LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
X86DisassemblerDecoder.c
Go to the documentation of this file.
1 /*===-- X86DisassemblerDecoder.c - Disassembler decoder ------------*- C -*-===*
2  *
3  * The LLVM Compiler Infrastructure
4  *
5  * This file is distributed under the University of Illinois Open Source
6  * License. See LICENSE.TXT for details.
7  *
8  *===----------------------------------------------------------------------===*
9  *
10  * This file is part of the X86 Disassembler.
11  * It contains the implementation of the instruction decoder.
12  * Documentation for the disassembler can be found in X86Disassembler.h.
13  *
14  *===----------------------------------------------------------------------===*/
15 
16 #include <stdarg.h> /* for va_*() */
17 #include <stdio.h> /* for vsnprintf() */
18 #include <stdlib.h> /* for exit() */
19 #include <string.h> /* for memset() */
20 
21 #include "X86DisassemblerDecoder.h"
22 
23 #include "X86GenDisassemblerTables.inc"
24 
25 #define TRUE 1
26 #define FALSE 0
27 
28 #ifndef NDEBUG
29 #define debug(s) do { x86DisassemblerDebug(__FILE__, __LINE__, s); } while (0)
30 #else
31 #define debug(s) do { } while (0)
32 #endif
33 
34 
35 /*
36  * contextForAttrs - Client for the instruction context table. Takes a set of
37  * attributes and returns the appropriate decode context.
38  *
39  * @param attrMask - Attributes, from the enumeration attributeBits.
40  * @return - The InstructionContext to use when looking up an
41  * an instruction with these attributes.
42  */
43 static InstructionContext contextForAttrs(uint8_t attrMask) {
44  return CONTEXTS_SYM[attrMask];
45 }
46 
47 /*
48  * modRMRequired - Reads the appropriate instruction table to determine whether
49  * the ModR/M byte is required to decode a particular instruction.
50  *
51  * @param type - The opcode type (i.e., how many bytes it has).
52  * @param insnContext - The context for the instruction, as returned by
53  * contextForAttrs.
54  * @param opcode - The last byte of the instruction's opcode, not counting
55  * ModR/M extensions and escapes.
56  * @return - TRUE if the ModR/M byte is required, FALSE otherwise.
57  */
58 static int modRMRequired(OpcodeType type,
59  InstructionContext insnContext,
60  uint8_t opcode) {
61  const struct ContextDecision* decision = 0;
62 
63  switch (type) {
64  case ONEBYTE:
65  decision = &ONEBYTE_SYM;
66  break;
67  case TWOBYTE:
68  decision = &TWOBYTE_SYM;
69  break;
70  case THREEBYTE_38:
71  decision = &THREEBYTE38_SYM;
72  break;
73  case THREEBYTE_3A:
74  decision = &THREEBYTE3A_SYM;
75  break;
76  case THREEBYTE_A6:
77  decision = &THREEBYTEA6_SYM;
78  break;
79  case THREEBYTE_A7:
80  decision = &THREEBYTEA7_SYM;
81  break;
82  case XOP8_MAP:
83  decision = &XOP8_MAP_SYM;
84  break;
85  case XOP9_MAP:
86  decision = &XOP9_MAP_SYM;
87  break;
88  case XOPA_MAP:
89  decision = &XOPA_MAP_SYM;
90  break;
91  }
92 
93  return decision->opcodeDecisions[insnContext].modRMDecisions[opcode].
94  modrm_type != MODRM_ONEENTRY;
95 }
96 
97 /*
98  * decode - Reads the appropriate instruction table to obtain the unique ID of
99  * an instruction.
100  *
101  * @param type - See modRMRequired().
102  * @param insnContext - See modRMRequired().
103  * @param opcode - See modRMRequired().
104  * @param modRM - The ModR/M byte if required, or any value if not.
105  * @return - The UID of the instruction, or 0 on failure.
106  */
108  InstructionContext insnContext,
109  uint8_t opcode,
110  uint8_t modRM) {
111  const struct ModRMDecision* dec = 0;
112 
113  switch (type) {
114  case ONEBYTE:
115  dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
116  break;
117  case TWOBYTE:
118  dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
119  break;
120  case THREEBYTE_38:
121  dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
122  break;
123  case THREEBYTE_3A:
124  dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
125  break;
126  case THREEBYTE_A6:
127  dec = &THREEBYTEA6_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
128  break;
129  case THREEBYTE_A7:
130  dec = &THREEBYTEA7_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
131  break;
132  case XOP8_MAP:
133  dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
134  break;
135  case XOP9_MAP:
136  dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
137  break;
138  case XOPA_MAP:
139  dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
140  break;
141  }
142 
143  switch (dec->modrm_type) {
144  default:
145  debug("Corrupt table! Unknown modrm_type");
146  return 0;
147  case MODRM_ONEENTRY:
148  return modRMTable[dec->instructionIDs];
149  case MODRM_SPLITRM:
150  if (modFromModRM(modRM) == 0x3)
151  return modRMTable[dec->instructionIDs+1];
152  return modRMTable[dec->instructionIDs];
153  case MODRM_SPLITREG:
154  if (modFromModRM(modRM) == 0x3)
155  return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)+8];
156  return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
157  case MODRM_SPLITMISC:
158  if (modFromModRM(modRM) == 0x3)
159  return modRMTable[dec->instructionIDs+(modRM & 0x3f)+8];
160  return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
161  case MODRM_FULL:
162  return modRMTable[dec->instructionIDs+modRM];
163  }
164 }
165 
166 /*
167  * specifierForUID - Given a UID, returns the name and operand specification for
168  * that instruction.
169  *
170  * @param uid - The unique ID for the instruction. This should be returned by
171  * decode(); specifierForUID will not check bounds.
172  * @return - A pointer to the specification for that instruction.
173  */
174 static const struct InstructionSpecifier *specifierForUID(InstrUID uid) {
175  return &INSTRUCTIONS_SYM[uid];
176 }
177 
178 /*
179  * consumeByte - Uses the reader function provided by the user to consume one
180  * byte from the instruction's memory and advance the cursor.
181  *
182  * @param insn - The instruction with the reader function to use. The cursor
183  * for this instruction is advanced.
184  * @param byte - A pointer to a pre-allocated memory buffer to be populated
185  * with the data read.
186  * @return - 0 if the read was successful; nonzero otherwise.
187  */
188 static int consumeByte(struct InternalInstruction* insn, uint8_t* byte) {
189  int ret = insn->reader(insn->readerArg, byte, insn->readerCursor);
190 
191  if (!ret)
192  ++(insn->readerCursor);
193 
194  return ret;
195 }
196 
197 /*
198  * lookAtByte - Like consumeByte, but does not advance the cursor.
199  *
200  * @param insn - See consumeByte().
201  * @param byte - See consumeByte().
202  * @return - See consumeByte().
203  */
204 static int lookAtByte(struct InternalInstruction* insn, uint8_t* byte) {
205  return insn->reader(insn->readerArg, byte, insn->readerCursor);
206 }
207 
208 static void unconsumeByte(struct InternalInstruction* insn) {
209  insn->readerCursor--;
210 }
211 
212 #define CONSUME_FUNC(name, type) \
213  static int name(struct InternalInstruction* insn, type* ptr) { \
214  type combined = 0; \
215  unsigned offset; \
216  for (offset = 0; offset < sizeof(type); ++offset) { \
217  uint8_t byte; \
218  int ret = insn->reader(insn->readerArg, \
219  &byte, \
220  insn->readerCursor + offset); \
221  if (ret) \
222  return ret; \
223  combined = combined | ((uint64_t)byte << (offset * 8)); \
224  } \
225  *ptr = combined; \
226  insn->readerCursor += sizeof(type); \
227  return 0; \
228  }
229 
230 /*
231  * consume* - Use the reader function provided by the user to consume data
232  * values of various sizes from the instruction's memory and advance the
233  * cursor appropriately. These readers perform endian conversion.
234  *
235  * @param insn - See consumeByte().
236  * @param ptr - A pointer to a pre-allocated memory of appropriate size to
237  * be populated with the data read.
238  * @return - See consumeByte().
