LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
DIEHash.cpp
Go to the documentation of this file.
1 //===-- llvm/CodeGen/DIEHash.cpp - Dwarf Hashing Framework ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for DWARF4 hashing of DIEs.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "dwarfdebug"
15 
16 #include "DIEHash.h"
17 
18 #include "DIE.h"
19 #include "DwarfCompileUnit.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/Dwarf.h"
24 #include "llvm/Support/Endian.h"
25 #include "llvm/Support/MD5.h"
27 
28 using namespace llvm;
29 
30 /// \brief Grabs the string in whichever attribute is passed in and returns
31 /// a reference to it.
32 static StringRef getDIEStringAttr(const DIE &Die, uint16_t Attr) {
33  const SmallVectorImpl<DIEValue *> &Values = Die.getValues();
34  const DIEAbbrev &Abbrevs = Die.getAbbrev();
35 
36  // Iterate through all the attributes until we find the one we're
37  // looking for, if we can't find it return an empty string.
38  for (size_t i = 0; i < Values.size(); ++i) {
39  if (Abbrevs.getData()[i].getAttribute() == Attr) {
40  DIEValue *V = Values[i];
41  assert(isa<DIEString>(V) && "String requested. Not a string.");
42  DIEString *S = cast<DIEString>(V);
43  return S->getString();
44  }
45  }
46  return StringRef("");
47 }
48 
49 /// \brief Adds the string in \p Str to the hash. This also hashes
50 /// a trailing NULL with the string.
51 void DIEHash::addString(StringRef Str) {
52  DEBUG(dbgs() << "Adding string " << Str << " to hash.\n");
53  Hash.update(Str);
54  Hash.update(makeArrayRef((uint8_t)'\0'));
55 }
56 
57 // FIXME: The LEB128 routines are copied and only slightly modified out of
58 // LEB128.h.
59 
60 /// \brief Adds the unsigned in \p Value to the hash encoded as a ULEB128.
61 void DIEHash::addULEB128(uint64_t Value) {
62  DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n");
63  do {
64  uint8_t Byte = Value & 0x7f;
65  Value >>= 7;
66  if (Value != 0)
67  Byte |= 0x80; // Mark this byte to show that more bytes will follow.
68  Hash.update(Byte);
69  } while (Value != 0);
70 }
71 
72 void DIEHash::addSLEB128(int64_t Value) {
73  DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n");
74  bool More;
75  do {
76  uint8_t Byte = Value & 0x7f;
77  Value >>= 7;
78  More = !((((Value == 0 ) && ((Byte & 0x40) == 0)) ||
79  ((Value == -1) && ((Byte & 0x40) != 0))));
80  if (More)
81  Byte |= 0x80; // Mark this byte to show that more bytes will follow.
82  Hash.update(Byte);
83  } while (More);
84 }
85 
86 /// \brief Including \p Parent adds the context of Parent to the hash..
87 void DIEHash::addParentContext(const DIE &Parent) {
88 
89  DEBUG(dbgs() << "Adding parent context to hash...\n");
90 
91  // [7.27.2] For each surrounding type or namespace beginning with the
92  // outermost such construct...
94  const DIE *Cur = &Parent;
95  while (Cur->getTag() != dwarf::DW_TAG_compile_unit) {
96  Parents.push_back(Cur);
97  Cur = Cur->getParent();
98  }
99 
100  // Reverse iterate over our list to go from the outermost construct to the
101  // innermost.
103  E = Parents.rend();
104  I != E; ++I) {
105  const DIE &Die = **I;
106 
107  // ... Append the letter "C" to the sequence...
108  addULEB128('C');
109 
110  // ... Followed by the DWARF tag of the construct...
111  addULEB128(Die.getTag());
112 
113  // ... Then the name, taken from the DW_AT_name attribute.
114  StringRef Name = getDIEStringAttr(Die, dwarf::DW_AT_name);
115  DEBUG(dbgs() << "... adding context: " << Name << "\n");
116  if (!Name.empty())
117  addString(Name);
118  }
119 }
120 
121 // Collect all of the attributes for a particular DIE in single structure.
