 /// // the operation of TypeBuilder.
66 /// enum Fields {
67 /// FIELD_A,
68 /// FIELD_B,
69 /// FIELD_ARRAY
70 /// };
71 /// }
72 /// } // namespace llvm
73 ///
74 /// TypeBuilder cannot handle recursive types or types you only know at runtime.
75 /// If you try to give it a recursive type, it will deadlock, infinitely
76 /// recurse, or do something similarly undesirable.
77 template<typename T, bool cross_compilable> class TypeBuilder {};
78 
79 // Types for use with cross-compilable TypeBuilders. These correspond
80 // exactly with an LLVM-native type.
81 namespace types {
82 /// i<N> corresponds to the LLVM IntegerType with N bits.
83 template<uint32_t num_bits> class i {};
84 
85 // The following classes represent the LLVM floating types.
86 class ieee_float {};
87 class ieee_double {};
88 class x86_fp80 {};
89 class fp128 {};
90 class ppc_fp128 {};
91 // X86 MMX.
92 class x86_mmx {};
93 } // namespace types
94 
95 // LLVM doesn't have const or volatile types.
96 template<typename T, bool cross> class TypeBuilder<const T, cross>
97  : public TypeBuilder<T, cross> {};
98 template<typename T, bool cross> class TypeBuilder<volatile T, cross>
99  : public TypeBuilder<T, cross> {};
100 template<typename T, bool cross> class TypeBuilder<const volatile T, cross>
101  : public TypeBuilder<T, cross> {};
102 
103 // Pointers
104 template<typename T, bool cross> class TypeBuilder<T*, cross> {
105 public:
106  static PointerType *get(LLVMContext &Context) {
108  }
109 };
110 
111 /// There is no support for references
112 template<typename T, bool cross> class TypeBuilder<T&, cross> {};
113 
114 // Arrays
115 template<typename T, size_t N, bool cross> class TypeBuilder<T[N], cross> {
116 public:
117  static ArrayType *get(LLVMContext &Context) {
118  return ArrayType::get(TypeBuilder<T, cross>::get(Context), N);
119  }
120 };
121 /// LLVM uses an array of length 0 to represent an unknown-length array.
122 template<typename T, bool cross> class TypeBuilder<T[], cross> {
123 public:
124  static ArrayType *get(LLVMContext &Context) {
125  return ArrayType::get(TypeBuilder<T, cross>::get(Context), 0);
126  }
127 };
128 
129 // Define the C integral types only for TypeBuilder<T, false>.
130 //
131 // C integral types do not have a defined size. It would be nice to use the
132 // stdint.h-defined typedefs that do have defined sizes, but we'd run into the
133 // following problem:
134 //
135 // On an ILP32 machine, stdint.h might define:
136 //
137 // typedef int int32_t;
138 // typedef long long int64_t;
139 // typedef long size_t;
140 //
141 // If we defined TypeBuilder<int32_t> and TypeBuilder<int64_t>, then any use of
142 // TypeBuilder<size_t> would fail. We couldn't define TypeBuilder<size_t> in
143 // addition to the defined-size types because we'd get duplicate definitions on
144 // platforms where stdint.h instead defines:
145 //
146 // typedef int int32_t;
147 // typedef long long int64_t;
148 // typedef int size_t;
149 //
150 // So we define all the primitive C types and nothing else.