239  */
240 CONSUME_FUNC(consumeInt8, int8_t)
241 CONSUME_FUNC(consumeInt16, int16_t)
242 CONSUME_FUNC(consumeInt32, int32_t)
243 CONSUME_FUNC(consumeUInt16, uint16_t)
244 CONSUME_FUNC(consumeUInt32, uint32_t)
245 CONSUME_FUNC(consumeUInt64, uint64_t)
246 
247 /*
248  * dbgprintf - Uses the logging function provided by the user to log a single
249  * message, typically without a carriage-return.
250  *
251  * @param insn - The instruction containing the logging function.
252  * @param format - See printf().
253  * @param ... - See printf().
254  */
255 static void dbgprintf(struct InternalInstruction* insn,
256  const char* format,
257  ...) {
258  char buffer[256];
259  va_list ap;
260 
261  if (!insn->dlog)
262  return;
263 
264  va_start(ap, format);
265  (void)vsnprintf(buffer, sizeof(buffer), format, ap);
266  va_end(ap);
267 
268  insn->dlog(insn->dlogArg, buffer);
269 
270  return;
271 }
272 
273 /*
274  * setPrefixPresent - Marks that a particular prefix is present at a particular
275  * location.
276  *
277  * @param insn - The instruction to be marked as having the prefix.
278  * @param prefix - The prefix that is present.
279  * @param location - The location where the prefix is located (in the address
280  * space of the instruction's reader).
281  */
282 static void setPrefixPresent(struct InternalInstruction* insn,
283  uint8_t prefix,
284  uint64_t location)
285 {
286  insn->prefixPresent[prefix] = 1;
287  insn->prefixLocations[prefix] = location;
288 }
289 
290 /*
291  * isPrefixAtLocation - Queries an instruction to determine whether a prefix is
292  * present at a given location.
293  *
294  * @param insn - The instruction to be queried.
295  * @param prefix - The prefix.
296  * @param location - The location to query.
297  * @return - Whether the prefix is at that location.
298  */
300  uint8_t prefix,
301  uint64_t location)
302 {
303  if (insn->prefixPresent[prefix] == 1 &&
304  insn->prefixLocations[prefix] == location)
305  return TRUE;
306  else
307  return FALSE;
308 }
309 
310 /*
311  * readPrefixes - Consumes all of an instruction's prefix bytes, and marks the
312  * instruction as having them. Also sets the instruction's default operand,
313  * address, and other relevant data sizes to report operands correctly.
314  *
315  * @param insn - The instruction whose prefixes are to be read.
316  * @return - 0 if the instruction could be read until the end of the prefix
317  * bytes, and no prefixes conflicted; nonzero otherwise.
318  */
319 static int readPrefixes(struct InternalInstruction* insn) {
320  BOOL isPrefix = TRUE;
321  BOOL prefixGroups[4] = { FALSE };
322  uint64_t prefixLocation;
323  uint8_t byte = 0;
324  uint8_t nextByte;
325 
326  BOOL hasAdSize = FALSE;
327  BOOL hasOpSize = FALSE;
328 
329  dbgprintf(insn, "readPrefixes()");
330 
331  while (isPrefix) {
332  prefixLocation = insn->readerCursor;
333 
334  /* If we fail reading prefixes, just stop here and let the opcode reader deal with it */
335  if (consumeByte(insn, &byte))
336  break;
337 
338  /*
339  * If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
340  * break and let it be disassembled as a normal "instruction".
341  */
342  if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0)
343  break;
344 
345  if (insn->readerCursor - 1 == insn->startLocation
346  && (byte == 0xf2 || byte == 0xf3)
347  && !lookAtByte(insn, &nextByte))
348  {
349  /*
350  * If the byte is 0xf2 or 0xf3, and any of the following conditions are
351  * met:
352  * - it is followed by a LOCK (0xf0) prefix
353  * - it is followed by an xchg instruction
354  * then it should be disassembled as a xacquire/xrelease not repne/rep.
355  */
356  if ((byte == 0xf2 || byte == 0xf3) &&
357  ((nextByte == 0xf0) |
358  ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90)))
359  insn->xAcquireRelease = TRUE;
360  /*
361  * Also if the byte is 0xf3, and the following condition is met:
362  * - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
363  * "mov mem, imm" (opcode 0xc6/0xc7) instructions.
364  * then it should be disassembled as an xrelease not rep.
365  */
366  if (byte == 0xf3 &&
367  (nextByte == 0x88 || nextByte == 0x89 ||
368  nextByte == 0xc6 || nextByte == 0xc7))
369  insn->xAcquireRelease = TRUE;
370  if (insn->mode == MODE_64BIT && (nextByte & 0xf0) == 0x40) {
371  if (consumeByte(insn, &nextByte))
372  return -1;
373  if (lookAtByte(insn, &nextByte))
374  return -1;
375  unconsumeByte(insn);
376  }
377  if (nextByte != 0x0f && nextByte != 0x90)
378  break;
379  }
380 
381  switch (byte) {
382  case 0xf0: /* LOCK */
383  case 0xf2: /* REPNE/REPNZ */
384  case 0xf3: /* REP or REPE/REPZ */
385  if (prefixGroups[0])
386  dbgprintf(insn, "Redundant Group 1 prefix");
387  prefixGroups[0] = TRUE;
388  setPrefixPresent(insn, byte, prefixLocation);
389  break;
390  case 0x2e: /* CS segment override -OR- Branch not taken */
391  case 0x36: /* SS segment override -OR- Branch taken */
392  case 0x3e: /* DS segment override */
393  case 0x26: /* ES segment override */
394  case 0x64: /* FS segment override */
395  case 0x65: /* GS segment override */
396  switch (byte) {
397  case 0x2e:
399  break;
400  case 0x36:
402  break;
403  case 0x3e:
405  break;
406  case 0x26:
408  break;
409  case 0x64:
411  break;
412  case 0x65:
414  break;
415  default:
416  debug("Unhandled override");
417  return -1;
418  }
419  if (prefixGroups[1])
420  dbgprintf(insn, "Redundant Group 2 prefix");
421  prefixGroups[1] = TRUE;
422  setPrefixPresent(insn, byte, prefixLocation);
423  break;
424  case 0x66: /* Operand-size override */
425  if (prefixGroups[2])
426  dbgprintf(insn, "Redundant Group 3 prefix");
427  prefixGroups[2] = TRUE;
428  hasOpSize = TRUE;
429  setPrefixPresent(insn, byte, prefixLocation);
430  break;
431  case 0x67: /* Address-size override */
432  if (prefixGroups[3])
433  dbgprintf(insn, "Redundant Group 4 prefix");
434  prefixGroups[3] = TRUE;
435  hasAdSize = TRUE;
436  setPrefixPresent(insn, byte, prefixLocation);
437  break;
438  default: /* Not a prefix byte */
439  isPrefix = FALSE;
440  break;
441  }
442 
443  if (isPrefix)
444  dbgprintf(insn, "Found prefix 0x%hhx", byte);
445  }
446 
447  insn->vexXopType = TYPE_NO_VEX_XOP;
448 
449  if (byte == 0xc4) {
450  uint8_t byte1;
451 
452  if (lookAtByte(insn, &byte1)) {
453  dbgprintf(insn, "Couldn't read second byte of VEX");
454  return -1;
455  }
456 
457  if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
458  insn->vexXopType = TYPE_VEX_3B;
459  insn->necessaryPrefixLocation = insn->readerCursor - 1;
460  }
461  else {
462  unconsumeByte(insn);
463  insn->necessaryPrefixLocation = insn->readerCursor - 1;
464  }
465 
466  if (insn->vexXopType == TYPE_VEX_3B) {
467  insn->vexXopPrefix[0] = byte;
468  consumeByte(insn, &insn->vexXopPrefix[1]);
469  consumeByte(insn, &insn->vexXopPrefix[2]);
470 
471  /* We simulate the REX prefix for simplicity's sake */
472 
473  if (insn->mode == MODE_64BIT) {
474  insn->rexPrefix = 0x40
475  | (wFromVEX3of3(insn->vexXopPrefix[2]) << 3)
476  | (rFromVEX2of3(insn->vexXopPrefix[1]) << 2)
477  | (xFromVEX2of3(insn->vexXopPrefix[1]) << 1)
478  | (bFromVEX2of3(insn->vexXopPrefix[1]) << 0);
479  }
480 
481  switch (ppFromVEX3of3(insn->vexXopPrefix[2]))
482  {
483  default:
484  break;
485  case VEX_PREFIX_66:
486  hasOpSize = TRUE;
487  break;
488  }
489 
490  dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
491  insn->vexXopPrefix[0], insn->vexXopPrefix[1],
492  insn->vexXopPrefix[2]);
493  }
494  }
495  else if (byte == 0xc5) {
496  uint8_t byte1;
497 
498  if (lookAtByte(insn, &byte1)) {
499  dbgprintf(insn, "Couldn't read second byte of VEX");
500  return -1;
501  }
502 
503  if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
504  insn->vexXopType = TYPE_VEX_2B;
505  }
506  else {
507  unconsumeByte(insn);
508  }
509 
510  if (insn->vexXopType == TYPE_VEX_2B) {
511  insn->vexXopPrefix[0] = byte;
512  consumeByte(insn, &insn->vexXopPrefix[1]);
513 
514  if (insn->mode == MODE_64BIT) {
515  insn->rexPrefix = 0x40
516  | (rFromVEX2of2(insn->vexXopPrefix[1]) << 2);
517  }
518 
519  switch (ppFromVEX2of2(insn->vexXopPrefix[1]))
520  {
521  default:
522  break;
523  case VEX_PREFIX_66:
524  hasOpSize = TRUE;
525  break;
526  }
527 
528  dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx", insn->vexXopPrefix[0], insn->vexXopPrefix[1]);
529  }
530  }
531  else if (byte == 0x8f) {
532  uint8_t byte1;
533 
534  if (lookAtByte(insn, &byte1)) {
535  dbgprintf(insn, "Couldn't read second byte of XOP");
536  return -1;
537  }
538 
539  if ((byte1 & 0x38) != 0x0) { /* 0 in these 3 bits is a POP instruction. */
540  insn->vexXopType = TYPE_XOP;
541  insn->necessaryPrefixLocation = insn->readerCursor - 1;
542  }
543  else {
544  unconsumeByte(insn);
545  insn->necessaryPrefixLocation = insn->readerCursor - 1;
546  }
547 
548  if (insn->vexXopType == TYPE_XOP) {
549  insn->vexXopPrefix[0] = byte;
550  consumeByte(insn, &insn->vexXopPrefix[1]);
551  consumeByte(insn, &insn->vexXopPrefix[2]);
552 
553  /* We simulate the REX prefix for simplicity's sake */
554 
555  if (insn->mode == MODE_64BIT) {
556  insn->rexPrefix = 0x40
557  | (wFromXOP3of3(insn->vexXopPrefix[2]) << 3)
558  | (rFromXOP2of3(insn->vexXopPrefix[1]) << 2)
559  | (xFromXOP2of3(insn->vexXopPrefix[1]) << 1)
560  | (bFromXOP2of3(insn->vexXopPrefix[1]) << 0);
561  }
562 
563  switch (ppFromXOP3of3(insn->vexXopPrefix[2]))
564  {
565  default:
566  break;
567  case VEX_PREFIX_66:
568  hasOpSize = TRUE;
569  break;
570  }
571 
572  dbgprintf(insn, "Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
573  insn->vexXopPrefix[0], insn->vexXopPrefix[1],
574  insn->vexXopPrefix[2]);
575  }
576  }
577  else {
578  if (insn->mode == MODE_64BIT) {
579  if ((byte & 0xf0) == 0x40) {
580  uint8_t opcodeByte;
581 
582  if (lookAtByte(insn, &opcodeByte) || ((opcodeByte & 0xf0) == 0x40)) {
583  dbgprintf(insn, "Redundant REX prefix");
584  return -1;
585  }
586 
587  insn->rexPrefix = byte;
588  insn->necessaryPrefixLocation = insn->readerCursor - 2;
589 
590  dbgprintf(insn, "Found REX prefix 0x%hhx", byte);
591  } else {
592  unconsumeByte(insn);
593  insn->necessaryPrefixLocation = insn->readerCursor - 1;
594  }
595  } else {
596  unconsumeByte(insn);
597  insn->necessaryPrefixLocation = insn->readerCursor - 1;
598  }
599  }
600 
601  if (insn->mode == MODE_16BIT) {
602  insn->registerSize = (hasOpSize ? 4 : 2);
603  insn->addressSize = (hasAdSize ? 4 : 2);
604  insn->displacementSize = (hasAdSize ? 4 : 2);
605  insn->immediateSize = (hasOpSize ? 4 : 2);
606  } else if (insn->mode == MODE_32BIT) {
607  insn->registerSize = (hasOpSize ? 2 : 4);
608  insn->addressSize = (hasAdSize ? 2 : 4);
609  insn->displacementSize = (hasAdSize ? 2 : 4);
610  insn->immediateSize = (hasOpSize ? 2 : 4);
611  } else if (insn->mode == MODE_64BIT) {
612  if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
613  insn->registerSize = 8;
614  insn->addressSize = (hasAdSize ? 4 : 8);
615  insn->displacementSize = 4;
616  insn->immediateSize = 4;
617  } else if (insn->rexPrefix) {
618  insn->registerSize = (hasOpSize ? 2 : 4);
619  insn->addressSize = (hasAdSize ? 4 : 8);
620  insn->displacementSize = (hasOpSize ? 2 : 4);
621  insn->immediateSize = (hasOpSize ? 2 : 4);
622  } else {
623  insn->registerSize = (hasOpSize ? 2 : 4);
624  insn->addressSize = (hasAdSize ? 4 : 8);
625  insn->displacementSize = (hasOpSize ? 2 : 4);
626  insn->immediateSize = (hasOpSize ? 2 : 4);
627  }
628  }
629 
630  return 0;
631 }
632 
633 /*
634  * readOpcode - Reads the opcode (excepting the ModR/M byte in the case of
635  * extended or escape opcodes).
636  *
637  * @param insn - The instruction whose opcode is to be read.
638  * @return - 0 if the opcode could be read successfully; nonzero otherwise.
639  */
640 static int readOpcode(struct InternalInstruction* insn) {
641  /* Determine the length of the primary opcode */
642 
643  uint8_t current;
644 
645  dbgprintf(insn, "readOpcode()");
646 
647  insn->opcodeType = ONEBYTE;
648 
649  if (insn->vexXopType == TYPE_VEX_3B)
650  {
651  switch (mmmmmFromVEX2of3(insn->vexXopPrefix[1]))
652  {
653  default:
654  dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
655  mmmmmFromVEX2of3(insn->vexXopPrefix[1]));
656  return -1;
657  case VEX_LOB_0F:
658  insn->opcodeType = TWOBYTE;
659  return consumeByte(insn, &insn->opcode);
660  case VEX_LOB_0F38:
661  insn->opcodeType = THREEBYTE_38;
662  return consumeByte(insn, &insn->opcode);
663  case VEX_LOB_0F3A:
664  insn->opcodeType = THREEBYTE_3A;
665  return consumeByte(insn, &insn->opcode);
666  }
667  }
668  else if (insn->vexXopType == TYPE_VEX_2B)
669  {
670  insn->opcodeType = TWOBYTE;
671  return consumeByte(insn, &insn->opcode);
672  }
673  else if (insn->vexXopType == TYPE_XOP)
674  {
675  switch (mmmmmFromXOP2of3(insn->vexXopPrefix[1]))
676  {
677  default:
678  dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
679  mmmmmFromVEX2of3(insn->vexXopPrefix[1]));
680  return -1;
681  case XOP_MAP_SELECT_8:
682  insn->opcodeType = XOP8_MAP;
683  return consumeByte(insn, &insn->opcode);
684  case XOP_MAP_SELECT_9:
685  insn->opcodeType = XOP9_MAP;
686  return consumeByte(insn, &insn->opcode);
687  case XOP_MAP_SELECT_A:
688  insn->opcodeType = XOPA_MAP;
689  return consumeByte(insn, &insn->opcode);
690  }
691  }
692 
693  if (consumeByte(insn, &current))
694  return -1;
695 
696  if (current == 0x0f) {
697  dbgprintf(insn, "Found a two-byte escape prefix (0x%hhx)", current);
698 
699  if (consumeByte(insn, &current))
700  return -1;
701 
702  if (current == 0x38) {
703  dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
704 
705  if (consumeByte(insn, &current))
706  return -1;
707 
708  insn->opcodeType = THREEBYTE_38;
709  } else if (current == 0x3a) {
710  dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
711 
712  if (consumeByte(insn, &current))
713  return -1;
714 
715  insn->opcodeType = THREEBYTE_3A;
716  } else if (current == 0xa6) {
717  dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
718 
719  if (consumeByte(insn, &current))
720  return -1;
721 
722  insn->opcodeType = THREEBYTE_A6;
723  } else if (current == 0xa7) {
724  dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
725 
726  if (consumeByte(insn, &current))
727  return -1;
728 
729  insn->opcodeType = THREEBYTE_A7;
730  } else {
731  dbgprintf(insn, "Didn't find a three-byte escape prefix");
732 
733  insn->opcodeType = TWOBYTE;
734  }
735  }
736 
737  /*
738  * At this point we have consumed the full opcode.