122 void DIEHash::collectAttributes(const DIE &Die, DIEAttrs &Attrs) {
123  const SmallVectorImpl<DIEValue *> &Values = Die.getValues();
124  const DIEAbbrev &Abbrevs = Die.getAbbrev();
125 
126 #define COLLECT_ATTR(NAME) \
127  case dwarf::NAME: \
128  Attrs.NAME.Val = Values[i]; \
129  Attrs.NAME.Desc = &Abbrevs.getData()[i]; \
130  break
131 
132  for (size_t i = 0, e = Values.size(); i != e; ++i) {
133  DEBUG(dbgs() << "Attribute: "
134  << dwarf::AttributeString(Abbrevs.getData()[i].getAttribute())
135  << " added.\n");
136  switch (Abbrevs.getData()[i].getAttribute()) {
137  COLLECT_ATTR(DW_AT_name);
138  COLLECT_ATTR(DW_AT_accessibility);
139  COLLECT_ATTR(DW_AT_address_class);
140  COLLECT_ATTR(DW_AT_allocated);
141  COLLECT_ATTR(DW_AT_artificial);
142  COLLECT_ATTR(DW_AT_associated);
143  COLLECT_ATTR(DW_AT_binary_scale);
144  COLLECT_ATTR(DW_AT_bit_offset);
145  COLLECT_ATTR(DW_AT_bit_size);
146  COLLECT_ATTR(DW_AT_bit_stride);
147  COLLECT_ATTR(DW_AT_byte_size);
148  COLLECT_ATTR(DW_AT_byte_stride);
149  COLLECT_ATTR(DW_AT_const_expr);
150  COLLECT_ATTR(DW_AT_const_value);
151  COLLECT_ATTR(DW_AT_containing_type);
152  COLLECT_ATTR(DW_AT_count);
153  COLLECT_ATTR(DW_AT_data_bit_offset);
154  COLLECT_ATTR(DW_AT_data_location);
155  COLLECT_ATTR(DW_AT_data_member_location);
156  COLLECT_ATTR(DW_AT_decimal_scale);
157  COLLECT_ATTR(DW_AT_decimal_sign);
158  COLLECT_ATTR(DW_AT_default_value);
159  COLLECT_ATTR(DW_AT_digit_count);
160  COLLECT_ATTR(DW_AT_discr);
161  COLLECT_ATTR(DW_AT_discr_list);
162  COLLECT_ATTR(DW_AT_discr_value);
163  COLLECT_ATTR(DW_AT_encoding);
164  COLLECT_ATTR(DW_AT_enum_class);
165  COLLECT_ATTR(DW_AT_endianity);
166  COLLECT_ATTR(DW_AT_explicit);
167  COLLECT_ATTR(DW_AT_is_optional);
168  COLLECT_ATTR(DW_AT_location);
169  COLLECT_ATTR(DW_AT_lower_bound);
170  COLLECT_ATTR(DW_AT_mutable);
171  COLLECT_ATTR(DW_AT_ordering);
172  COLLECT_ATTR(DW_AT_picture_string);
173  COLLECT_ATTR(DW_AT_prototyped);
174  COLLECT_ATTR(DW_AT_small);
175  COLLECT_ATTR(DW_AT_segment);
176  COLLECT_ATTR(DW_AT_string_length);
177  COLLECT_ATTR(DW_AT_threads_scaled);
178  COLLECT_ATTR(DW_AT_upper_bound);
179  COLLECT_ATTR(DW_AT_use_location);
180  COLLECT_ATTR(DW_AT_use_UTF8);
181  COLLECT_ATTR(DW_AT_variable_parameter);
182  COLLECT_ATTR(DW_AT_virtuality);
183  COLLECT_ATTR(DW_AT_visibility);
184  COLLECT_ATTR(DW_AT_vtable_elem_location);
185  COLLECT_ATTR(DW_AT_type);
186  default:
187  break;
188  }
189  }
190 }
191 
192 void DIEHash::hashShallowTypeReference(dwarf::Attribute Attribute,
193  const DIE &Entry, StringRef Name) {
194  // append the letter 'N'
195  addULEB128('N');
196 
197  // the DWARF attribute code (DW_AT_type or DW_AT_friend),
198  addULEB128(Attribute);
199 
200  // the context of the tag,
201  if (const DIE *Parent = Entry.getParent())
202  addParentContext(*Parent);
203 
204  // the letter 'E',
205  addULEB128('E');
206 
207  // and the name of the type.