151 #define DEFINE_INTEGRAL_TYPEBUILDER(T) \
152 template<> class TypeBuilder<T, false> { \
153 public: \
154  static IntegerType *get(LLVMContext &Context) { \
155  return IntegerType::get(Context, sizeof(T) * CHAR_BIT); \
156  } \
157 }; \
158 template<> class TypeBuilder<T, true> { \
159  /* We provide a definition here so users don't accidentally */ \
160  /* define these types to work. */ \
161 }
163 DEFINE_INTEGRAL_TYPEBUILDER(signed char);
164 DEFINE_INTEGRAL_TYPEBUILDER(unsigned char);
166 DEFINE_INTEGRAL_TYPEBUILDER(unsigned short);
168 DEFINE_INTEGRAL_TYPEBUILDER(unsigned int);
170 DEFINE_INTEGRAL_TYPEBUILDER(unsigned long);
171 #ifdef _MSC_VER
173 DEFINE_INTEGRAL_TYPEBUILDER(unsigned __int64);
174 #else /* _MSC_VER */
175 DEFINE_INTEGRAL_TYPEBUILDER(long long);
176 DEFINE_INTEGRAL_TYPEBUILDER(unsigned long long);
177 #endif /* _MSC_VER */
178 #undef DEFINE_INTEGRAL_TYPEBUILDER
179 
180 template<uint32_t num_bits, bool cross>
181 class TypeBuilder<types::i<num_bits>, cross> {
182 public:
183  static IntegerType *get(LLVMContext &C) {
184  return IntegerType::get(C, num_bits);
185  }
186 };
187 
188 template<> class TypeBuilder<float, false> {
189 public:
190  static Type *get(LLVMContext& C) {
191  return Type::getFloatTy(C);
192  }
193 };
194 template<> class TypeBuilder<float, true> {};
195 
196 template<> class TypeBuilder<double, false> {
197 public:
198  static Type *get(LLVMContext& C) {
199  return Type::getDoubleTy(C);
200  }
201 };
202 template<> class TypeBuilder<double, true> {};
203 
204 template<bool cross> class TypeBuilder<types::ieee_float, cross> {
205 public:
206  static Type *get(LLVMContext& C) { return Type::getFloatTy(C); }
207 };
208 template<bool cross> class TypeBuilder<types::ieee_double, cross> {
209 public:
210  static Type *get(LLVMContext& C) { return Type::getDoubleTy(C); }
211 };
212 template<bool cross> class TypeBuilder<types::x86_fp80, cross> {
213 public:
214  static Type *get(LLVMContext& C) { return Type::getX86_FP80Ty(C); }
215 };
216 template<bool cross> class TypeBuilder<types::fp128, cross> {
217 public:
218  static Type *get(LLVMContext& C) { return Type::getFP128Ty(C); }
219 };
220 template<bool cross> class TypeBuilder<types::ppc_fp128, cross> {
221 public:
222  static Type *get(LLVMContext& C) { return Type::getPPC_FP128Ty(C); }
223 };
224 template<bool cross> class TypeBuilder<types::x86_mmx, cross> {
225 public:
226  static Type *get(LLVMContext& C) { return Type::getX86_MMXTy(C); }
227 };
228 
229 template<bool cross> class TypeBuilder<void, cross> {
230 public:
231  static Type *get(LLVMContext &C) {
232  return Type::getVoidTy(C);
233  }
234 };
235 
236 /// void* is disallowed in LLVM types, but it occurs often enough in C code that
237 /// we special case it.
238 template<> class TypeBuilder<void*, false>
239  : public TypeBuilder<types::i<8>*, false> {};
240 template<> class TypeBuilder<const void*, false>
241  : public TypeBuilder<types::i<8>*, false> {};
242 template<> class TypeBuilder<volatile void*, false>
243  : public TypeBuilder<types::i<8>*, false> {};
244 template<> class TypeBuilder<const volatile void*, false>
245  : public TypeBuilder<types::i<8>*, false> {};
246 
247 template<typename R, bool cross> class TypeBuilder<R(), cross> {
248 public:
249  static FunctionType *get(LLVMContext &Context) {
250  return FunctionType::get(TypeBuilder<R, cross>::get(Context), false);
251  }
252 };
253 template<typename R, typename A1, bool cross> class TypeBuilder<R(A1), cross> {
254 public:
255  static FunctionType *get(LLVMContext &Context) {
256  Type *params[] = {
258  };
260  params, false);
261  }
262 };
263 template<typename R, typename A1, typename A2, bool cross>
264 class TypeBuilder<R(A1, A2), cross> {
265 public:
266  static FunctionType *get(LLVMContext &Context) {
267  Type *params[] = {
270  };
272  params, false);
273  }
274 };
275 template<typename R, typename A1, typename A2, typename A3, bool cross>
276 class TypeBuilder<R(A1, A2, A3), cross> {
277 public:
278  static FunctionType *get(LLVMContext &Context) {
279  Type *params[] = {
283  };
285  params, false);
286  }
287 };
288 
289 template<typename R, typename A1, typename A2, typename A3, typename A4,
290  bool cross>
291 class TypeBuilder<R(A1, A2, A3, A4), cross> {
292 public:
293  static FunctionType *get(LLVMContext &Context) {
294  Type *params[] = {
299  };
301  params, false);
302  }
303 };
304 
305 template<typename R, typename A1, typename A2, typename A3, typename A4,
306  typename A5, bool cross>
307 class TypeBuilder<R(A1, A2, A3, A4, A5), cross> {
308 public:
309  static FunctionType *get(LLVMContext &Context) {
310  Type *params[] = {
316  };
318  params, false);
319  }
320 };
321 
322 template<typename R, bool cross> class TypeBuilder<R(...), cross> {
323 public:
324  static FunctionType *get(LLVMContext &Context) {
325  return FunctionType::get(TypeBuilder<R, cross>::get(Context), true);
326  }
327 };
328 template<typename R, typename A1, bool cross>
329 class TypeBuilder<R(A1, ...), cross> {
330 public:
331  static FunctionType *get(LLVMContext &Context) {
332  Type *params[] = {
334  };
335  return FunctionType::get(TypeBuilder<R, cross>::get(Context), params, true);
336  }
337 };
338 template<typename R, typename A1, typename A2, bool cross>
339 class TypeBuilder<R(A1, A2, ...), cross> {
340 public:
341  static FunctionType *get(LLVMContext &Context) {
342  Type *params[] = {
345  };
347  params, true);
348  }
349 };
350 template<typename R, typename A1, typename A2, typename A3, bool cross>
351 class TypeBuilder<R(A1, A2, A3, ...), cross> {
352 public:
353  static FunctionType *get(LLVMContext &Context) {
354  Type *params[] = {
358  };
360  params, true);
361  }
362 };
363 
364 template<typename R, typename A1, typename A2, typename A3, typename A4,
365  bool cross>
366 class TypeBuilder<R(A1, A2, A3, A4, ...), cross> {
367 public:
368  static FunctionType *get(LLVMContext &Context) {
369  Type *params[] = {
374  };
376  params, true);
377  }
378 };
379 
380 template<typename R, typename A1, typename A2, typename A3, typename A4,
381  typename A5, bool cross>
382 class TypeBuilder<R(A1, A2, A3, A4, A5, ...), cross> {
383 public:
384  static FunctionType *get(LLVMContext &Context) {
385  Type *params[] = {
391  };
393  params, true);
394  }
395 };
396 
397 } // namespace llvm
398 
399 #endif
static Type * getDoubleTy(LLVMContext &C)
Definition: Type.cpp:231
i<N> corresponds to the LLVM IntegerType with N bits.
Definition: TypeBuilder.h:83
static Type * getX86_MMXTy(LLVMContext &C)
Definition: Type.cpp:236
static Type * getX86_FP80Ty(LLVMContext &C)
Definition: Type.cpp:233
static Type * getFloatTy(LLVMContext &C)
Definition: Type.cpp:230
#define false
Definition: ConvertUTF.c:64
static Type * getPPC_FP128Ty(LLVMContext &C)
Definition: Type.cpp:235
static FunctionType * get(Type *Result, ArrayRef< Type * > Params, bool isVarArg)
Definition: Type.cpp:361
#define true
Definition: ConvertUTF.c:65
static Type * getVoidTy(LLVMContext &C)
Definition: Type.cpp:227
Integer representation type.
Definition: DerivedTypes.h:37
static Type * getFP128Ty(LLVMContext &C)
Definition: Type.cpp:234
static IntegerType * get(LLVMContext &C, unsigned NumBits)
Get or create an IntegerType instance.
Definition: Type.cpp:305
static PointerType * getUnqual(Type *ElementType)
Definition: DerivedTypes.h:436
DEFINE_INTEGRAL_TYPEBUILDER(char)
#define N
static ArrayType * get(Type *ElementType, uint64_t NumElements)
Definition: Type.cpp:679