739  * Anything we consume from here on must be unconsumed.
740  */
741 
742  insn->opcode = current;
743 
744  return 0;
745 }
746 
747 static int readModRM(struct InternalInstruction* insn);
748 
749 /*
750  * getIDWithAttrMask - Determines the ID of an instruction, consuming
751  * the ModR/M byte as appropriate for extended and escape opcodes,
752  * and using a supplied attribute mask.
753  *
754  * @param instructionID - A pointer whose target is filled in with the ID of the
755  * instruction.
756  * @param insn - The instruction whose ID is to be determined.
757  * @param attrMask - The attribute mask to search.
758  * @return - 0 if the ModR/M could be read when needed or was not
759  * needed; nonzero otherwise.
760  */
761 static int getIDWithAttrMask(uint16_t* instructionID,
762  struct InternalInstruction* insn,
763  uint8_t attrMask) {
764  BOOL hasModRMExtension;
765 
766  uint8_t instructionClass;
767 
768  instructionClass = contextForAttrs(attrMask);
769 
770  hasModRMExtension = modRMRequired(insn->opcodeType,
771  instructionClass,
772  insn->opcode);
773 
774  if (hasModRMExtension) {
775  if (readModRM(insn))
776  return -1;
777 
778  *instructionID = decode(insn->opcodeType,
779  instructionClass,
780  insn->opcode,
781  insn->modRM);
782  } else {
783  *instructionID = decode(insn->opcodeType,
784  instructionClass,
785  insn->opcode,
786  0);
787  }
788 
789  return 0;
790 }
791 
792 /*
793  * is16BitEquivalent - Determines whether two instruction names refer to
794  * equivalent instructions but one is 16-bit whereas the other is not.
795  *
796  * @param orig - The instruction that is not 16-bit
797  * @param equiv - The instruction that is 16-bit
798  */
799 static BOOL is16BitEquivalent(const char* orig, const char* equiv) {
800  off_t i;
801 
802  for (i = 0;; i++) {
803  if (orig[i] == '\0' && equiv[i] == '\0')
804  return TRUE;
805  if (orig[i] == '\0' || equiv[i] == '\0')
806  return FALSE;
807  if (orig[i] != equiv[i]) {
808  if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
809  continue;
810  if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
811  continue;
812  if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
813  continue;
814  return FALSE;
815  }
816  }
817 }
818 
819 /*
820  * getID - Determines the ID of an instruction, consuming the ModR/M byte as
821  * appropriate for extended and escape opcodes. Determines the attributes and
822  * context for the instruction before doing so.
823  *
824  * @param insn - The instruction whose ID is to be determined.
825  * @return - 0 if the ModR/M could be read when needed or was not needed;
826  * nonzero otherwise.
827  */
828 static int getID(struct InternalInstruction* insn, const void *miiArg) {
829  uint8_t attrMask;
830  uint16_t instructionID;
831 
832  dbgprintf(insn, "getID()");
833 
834  attrMask = ATTR_NONE;
835 
836  if (insn->mode == MODE_64BIT)
837  attrMask |= ATTR_64BIT;
838 
839  if (insn->vexXopType != TYPE_NO_VEX_XOP) {
840  attrMask |= ATTR_VEX;
841 
842  if (insn->vexXopType == TYPE_VEX_3B) {
843  switch (ppFromVEX3of3(insn->vexXopPrefix[2])) {
844  case VEX_PREFIX_66:
845  attrMask |= ATTR_OPSIZE;
846  break;
847  case VEX_PREFIX_F3:
848  attrMask |= ATTR_XS;
849  break;
850  case VEX_PREFIX_F2:
851  attrMask |= ATTR_XD;
852  break;
853  }
854 
855  if (lFromVEX3of3(insn->vexXopPrefix[2]))
856  attrMask |= ATTR_VEXL;
857  }
858  else if (insn->vexXopType == TYPE_VEX_2B) {
859  switch (ppFromVEX2of2(insn->vexXopPrefix[1])) {
860  case VEX_PREFIX_66:
861  attrMask |= ATTR_OPSIZE;
862  break;
863  case VEX_PREFIX_F3:
864  attrMask |= ATTR_XS;
865  break;
866  case VEX_PREFIX_F2:
867  attrMask |= ATTR_XD;
868  break;
869  }
870 
871  if (lFromVEX2of2(insn->vexXopPrefix[1]))
872  attrMask |= ATTR_VEXL;
873  }
874  else if (insn->vexXopType == TYPE_XOP) {
875  switch (ppFromXOP3of3(insn->vexXopPrefix[2])) {
876  case VEX_PREFIX_66:
877  attrMask |= ATTR_OPSIZE;
878  break;
879  case VEX_PREFIX_F3:
880  attrMask |= ATTR_XS;
881  break;
882  case VEX_PREFIX_F2:
883  attrMask |= ATTR_XD;
884  break;
885  }
886 
887  if (lFromXOP3of3(insn->vexXopPrefix[2]))
888  attrMask |= ATTR_VEXL;
889  }
890  else {
891  return -1;
892  }
893  }
894  else {
895  if (isPrefixAtLocation(insn, 0x66, insn->necessaryPrefixLocation))
896  attrMask |= ATTR_OPSIZE;
897  else if (isPrefixAtLocation(insn, 0x67, insn->necessaryPrefixLocation))
898  attrMask |= ATTR_ADSIZE;
899  else if (isPrefixAtLocation(insn, 0xf3, insn->necessaryPrefixLocation))
900  attrMask |= ATTR_XS;
901  else if (isPrefixAtLocation(insn, 0xf2, insn->necessaryPrefixLocation))
902  attrMask |= ATTR_XD;
903  }
904 
905  if (insn->rexPrefix & 0x08)
906  attrMask |= ATTR_REXW;
907 
908  if (getIDWithAttrMask(&instructionID, insn, attrMask))
909  return -1;
910 
911  /* The following clauses compensate for limitations of the tables. */
912 
913  if (insn->prefixPresent[0x66] && !(attrMask & ATTR_OPSIZE)) {
914  /*
915  * The instruction tables make no distinction between instructions that
916  * allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
917  * particular spot (i.e., many MMX operations). In general we're
918  * conservative, but in the specific case where OpSize is present but not
919  * in the right place we check if there's a 16-bit operation.
920  */
921 
922  const struct InstructionSpecifier *spec;
923  uint16_t instructionIDWithOpsize;
924  const char *specName, *specWithOpSizeName;
925 
926  spec = specifierForUID(instructionID);
927 
928  if (getIDWithAttrMask(&instructionIDWithOpsize,
929  insn,
930  attrMask | ATTR_OPSIZE)) {
931  /*
932  * ModRM required with OpSize but not present; give up and return version
933  * without OpSize set
934  */
935 
936  insn->instructionID = instructionID;
937  insn->spec = spec;
938  return 0;
939  }
940 
941  specName = x86DisassemblerGetInstrName(instructionID, miiArg);
942  specWithOpSizeName =
943  x86DisassemblerGetInstrName(instructionIDWithOpsize, miiArg);
944 
945  if (is16BitEquivalent(specName, specWithOpSizeName)) {
946  insn->instructionID = instructionIDWithOpsize;
947  insn->spec = specifierForUID(instructionIDWithOpsize);
948  } else {
949  insn->instructionID = instructionID;
950  insn->spec = spec;
951  }
952  return 0;
953  }
954 
955  if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
956  insn->rexPrefix & 0x01) {
957  /*
958  * NOOP shouldn't decode as NOOP if REX.b is set. Instead
959  * it should decode as XCHG %r8, %eax.