208  addString(Name);
209 
210  // Currently DW_TAG_friends are not used by Clang, but if they do become so,
211  // here's the relevant spec text to implement:
212  //
213  // For DW_TAG_friend, if the referenced entry is the DW_TAG_subprogram,
214  // the context is omitted and the name to be used is the ABI-specific name
215  // of the subprogram (e.g., the mangled linker name).
216 }
217 
218 void DIEHash::hashRepeatedTypeReference(dwarf::Attribute Attribute,
219  unsigned DieNumber) {
220  // a) If T is in the list of [previously hashed types], use the letter
221  // 'R' as the marker
222  addULEB128('R');
223 
224  addULEB128(Attribute);
225 
226  // and use the unsigned LEB128 encoding of [the index of T in the
227  // list] as the attribute value;
228  addULEB128(DieNumber);
229 }
230 
231 void DIEHash::hashDIEEntry(dwarf::Attribute Attribute, dwarf::Tag Tag,
232  const DIE &Entry) {
233  assert(Tag != dwarf::DW_TAG_friend && "No current LLVM clients emit friend "
234  "tags. Add support here when there's "
235  "a use case");
236  // Step 5
237  // If the tag in Step 3 is one of [the below tags]
238  if ((Tag == dwarf::DW_TAG_pointer_type ||
239  Tag == dwarf::DW_TAG_reference_type ||
240  Tag == dwarf::DW_TAG_rvalue_reference_type ||
241  Tag == dwarf::DW_TAG_ptr_to_member_type) &&
242  // and the referenced type (via the [below attributes])
243  // FIXME: This seems overly restrictive, and causes hash mismatches
244  // there's a decl/def difference in the containing type of a
245  // ptr_to_member_type, but it's what DWARF says, for some reason.
246  Attribute == dwarf::DW_AT_type) {
247  // ... has a DW_AT_name attribute,
248  StringRef Name = getDIEStringAttr(Entry, dwarf::DW_AT_name);
249  if (!Name.empty()) {
250  hashShallowTypeReference(Attribute, Entry, Name);
251  return;
252  }
253  }
254 
255  unsigned &DieNumber = Numbering[&Entry];
256  if (DieNumber) {
257  hashRepeatedTypeReference(Attribute, DieNumber);
258  return;
259  }
260 
261  // otherwise, b) use the letter 'T' as a the marker, ...
262  addULEB128('T');
263 
264  addULEB128(Attribute);
265 
266  // ... process the type T recursively by performing Steps 2 through 7, and
267  // use the result as the attribute value.
268  DieNumber = Numbering.size();
269  computeHash(Entry);
270 }
271 
272 // Hash an individual attribute \param Attr based on the type of attribute and
273 // the form.
274 void DIEHash::hashAttribute(AttrEntry Attr, dwarf::Tag Tag) {
275  const DIEValue *Value = Attr.Val;
276  const DIEAbbrevData *Desc = Attr.Desc;
277  dwarf::Attribute Attribute = Desc->getAttribute();
278 
279  // 7.27 Step 3
280  // ... An attribute that refers to another type entry T is processed as
281  // follows:
282  if (const DIEEntry *EntryAttr = dyn_cast<DIEEntry>(Value)) {
283  hashDIEEntry(Attribute, Tag, *EntryAttr->getEntry());
284  return;
285  }
286 
287  // Other attribute values use the letter 'A' as the marker, ...
288  addULEB128('A');
289 
290  addULEB128(Attribute);
291 
292  // ... and the value consists of the form code (encoded as an unsigned LEB128
293  // value) followed by the encoding of the value according to the form code. To
294  // ensure reproducibility of the signature, the set of forms used in the
295  // signature computation is limited to the following: DW_FORM_sdata,
296  // DW_FORM_flag, DW_FORM_string, and DW_FORM_block.