960  */
961 
962  const struct InstructionSpecifier *spec;
963  uint16_t instructionIDWithNewOpcode;
964  const struct InstructionSpecifier *specWithNewOpcode;
965 
966  spec = specifierForUID(instructionID);
967 
968  /* Borrow opcode from one of the other XCHGar opcodes */
969  insn->opcode = 0x91;
970 
971  if (getIDWithAttrMask(&instructionIDWithNewOpcode,
972  insn,
973  attrMask)) {
974  insn->opcode = 0x90;
975 
976  insn->instructionID = instructionID;
977  insn->spec = spec;
978  return 0;
979  }
980 
981  specWithNewOpcode = specifierForUID(instructionIDWithNewOpcode);
982 
983  /* Change back */
984  insn->opcode = 0x90;
985 
986  insn->instructionID = instructionIDWithNewOpcode;
987  insn->spec = specWithNewOpcode;
988 
989  return 0;
990  }
991 
992  insn->instructionID = instructionID;
993  insn->spec = specifierForUID(insn->instructionID);
994 
995  return 0;
996 }
997 
998 /*
999  * readSIB - Consumes the SIB byte to determine addressing information for an
1000  * instruction.
1001  *
1002  * @param insn - The instruction whose SIB byte is to be read.
1003  * @return - 0 if the SIB byte was successfully read; nonzero otherwise.
1004  */
1005 static int readSIB(struct InternalInstruction* insn) {
1006  SIBIndex sibIndexBase = 0;
1007  SIBBase sibBaseBase = 0;
1008  uint8_t index, base;
1009 
1010  dbgprintf(insn, "readSIB()");
1011 
1012  if (insn->consumedSIB)
1013  return 0;
1014 
1015  insn->consumedSIB = TRUE;
1016 
1017  switch (insn->addressSize) {
1018  case 2:
1019  dbgprintf(insn, "SIB-based addressing doesn't work in 16-bit mode");
1020  return -1;
1021  break;
1022  case 4:
1023  sibIndexBase = SIB_INDEX_EAX;
1024  sibBaseBase = SIB_BASE_EAX;
1025  break;
1026  case 8:
1027  sibIndexBase = SIB_INDEX_RAX;
1028  sibBaseBase = SIB_BASE_RAX;
1029  break;
1030  }
1031 
1032  if (consumeByte(insn, &insn->sib))
1033  return -1;
1034 
1035  index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);
1036 
1037  switch (index) {
1038  case 0x4:
1039  insn->sibIndex = SIB_INDEX_NONE;
1040  break;
1041  default:
1042  insn->sibIndex = (SIBIndex)(sibIndexBase + index);
1043  if (insn->sibIndex == SIB_INDEX_sib ||
1044  insn->sibIndex == SIB_INDEX_sib64)
1045  insn->sibIndex = SIB_INDEX_NONE;
1046  break;
1047  }
1048 
1049  switch (scaleFromSIB(insn->sib)) {
1050  case 0:
1051  insn->sibScale = 1;
1052  break;
1053  case 1:
1054  insn->sibScale = 2;
1055  break;
1056  case 2:
1057  insn->sibScale = 4;
1058  break;
1059  case 3:
1060  insn->sibScale = 8;
1061  break;
1062  }
1063 
1064  base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);
1065 
1066  switch (base) {
1067  case 0x5:
1068  switch (modFromModRM(insn->modRM)) {
1069  case 0x0:
1070  insn->eaDisplacement = EA_DISP_32;
1071  insn->sibBase = SIB_BASE_NONE;
1072  break;
1073  case 0x1:
1074  insn->eaDisplacement = EA_DISP_8;
1075  insn->sibBase = (insn->addressSize == 4 ?
1076  SIB_BASE_EBP : SIB_BASE_RBP);
1077  break;
1078  case 0x2:
1079  insn->eaDisplacement = EA_DISP_32;
1080  insn->sibBase = (insn->addressSize == 4 ?
1081  SIB_BASE_EBP : SIB_BASE_RBP);
1082  break;
1083  case 0x3:
1084  debug("Cannot have Mod = 0b11 and a SIB byte");
1085  return -1;
1086  }
1087  break;
1088  default:
1089  insn->sibBase = (SIBBase)(sibBaseBase + base);
1090  break;
1091  }
1092 
1093  return 0;
1094 }
1095 
1096 /*
1097  * readDisplacement - Consumes the displacement of an instruction.
1098  *
1099  * @param insn - The instruction whose displacement is to be read.
1100  * @return - 0 if the displacement byte was successfully read; nonzero
1101  * otherwise.
1102  */
1103 static int readDisplacement(struct InternalInstruction* insn) {
1104  int8_t d8;
1105  int16_t d16;
1106  int32_t d32;
1107 
1108  dbgprintf(insn, "readDisplacement()");
1109 
1110  if (insn->consumedDisplacement)
1111  return 0;
1112 
1113  insn->consumedDisplacement = TRUE;
1114  insn->displacementOffset = insn->readerCursor - insn->startLocation;
1115 
1116  switch (insn->eaDisplacement) {
1117  case EA_DISP_NONE:
1118  insn->consumedDisplacement = FALSE;
1119  break;
1120  case EA_DISP_8:
1121  if (consumeInt8(insn, &d8))
1122  return -1;
1123  insn->displacement = d8;
1124  break;
1125  case EA_DISP_16:
1126  if (consumeInt16(insn, &d16))
1127  return -1;
1128  insn->displacement = d16;
1129  break;
1130  case EA_DISP_32:
1131  if (consumeInt32(insn, &d32))
1132  return -1;
1133  insn->displacement = d32;
1134  break;
1135  }
1136 
1137  insn->consumedDisplacement = TRUE;
1138  return 0;
1139 }
1140 
1141 /*
1142  * readModRM - Consumes all addressing information (ModR/M byte, SIB byte, and
1143  * displacement) for an instruction and interprets it.
1144  *
1145  * @param insn - The instruction whose addressing information is to be read.
1146  * @return - 0 if the information was successfully read; nonzero otherwise.
1147  */
1148 static int readModRM(struct InternalInstruction* insn) {
1149  uint8_t mod, rm, reg;
1150 
1151  dbgprintf(insn, "readModRM()");
1152 
1153  if (insn->consumedModRM)
1154  return 0;
1155 
1156  if (consumeByte(insn, &insn->modRM))
1157  return -1;
1158  insn->consumedModRM = TRUE;
1159 
1160  mod = modFromModRM(insn->modRM);
1161  rm = rmFromModRM(insn->modRM);
1162  reg = regFromModRM(insn->modRM);
1163 
1164  /*
1165  * This goes by insn->registerSize to pick the correct register, which messes
1166  * up if we're using (say) XMM or 8-bit register operands. That gets fixed in
1167  * fixupReg().