297  switch (Desc->getForm()) {
298  case dwarf::DW_FORM_string:
300  "Add support for DW_FORM_string if we ever start emitting them again");
301  case dwarf::DW_FORM_GNU_str_index:
302  case dwarf::DW_FORM_strp:
303  addULEB128(dwarf::DW_FORM_string);
304  addString(cast<DIEString>(Value)->getString());
305  break;
306  case dwarf::DW_FORM_data1:
307  case dwarf::DW_FORM_data2:
308  case dwarf::DW_FORM_data4:
309  case dwarf::DW_FORM_data8:
310  case dwarf::DW_FORM_udata:
311  addULEB128(dwarf::DW_FORM_sdata);
312  addSLEB128((int64_t)cast<DIEInteger>(Value)->getValue());
313  break;
314  default:
315  llvm_unreachable("Add support for additional forms");
316  }
317 }
318 
319 // Go through the attributes from \param Attrs in the order specified in 7.27.4
320 // and hash them.
321 void DIEHash::hashAttributes(const DIEAttrs &Attrs, dwarf::Tag Tag) {
322 #define ADD_ATTR(ATTR) \
323  { \
324  if (ATTR.Val != 0) \
325  hashAttribute(ATTR, Tag); \
326  }
327 
328  ADD_ATTR(Attrs.DW_AT_name);
329  ADD_ATTR(Attrs.DW_AT_accessibility);
330  ADD_ATTR(Attrs.DW_AT_address_class);
331  ADD_ATTR(Attrs.DW_AT_allocated);
332  ADD_ATTR(Attrs.DW_AT_artificial);
333  ADD_ATTR(Attrs.DW_AT_associated);
334  ADD_ATTR(Attrs.DW_AT_binary_scale);
335  ADD_ATTR(Attrs.DW_AT_bit_offset);
336  ADD_ATTR(Attrs.DW_AT_bit_size);
337  ADD_ATTR(Attrs.DW_AT_bit_stride);
338  ADD_ATTR(Attrs.DW_AT_byte_size);
339  ADD_ATTR(Attrs.DW_AT_byte_stride);
340  ADD_ATTR(Attrs.DW_AT_const_expr);
341  ADD_ATTR(Attrs.DW_AT_const_value);
342  ADD_ATTR(Attrs.DW_AT_containing_type);
343  ADD_ATTR(Attrs.DW_AT_count);
344  ADD_ATTR(Attrs.DW_AT_data_bit_offset);
345  ADD_ATTR(Attrs.DW_AT_data_location);
346  ADD_ATTR(Attrs.DW_AT_data_member_location);
347  ADD_ATTR(Attrs.DW_AT_decimal_scale);
348  ADD_ATTR(Attrs.DW_AT_decimal_sign);
349  ADD_ATTR(Attrs.DW_AT_default_value);
350  ADD_ATTR(Attrs.DW_AT_digit_count);
351  ADD_ATTR(Attrs.DW_AT_discr);
352  ADD_ATTR(Attrs.DW_AT_discr_list);
353  ADD_ATTR(Attrs.DW_AT_discr_value);
354  ADD_ATTR(Attrs.DW_AT_encoding);
355  ADD_ATTR(Attrs.DW_AT_enum_class);
356  ADD_ATTR(Attrs.DW_AT_endianity);
357  ADD_ATTR(Attrs.DW_AT_explicit);
358  ADD_ATTR(Attrs.DW_AT_is_optional);
359  ADD_ATTR(Attrs.DW_AT_location);
360  ADD_ATTR(Attrs.DW_AT_lower_bound);
361  ADD_ATTR(Attrs.DW_AT_mutable);
362  ADD_ATTR(Attrs.DW_AT_ordering);
363  ADD_ATTR(Attrs.DW_AT_picture_string);
364  ADD_ATTR(Attrs.DW_AT_prototyped);
365  ADD_ATTR(Attrs.DW_AT_small);
366  ADD_ATTR(Attrs.DW_AT_segment);
367  ADD_ATTR(Attrs.DW_AT_string_length);
368  ADD_ATTR(Attrs.DW_AT_threads_scaled);
369  ADD_ATTR(Attrs.DW_AT_upper_bound);
370  ADD_ATTR(Attrs.DW_AT_use_location);
371  ADD_ATTR(Attrs.DW_AT_use_UTF8);
372  ADD_ATTR(Attrs.DW_AT_variable_parameter);
373  ADD_ATTR(Attrs.DW_AT_virtuality);
374  ADD_ATTR(Attrs.DW_AT_visibility);
375  ADD_ATTR(Attrs.DW_AT_vtable_elem_location);
376  ADD_ATTR(Attrs.DW_AT_type);
377 
378  // FIXME: Add the extended attributes.
379 }
380 
381 // Add all of the attributes for \param Die to the hash.
382 void DIEHash::addAttributes(const DIE &Die) {
383  DIEAttrs Attrs = {};
384  collectAttributes(Die, Attrs);
385  hashAttributes(Attrs, Die.getTag());
386 }
387 
388 void DIEHash::hashNestedType(const DIE &Die, StringRef Name) {
389  // 7.27 Step 7
390  // ... append the letter 'S',
391  addULEB128('S');
392 
393  // the tag of C,
394  addULEB128(Die.getTag());
395 
396  // and the name.
397  addString(Name);
398 }
399 
400 // Compute the hash of a DIE. This is based on the type signature computation
401 // given in section 7.27 of the DWARF4 standard. It is the md5 hash of a
402 // flattened description of the DIE.
403 void DIEHash::computeHash(const DIE &Die) {
404  // Append the letter 'D', followed by the DWARF tag of the DIE.
405  addULEB128('D');
406  addULEB128(Die.getTag());
407 
408  // Add each of the attributes of the DIE.
409  addAttributes(Die);
410 
411  // Then hash each of the children of the DIE.
412  for (std::vector<DIE *>::const_iterator I = Die.getChildren().begin(),
413  E = Die.getChildren().end();
414  I != E; ++I) {
415  // 7.27 Step 7
416  // If C is a nested type entry or a member function entry, ...
417  if (isType((*I)->getTag()) || (*I)->getTag() == dwarf::DW_TAG_subprogram) {
418  StringRef Name = getDIEStringAttr(**I, dwarf::DW_AT_name);
419  // ... and has a DW_AT_name attribute
420  if (!Name.empty()) {
421  hashNestedType(**I, Name);
422  continue;
423  }
424  }
425  computeHash(**I);
426  }
427 
428  // Following the last (or if there are no children), append a zero byte.
429  Hash.update(makeArrayRef((uint8_t)'\0'));
430 }
431 
432 /// This is based on the type signature computation given in section 7.27 of the
433 /// DWARF4 standard. It is the md5 hash of a flattened description of the DIE
434 /// with the exception that we are hashing only the context and the name of the
435 /// type.
436 uint64_t DIEHash::computeDIEODRSignature(const DIE &Die) {
437 
438  // Add the contexts to the hash. We won't be computing the ODR hash for
439  // function local types so it's safe to use the generic context hashing
440  // algorithm here.
441  // FIXME: If we figure out how to account for linkage in some way we could
442  // actually do this with a slight modification to the parent hash algorithm.
443  if (const DIE *Parent = Die.getParent())
444  addParentContext(*Parent);
445 
446  // Add the current DIE information.
447 
448  // Add the DWARF tag of the DIE.
449  addULEB128(Die.getTag());
450 
451  // Add the name of the type to the hash.
452  addString(getDIEStringAttr(Die, dwarf::DW_AT_name));
453 
454  // Now get the result.
455  MD5::MD5Result Result;
456  Hash.final(Result);
457 
458  // ... take the least significant 8 bytes and return those. Our MD5
459  // implementation always returns its results in little endian, swap bytes
460  // appropriately.