1168  */
1169  switch (insn->registerSize) {
1170  case 2:
1171  insn->regBase = MODRM_REG_AX;
1172  insn->eaRegBase = EA_REG_AX;
1173  break;
1174  case 4:
1175  insn->regBase = MODRM_REG_EAX;
1176  insn->eaRegBase = EA_REG_EAX;
1177  break;
1178  case 8:
1179  insn->regBase = MODRM_REG_RAX;
1180  insn->eaRegBase = EA_REG_RAX;
1181  break;
1182  }
1183 
1184  reg |= rFromREX(insn->rexPrefix) << 3;
1185  rm |= bFromREX(insn->rexPrefix) << 3;
1186 
1187  insn->reg = (Reg)(insn->regBase + reg);
1188 
1189  switch (insn->addressSize) {
1190  case 2:
1191  insn->eaBaseBase = EA_BASE_BX_SI;
1192 
1193  switch (mod) {
1194  case 0x0:
1195  if (rm == 0x6) {
1196  insn->eaBase = EA_BASE_NONE;
1197  insn->eaDisplacement = EA_DISP_16;
1198  if (readDisplacement(insn))
1199  return -1;
1200  } else {
1201  insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1202  insn->eaDisplacement = EA_DISP_NONE;
1203  }
1204  break;
1205  case 0x1:
1206  insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1207  insn->eaDisplacement = EA_DISP_8;
1208  if (readDisplacement(insn))
1209  return -1;
1210  break;
1211  case 0x2:
1212  insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1213  insn->eaDisplacement = EA_DISP_16;
1214  if (readDisplacement(insn))
1215  return -1;
1216  break;
1217  case 0x3:
1218  insn->eaBase = (EABase)(insn->eaRegBase + rm);
1219  if (readDisplacement(insn))
1220  return -1;
1221  break;
1222  }
1223  break;
1224  case 4:
1225  case 8:
1226  insn->eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
1227 
1228  switch (mod) {
1229  case 0x0:
1230  insn->eaDisplacement = EA_DISP_NONE; /* readSIB may override this */
1231  switch (rm) {
1232  case 0x4:
1233  case 0xc: /* in case REXW.b is set */
1234  insn->eaBase = (insn->addressSize == 4 ?
1235  EA_BASE_sib : EA_BASE_sib64);
1236  readSIB(insn);
1237  if (readDisplacement(insn))
1238  return -1;
1239  break;
1240  case 0x5:
1241  insn->eaBase = EA_BASE_NONE;
1242  insn->eaDisplacement = EA_DISP_32;
1243  if (readDisplacement(insn))
1244  return -1;
1245  break;
1246  default:
1247  insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1248  break;
1249  }
1250  break;
1251  case 0x1:
1252  case 0x2:
1253  insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
1254  switch (rm) {
1255  case 0x4:
1256  case 0xc: /* in case REXW.b is set */
1257  insn->eaBase = EA_BASE_sib;
1258  readSIB(insn);
1259  if (readDisplacement(insn))
1260  return -1;
1261  break;
1262  default:
1263  insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1264  if (readDisplacement(insn))
1265  return -1;
1266  break;
1267  }
1268  break;
1269  case 0x3:
1270  insn->eaDisplacement = EA_DISP_NONE;
1271  insn->eaBase = (EABase)(insn->eaRegBase + rm);
1272  break;
1273  }
1274  break;
1275  } /* switch (insn->addressSize) */
1276 
1277  return 0;
1278 }
1279 
1280 #define GENERIC_FIXUP_FUNC(name, base, prefix) \
1281  static uint8_t name(struct InternalInstruction *insn, \
1282  OperandType type, \
1283  uint8_t index, \
1284  uint8_t *valid) { \
1285  *valid = 1; \
1286  switch (type) { \
1287  default: \
1288  debug("Unhandled register type"); \
1289  *valid = 0; \
1290  return 0; \
1291  case TYPE_Rv: \
1292  return base + index; \
1293  case TYPE_R8: \
1294  if (insn->rexPrefix && \
1295  index >= 4 && index <= 7) { \
1296  return prefix##_SPL + (index - 4); \
1297  } else { \
1298  return prefix##_AL + index; \
1299  } \
1300  case TYPE_R16: \
1301  return prefix##_AX + index; \
1302  case TYPE_R32: \
1303  return prefix##_EAX + index; \
1304  case TYPE_R64: \
1305  return prefix##_RAX + index; \
1306  case TYPE_XMM512: \
1307  return prefix##_ZMM0 + index; \
1308  case TYPE_XMM256: \
1309  return prefix##_YMM0 + index; \
1310  case TYPE_XMM128: \
1311  case TYPE_XMM64: \
1312  case TYPE_XMM32: \
1313  case TYPE_XMM: \
1314  return prefix##_XMM0 + index; \
1315  case TYPE_MM64: \
1316  case TYPE_MM32: \
1317  case TYPE_MM: \
1318  if (index > 7) \
1319  *valid = 0; \
1320  return prefix##_MM0 + index; \
1321  case TYPE_SEGMENTREG: \
1322  if (index > 5) \
1323  *valid = 0; \
1324  return prefix##_ES + index; \
1325  case TYPE_DEBUGREG: \
1326  if (index > 7) \
1327  *valid = 0; \
1328  return prefix##_DR0 + index; \
1329  case TYPE_CONTROLREG: \
1330  if (index > 8) \
1331  *valid = 0; \
1332  return prefix##_CR0 + index; \
1333  } \
1334  }
1335 
1336 /*
1337  * fixup*Value - Consults an operand type to determine the meaning of the
1338  * reg or R/M field. If the operand is an XMM operand, for example, an
1339  * operand would be XMM0 instead of AX, which readModRM() would otherwise
1340  * misinterpret it as.
1341  *
1342  * @param insn - The instruction containing the operand.
1343  * @param type - The operand type.
1344  * @param index - The existing value of the field as reported by readModRM().
1345  * @param valid - The address of a uint8_t. The target is set to 1 if the
1346  * field is valid for the register class; 0 if not.
1347  * @return - The proper value.
1348  */
1349 GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG)
1350 GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG)
1351 
1352 /*
1353  * fixupReg - Consults an operand specifier to determine which of the
1354  * fixup*Value functions to use in correcting readModRM()'ss interpretation.
1355  *
1356  * @param insn - See fixup*Value().
1357  * @param op - The operand specifier.
1358  * @return - 0 if fixup was successful; -1 if the register returned was
1359  * invalid for its class.
1360  */
1361 static int fixupReg(struct InternalInstruction *insn,
1362  const struct OperandSpecifier *op) {
1363  uint8_t valid;
1364 
1365  dbgprintf(insn, "fixupReg()");
1366 
1367  switch ((OperandEncoding)op->encoding) {
1368  default:
1369  debug("Expected a REG or R/M encoding in fixupReg");
1370  return -1;
1371  case ENCODING_VVVV:
1372  insn->vvvv = (Reg)fixupRegValue(insn,
1373  (OperandType)op->type,
1374  insn->vvvv,
1375  &valid);
1376  if (!valid)
1377  return -1;
1378  break;
1379  case ENCODING_REG:
1380  insn->reg = (Reg)fixupRegValue(insn,
1381  (OperandType)op->type,
1382  insn->reg - insn->regBase,
1383  &valid);
1384  if (!valid)
1385  return -1;
1386  break;
1387  case ENCODING_RM:
1388  if (insn->eaBase >= insn->eaRegBase) {
1389  insn->eaBase = (EABase)fixupRMValue(insn,
1390  (OperandType)op->type,
1391  insn->eaBase - insn->eaRegBase,
1392  &valid);
1393  if (!valid)
1394  return -1;
1395  }
1396  break;
1397  }
1398 
1399  return 0;
1400 }
1401 
1402 /*
1403  * readOpcodeModifier - Reads an operand from the opcode field of an
1404  * instruction. Handles AddRegFrm instructions.
1405  *
1406  * @param insn - The instruction whose opcode field is to be read.
1407  * @param inModRM - Indicates that the opcode field is to be read from the
1408  * ModR/M extension; useful for escape opcodes
1409  * @return - 0 on success; nonzero otherwise.
1410  */
1411 static int readOpcodeModifier(struct InternalInstruction* insn) {
1412  dbgprintf(insn, "readOpcodeModifier()");
1413 
1414  if (insn->consumedOpcodeModifier)
1415  return 0;
1416 
1417  insn->consumedOpcodeModifier = TRUE;
1418 
1419  switch (insn->spec->modifierType) {
1420  default:
1421  debug("Unknown modifier type.");
1422  return -1;
1423  case MODIFIER_NONE:
1424  debug("No modifier but an operand expects one.");
1425  return -1;
1426  case MODIFIER_OPCODE:
1427  insn->opcodeModifier = insn->opcode - insn->spec->modifierBase;
1428  return 0;
1429  case MODIFIER_MODRM:
1430  insn->opcodeModifier = insn->modRM - insn->spec->modifierBase;
1431  return 0;
1432  }
1433 }
1434 
1435 /*
1436  * readOpcodeRegister - Reads an operand from the opcode field of an
1437  * instruction and interprets it appropriately given the operand width.