461  return *reinterpret_cast<support::ulittle64_t *>(Result + 8);
462 }
463 
464 /// This is based on the type signature computation given in section 7.27 of the
465 /// DWARF4 standard. It is an md5 hash of the flattened description of the DIE
466 /// with the inclusion of the full CU and all top level CU entities.
467 // TODO: Initialize the type chain at 0 instead of 1 for CU signatures.
468 uint64_t DIEHash::computeCUSignature(const DIE &Die) {
469  Numbering.clear();
470  Numbering[&Die] = 1;
471 
472  // Hash the DIE.
473  computeHash(Die);
474 
475  // Now return the result.
476  MD5::MD5Result Result;
477  Hash.final(Result);
478 
479  // ... take the least significant 8 bytes and return those. Our MD5
480  // implementation always returns its results in little endian, swap bytes
481  // appropriately.
482  return *reinterpret_cast<support::ulittle64_t *>(Result + 8);
483 }
484 
485 /// This is based on the type signature computation given in section 7.27 of the
486 /// DWARF4 standard. It is an md5 hash of the flattened description of the DIE
487 /// with the inclusion of additional forms not specifically called out in the
488 /// standard.
489 uint64_t DIEHash::computeTypeSignature(const DIE &Die) {
490  Numbering.clear();
491  Numbering[&Die] = 1;
492 
493  if (const DIE *Parent = Die.getParent())
494  addParentContext(*Parent);
495 
496  // Hash the DIE.
497  computeHash(Die);
498 
499  // Now return the result.
500  MD5::MD5Result Result;
501  Hash.final(Result);
502 
503  // ... take the least significant 8 bytes and return those. Our MD5
504  // implementation always returns its results in little endian, swap bytes
505  // appropriately.
506  return *reinterpret_cast<support::ulittle64_t *>(Result + 8);
507 }
#define ADD_ATTR(ATTR)
uint64_t computeCUSignature(const DIE &Die)
Computes the CU signature.
Definition: DIEHash.cpp:468
dwarf::Form getForm() const
Definition: DIE.h:46
ArrayRef< T > makeArrayRef(const T &OneElt)
Construct an ArrayRef from a single element.
Definition: ArrayRef.h:261
#define llvm_unreachable(msg)
#define COLLECT_ATTR(NAME)
uint64_t computeTypeSignature(const DIE &Die)
Computes the type signature.
Definition: DIEHash.cpp:489
DIEAbbrev & getAbbrev()
Definition: DIE.h:140
void update(ArrayRef< uint8_t > Data)
Updates the hash for the byte stream provided.
Definition: MD5.cpp:187
dwarf::Tag getTag() const
Definition: DIE.h:143
void final(MD5Result &result)
Finishes off the hash and puts the result in result.
Definition: MD5.cpp:232
Definition: DIE.h:109
uint64_t computeDIEODRSignature(const DIE &Die)
Computes the ODR signature.
Definition: DIEHash.cpp:436
DIE * getParent() const
Definition: DIE.h:148
const std::vector< DIE * > & getChildren() const
Definition: DIE.h:146
dwarf::Attribute getAttribute() const
Definition: DIE.h:45
uint8_t MD5Result[16]
Definition: MD5.h:48
bool isType(Tag T)
Definition: Dwarf.h:144
StringRef getString() const
getString - Grab the string out of the object.
Definition: DIE.h:361
const SmallVectorImpl< DIEValue * > & getValues() const
Definition: DIE.h:147
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
const char * AttributeString(unsigned Attribute)
Definition: Dwarf.cpp:115
#define I(x, y, z)
Definition: MD5.cpp:54
const SmallVectorImpl< DIEAbbrevData > & getData() const
Definition: DIE.h:80
LLVM Value Representation.
Definition: Value.h:66
#define DEBUG(X)
Definition: Debug.h:97
static StringRef getDIEStringAttr(const DIE &Die, uint16_t Attr)
Grabs the string in whichever attribute is passed in and returns a reference to it.
Definition: DIEHash.cpp:32
bool empty() const
empty - Check if the string is empty.
Definition: StringRef.h:110