1438  * Handles AddRegFrm instructions.
1439  *
1440  * @param insn - See readOpcodeModifier().
1441  * @param size - The width (in bytes) of the register being specified.
1442  * 1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
1443  * RAX.
1444  * @return - 0 on success; nonzero otherwise.
1445  */
1446 static int readOpcodeRegister(struct InternalInstruction* insn, uint8_t size) {
1447  dbgprintf(insn, "readOpcodeRegister()");
1448 
1449  if (readOpcodeModifier(insn))
1450  return -1;
1451 
1452  if (size == 0)
1453  size = insn->registerSize;
1454 
1455  switch (size) {
1456  case 1:
1457  insn->opcodeRegister = (Reg)(MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3)
1458  | insn->opcodeModifier));
1459  if (insn->rexPrefix &&
1460  insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
1461  insn->opcodeRegister < MODRM_REG_AL + 0x8) {
1462  insn->opcodeRegister = (Reg)(MODRM_REG_SPL
1463  + (insn->opcodeRegister - MODRM_REG_AL - 4));
1464  }
1465 
1466  break;
1467  case 2:
1468  insn->opcodeRegister = (Reg)(MODRM_REG_AX
1469  + ((bFromREX(insn->rexPrefix) << 3)
1470  | insn->opcodeModifier));
1471  break;
1472  case 4:
1473  insn->opcodeRegister = (Reg)(MODRM_REG_EAX
1474  + ((bFromREX(insn->rexPrefix) << 3)
1475  | insn->opcodeModifier));
1476  break;
1477  case 8:
1478  insn->opcodeRegister = (Reg)(MODRM_REG_RAX
1479  + ((bFromREX(insn->rexPrefix) << 3)
1480  | insn->opcodeModifier));
1481  break;
1482  }
1483 
1484  return 0;
1485 }
1486 
1487 /*
1488  * readImmediate - Consumes an immediate operand from an instruction, given the
1489  * desired operand size.
1490  *
1491  * @param insn - The instruction whose operand is to be read.
1492  * @param size - The width (in bytes) of the operand.
1493  * @return - 0 if the immediate was successfully consumed; nonzero
1494  * otherwise.
1495  */
1496 static int readImmediate(struct InternalInstruction* insn, uint8_t size) {
1497  uint8_t imm8;
1498  uint16_t imm16;
1499  uint32_t imm32;
1500  uint64_t imm64;
1501 
1502  dbgprintf(insn, "readImmediate()");
1503 
1504  if (insn->numImmediatesConsumed == 2) {
1505  debug("Already consumed two immediates");
1506  return -1;
1507  }
1508 
1509  if (size == 0)
1510  size = insn->immediateSize;
1511  else
1512  insn->immediateSize = size;
1513  insn->immediateOffset = insn->readerCursor - insn->startLocation;
1514 
1515  switch (size) {
1516  case 1:
1517  if (consumeByte(insn, &imm8))
1518  return -1;
1519  insn->immediates[insn->numImmediatesConsumed] = imm8;
1520  break;
1521  case 2:
1522  if (consumeUInt16(insn, &imm16))
1523  return -1;
1524  insn->immediates[insn->numImmediatesConsumed] = imm16;
1525  break;
1526  case 4:
1527  if (consumeUInt32(insn, &imm32))
1528  return -1;
1529  insn->immediates[insn->numImmediatesConsumed] = imm32;
1530  break;
1531  case 8:
1532  if (consumeUInt64(insn, &imm64))
1533  return -1;
1534  insn->immediates[insn->numImmediatesConsumed] = imm64;
1535  break;
1536  }
1537 
1538  insn->numImmediatesConsumed++;
1539 
1540  return 0;
1541 }
1542 
1543 /*
1544  * readVVVV - Consumes vvvv from an instruction if it has a VEX prefix.
1545  *
1546  * @param insn - The instruction whose operand is to be read.
1547  * @return - 0 if the vvvv was successfully consumed; nonzero
1548  * otherwise.
1549  */
1550 static int readVVVV(struct InternalInstruction* insn) {
1551  dbgprintf(insn, "readVVVV()");
1552 
1553  if (insn->vexXopType == TYPE_VEX_3B)
1554  insn->vvvv = vvvvFromVEX3of3(insn->vexXopPrefix[2]);
1555  else if (insn->vexXopType == TYPE_VEX_2B)
1556  insn->vvvv = vvvvFromVEX2of2(insn->vexXopPrefix[1]);
1557  else if (insn->vexXopType == TYPE_XOP)
1558  insn->vvvv = vvvvFromXOP3of3(insn->vexXopPrefix[2]);
1559  else
1560  return -1;
1561 
1562  if (insn->mode != MODE_64BIT)
1563  insn->vvvv &= 0x7;
1564 
1565  return 0;
1566 }
1567 
1568 /*
1569  * readOperands - Consults the specifier for an instruction and consumes all
1570  * operands for that instruction, interpreting them as it goes.
1571  *
1572  * @param insn - The instruction whose operands are to be read and interpreted.
1573  * @return - 0 if all operands could be read; nonzero otherwise.
1574  */
1575 static int readOperands(struct InternalInstruction* insn) {
1576  int index;
1577  int hasVVVV, needVVVV;
1578  int sawRegImm = 0;
1579 
1580  dbgprintf(insn, "readOperands()");
1581 
1582  /* If non-zero vvvv specified, need to make sure one of the operands
1583  uses it. */
1584  hasVVVV = !readVVVV(insn);
1585  needVVVV = hasVVVV && (insn->vvvv != 0);
1586 
1587  for (index = 0; index < X86_MAX_OPERANDS; ++index) {
1588  switch (x86OperandSets[insn->spec->operands][index].encoding) {
1589  case ENCODING_NONE:
1590  break;
1591  case ENCODING_REG:
1592  case ENCODING_RM:
1593  if (readModRM(insn))
1594  return -1;
1595  if (fixupReg(insn, &x86OperandSets[insn->spec->operands][index]))
1596  return -1;
1597  break;
1598  case ENCODING_CB:
1599  case ENCODING_CW:
1600  case ENCODING_CD:
1601  case ENCODING_CP:
1602  case ENCODING_CO:
1603  case ENCODING_CT:
1604  dbgprintf(insn, "We currently don't hande code-offset encodings");
1605  return -1;
1606  case ENCODING_IB:
1607  if (sawRegImm) {
1608  /* Saw a register immediate so don't read again and instead split the
1609  previous immediate. FIXME: This is a hack. */
1610  insn->immediates[insn->numImmediatesConsumed] =
1611  insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
1612  ++insn->numImmediatesConsumed;
1613  break;
1614  }
1615  if (readImmediate(insn, 1))
1616  return -1;
1617  if (x86OperandSets[insn->spec->operands][index].type == TYPE_IMM3 &&
1618  insn->immediates[insn->numImmediatesConsumed - 1] > 7)
1619  return -1;
1620  if (x86OperandSets[insn->spec->operands][index].type == TYPE_IMM5 &&
1621  insn->immediates[insn->numImmediatesConsumed - 1] > 31)
1622  return -1;
1623  if (x86OperandSets[insn->spec->operands][index].type == TYPE_XMM128 ||
1624  x86OperandSets[insn->spec->operands][index].type == TYPE_XMM256)
1625  sawRegImm = 1;
1626  break;
1627  case ENCODING_IW:
1628  if (readImmediate(insn, 2))
1629  return -1;
1630  break;
1631  case ENCODING_ID:
1632  if (readImmediate(insn, 4))
1633  return -1;
1634  break;
1635  case ENCODING_IO:
1636  if (readImmediate(insn, 8))
1637  return -1;
1638  break;
1639  case ENCODING_Iv:
1640  if (readImmediate(insn, insn->immediateSize))
1641  return -1;
1642  break;
1643  case ENCODING_Ia:
1644  if (readImmediate(insn, insn->addressSize))
1645  return -1;
1646  break;
1647  case ENCODING_RB:
1648  if (readOpcodeRegister(insn, 1))
1649  return -1;
1650  break;
1651  case ENCODING_RW:
1652  if (readOpcodeRegister(insn, 2))
1653  return -1;
1654  break;
1655  case ENCODING_RD:
1656  if (readOpcodeRegister(insn, 4))
1657  return -1;
1658  break;
1659  case ENCODING_RO:
1660  if (readOpcodeRegister(insn, 8))
1661  return -1;
1662  break;
1663  case ENCODING_Rv:
1664  if (readOpcodeRegister(insn, 0))
1665  return -1;
1666  break;
1667  case ENCODING_I:
1668  if (readOpcodeModifier(insn))
1669  return -1;
1670  break;
1671  case ENCODING_VVVV:
1672  needVVVV = 0; /* Mark that we have found a VVVV operand. */
1673  if (!hasVVVV)
1674  return -1;
1675  if (fixupReg(insn, &x86OperandSets[insn->spec->operands][index]))
1676  return -1;
1677  break;
1678  case ENCODING_DUP:
1679  break;
1680  default:
1681  dbgprintf(insn, "Encountered an operand with an unknown encoding.");
1682  return -1;
1683  }
1684  }
1685 
1686  /* If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail */
1687  if (needVVVV) return -1;
1688 
1689  return 0;
1690 }
1691 
1692 /*
1693  * decodeInstruction - Reads and interprets a full instruction provided by the
1694  * user.
1695  *
1696  * @param insn - A pointer to the instruction to be populated. Must be
1697  * pre-allocated.
1698  * @param reader - The function to be used to read the instruction's bytes.
1699  * @param readerArg - A generic argument to be passed to the reader to store
1700  * any internal state.
1701  * @param logger - If non-NULL, the function to be used to write log messages
1702  * and warnings.
1703  * @param loggerArg - A generic argument to be passed to the logger to store
1704  * any internal state.
1705  * @param startLoc - The address (in the reader's address space) of the first
1706  * byte in the instruction.
1707  * @param mode - The mode (real mode, IA-32e, or IA-32e in 64-bit mode) to
1708  * decode the instruction in.
1709  * @return - 0 if the instruction's memory could be read; nonzero if
1710  * not.
1711  */
1713  byteReader_t reader,
1714  const void* readerArg,
1715  dlog_t logger,
1716  void* loggerArg,
1717  const void* miiArg,
1718  uint64_t startLoc,
1719  DisassemblerMode mode) {
1720  memset(insn, 0, sizeof(struct InternalInstruction));
1721 
1722  insn->reader = reader;
1723  insn->readerArg = readerArg;
1724  insn->dlog = logger;
1725  insn->dlogArg = loggerArg;
1726  insn->startLocation = startLoc;
1727  insn->readerCursor = startLoc;
1728  insn->mode = mode;
1729  insn->numImmediatesConsumed = 0;
1730 
1731  if (readPrefixes(insn) ||
1732  readOpcode(insn) ||
1733  getID(insn, miiArg) ||
1734  insn->instructionID == 0 ||
1735  readOperands(insn))
1736  return -1;
1737 
1738  insn->operands = &x86OperandSets[insn->spec->operands][0];
1739 
1740  insn->length = insn->readerCursor - insn->startLocation;
1741 
1742  dbgprintf(insn, "Read from 0x%llx to 0x%llx: length %zu",
1743  startLoc, insn->readerCursor, insn->length);
1744 
1745  if (insn->length > 15)
1746  dbgprintf(insn, "Instruction exceeds 15-byte limit");
1747 
1748  return 0;
1749 }
void(* dlog_t)(void *arg, const char *log)
#define THREEBYTEA6_SYM
#define rFromREX(rex)
#define XOP9_MAP_SYM
static int readSIB(struct InternalInstruction *insn)
static int getIDWithAttrMask(uint16_t *instructionID, struct InternalInstruction *insn, uint8_t attrMask)
#define bFromVEX2of3(vex)
#define rmFromModRM(modRM)
int(* byteReader_t)(const void *arg, uint8_t *byte, uint64_t address)
static int readVVVV(struct InternalInstruction *insn)
#define vvvvFromVEX2of2(vex)
static const struct InstructionSpecifier * specifierForUID(InstrUID uid)
uint64_t prefixLocations[0x100]
const struct InstructionSpecifier * spec
#define X86_MAX_OPERANDS
struct OpcodeDecision opcodeDecisions[IC_max]
#define rFromVEX2of2(vex)
static int readModRM(struct InternalInstruction *insn)
static BOOL isPrefixAtLocation(struct InternalInstruction *insn, uint8_t prefix, uint64_t location)
#define lFromVEX2of2(vex)
#define GENERIC_FIXUP_FUNC(name, base, prefix)
static int readPrefixes(struct InternalInstruction *insn)
static int modRMRequired(OpcodeType type, InstructionContext insnContext, uint8_t opcode)
#define xFromXOP2of3(xop)
format_object1< T > format(const char *Fmt, const T &Val)
Definition: Format.h:180
#define CONSUME_FUNC(name, type)
static void setPrefixPresent(struct InternalInstruction *insn, uint8_t prefix, uint64_t location)
#define ppFromVEX3of3(vex)
#define mmmmmFromXOP2of3(xop)
#define vvvvFromVEX3of3(vex)
static int readImmediate(struct InternalInstruction *insn, uint8_t size)
int vsnprintf(char *s, size_t n, const char *format, va_list ap);
uint8_t BOOL
static BOOL is16BitEquivalent(const char *orig, const char *equiv)
static void dbgprintf(struct InternalInstruction *insn, const char *format,...)
static int consumeByte(struct InternalInstruction *insn, uint8_t *byte)
const struct OperandSpecifier * operands
#define bFromXOP2of3(xop)
#define baseFromSIB(sib)
static InstructionContext contextForAttrs(uint8_t attrMask)
#define wFromREX(rex)
static int readOpcodeRegister(struct InternalInstruction *insn, uint8_t size)
#define lFromVEX3of3(vex)
#define ppFromVEX2of2(vex)
#define THREEBYTE3A_SYM
static int readOperands(struct InternalInstruction *insn)
#define ONEBYTE_SYM
#define lFromXOP3of3(xop)
#define THREEBYTEA7_SYM
#define bFromREX(rex)
#define mmmmmFromVEX2of3(vex)
static int readOpcodeModifier(struct InternalInstruction *insn)
#define scaleFromSIB(sib)
#define xFromVEX2of3(vex)
#define rFromXOP2of3(xop)
static int getID(struct InternalInstruction *insn, const void *miiArg)
#define INSTRUCTIONS_SYM
#define THREEBYTE38_SYM
#define TWOBYTE_SYM
struct ModRMDecision modRMDecisions[256]
#define debug(s)
static void unconsumeByte(struct InternalInstruction *insn)
#define TRUE
static InstrUID decode(OpcodeType type, InstructionContext insnContext, uint8_t opcode, uint8_t modRM)
#define wFromVEX3of3(vex)
#define wFromXOP3of3(xop)
#define xFromREX(rex)
#define indexFromSIB(sib)
#define FALSE
static int readDisplacement(struct InternalInstruction *insn)
static void logger(void *arg, const char *log)
#define XOP8_MAP_SYM
#define rFromVEX2of3(vex)
#define regFromModRM(modRM)
#define modFromModRM(modRM)
static int fixupReg(struct InternalInstruction *insn, const struct OperandSpecifier *op)
const char * x86DisassemblerGetInstrName(unsigned Opcode, const void *mii)
static int readOpcode(struct InternalInstruction *insn)
uint16_t InstrUID
#define XOPA_MAP_SYM
#define CONTEXTS_SYM
#define vvvvFromXOP3of3(vex)
static int lookAtByte(struct InternalInstruction *insn, uint8_t *byte)
LocationClass< Ty > location(Ty &L)
Definition: CommandLine.h:333
#define ppFromXOP3of3(xop)
SegmentOverride segmentOverride
int decodeInstruction(struct InternalInstruction *insn, byteReader_t reader, const void *readerArg, dlog_t logger, void *loggerArg, const void *miiArg, uint64_t startLoc, DisassemblerMode mode)