LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
SmallVector.h
Go to the documentation of this file.
1 //===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the SmallVector class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ADT_SMALLVECTOR_H
15 #define LLVM_ADT_SMALLVECTOR_H
16 
17 #include "llvm/Support/AlignOf.h"
18 #include "llvm/Support/Compiler.h"
21 #include <algorithm>
22 #include <cassert>
23 #include <cstddef>
24 #include <cstdlib>
25 #include <cstring>
26 #include <iterator>
27 #include <memory>
28 
29 namespace llvm {
30 
31 /// SmallVectorBase - This is all the non-templated stuff common to all
32 /// SmallVectors.
34 protected:
35  void *BeginX, *EndX, *CapacityX;
36 
37 protected:
38  SmallVectorBase(void *FirstEl, size_t Size)
39  : BeginX(FirstEl), EndX(FirstEl), CapacityX((char*)FirstEl+Size) {}
40 
41  /// grow_pod - This is an implementation of the grow() method which only works
42  /// on POD-like data types and is out of line to reduce code duplication.
43  void grow_pod(void *FirstEl, size_t MinSizeInBytes, size_t TSize);
44 
45 public:
46  /// size_in_bytes - This returns size()*sizeof(T).
47  size_t size_in_bytes() const {
48  return size_t((char*)EndX - (char*)BeginX);
49  }
50 
51  /// capacity_in_bytes - This returns capacity()*sizeof(T).
52  size_t capacity_in_bytes() const {
53  return size_t((char*)CapacityX - (char*)BeginX);
54  }
55 
56  bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const { return BeginX == EndX; }
57 };
58 
59 template <typename T, unsigned N> struct SmallVectorStorage;
60 
61 /// SmallVectorTemplateCommon - This is the part of SmallVectorTemplateBase
62 /// which does not depend on whether the type T is a POD. The extra dummy
63 /// template argument is used by ArrayRef to avoid unnecessarily requiring T
64 /// to be complete.
65 template <typename T, typename = void>
67 private:
68  template <typename, unsigned> friend struct SmallVectorStorage;
69 
70  // Allocate raw space for N elements of type T. If T has a ctor or dtor, we
71  // don't want it to be automatically run, so we need to represent the space as
72  // something else. Use an array of char of sufficient alignment.
74  U FirstEl;
75  // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
76 
77 protected:
78  SmallVectorTemplateCommon(size_t Size) : SmallVectorBase(&FirstEl, Size) {}
79 
80  void grow_pod(size_t MinSizeInBytes, size_t TSize) {
81  SmallVectorBase::grow_pod(&FirstEl, MinSizeInBytes, TSize);
82  }
83 
84  /// isSmall - Return true if this is a smallvector which has not had dynamic
85  /// memory allocated for it.
86  bool isSmall() const {
87  return BeginX == static_cast<const void*>(&FirstEl);
88  }
89 
90  /// resetToSmall - Put this vector in a state of being small.
91  void resetToSmall() {
92  BeginX = EndX = CapacityX = &FirstEl;
93  }
94 
95  void setEnd(T *P) { this->EndX = P; }
96 public:
97  typedef size_t size_type;
98  typedef ptrdiff_t difference_type;
99  typedef T value_type;
100  typedef T *iterator;
101  typedef const T *const_iterator;
102 
103  typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
104  typedef std::reverse_iterator<iterator> reverse_iterator;
105 
106  typedef T &reference;
107  typedef const T &const_reference;
108  typedef T *pointer;
109  typedef const T *const_pointer;
110 
111  // forward iterator creation methods.
112  iterator begin() { return (iterator)this->BeginX; }
113  const_iterator begin() const { return (const_iterator)this->BeginX; }
114  iterator end() { return (iterator)this->EndX; }
115  const_iterator end() const { return (const_iterator)this->EndX; }
116 protected:
119 public:
120 
121  // reverse iterator creation methods.
126 
127  size_type size() const { return end()-begin(); }
128  size_type max_size() const { return size_type(-1) / sizeof(T); }
129 
130  /// capacity - Return the total number of elements in the currently allocated
131  /// buffer.
132  size_t capacity() const { return capacity_ptr() - begin(); }
133 
134  /// data - Return a pointer to the vector's buffer, even if empty().
135  pointer data() { return pointer(begin()); }
136  /// data - Return a pointer to the vector's buffer, even if empty().
137  const_pointer data() const { return const_pointer(begin()); }
138 
139  reference operator[](unsigned idx) {
140  assert(begin() + idx < end());
141  return begin()[idx];
142  }
143  const_reference operator[](unsigned idx) const {
144  assert(begin() + idx < end());
145  return begin()[idx];
146  }
147 
149  assert(!empty());
150  return begin()[0];
151  }
153  assert(!empty());
154  return begin()[0];
155  }
156 
158  assert(!empty());
159  return end()[-1];
160  }
162  assert(!empty());
163  return end()[-1];
164  }
165 };
166 
167 /// SmallVectorTemplateBase<isPodLike = false> - This is where we put method
168 /// implementations that are designed to work with non-POD-like T's.
169 template <typename T, bool isPodLike>
171 protected:
173 
174  static void destroy_range(T *S, T *E) {
175  while (S != E) {
176  --E;
177  E->~T();
178  }
179  }
180 
181  /// move - Use move-assignment to move the range [I, E) onto the
182  /// objects starting with "Dest". This is just <memory>'s
183  /// std::move, but not all stdlibs actually provide that.
184  template<typename It1, typename It2>
185  static It2 move(It1 I, It1 E, It2 Dest) {
186 #if LLVM_HAS_RVALUE_REFERENCES
187  for (; I != E; ++I, ++Dest)
188  *Dest = ::std::move(*I);
189  return Dest;
190 #else
191  return ::std::copy(I, E, Dest);
192 #endif
193  }
194 
195  /// move_backward - Use move-assignment to move the range
196  /// [I, E) onto the objects ending at "Dest", moving objects
197  /// in reverse order. This is just <algorithm>'s
198  /// std::move_backward, but not all stdlibs actually provide that.
199  template<typename It1, typename It2>
200  static It2 move_backward(It1 I, It1 E, It2 Dest) {
201 #if LLVM_HAS_RVALUE_REFERENCES
202  while (I != E)
203  *--Dest = ::std::move(*--E);
204  return Dest;
205 #else
206  return ::std::copy_backward(I, E, Dest);
207 #endif
208  }
209 
210  /// uninitialized_move - Move the range [I, E) into the uninitialized
211  /// memory starting with "Dest", constructing elements as needed.
212  template<typename It1, typename It2>
213  static void uninitialized_move(It1 I, It1 E, It2 Dest) {
214 #if LLVM_HAS_RVALUE_REFERENCES
215  for (; I != E; ++I, ++Dest)
216  ::new ((void*) &*Dest) T(::std::move(*I));
217 #else
218  ::std::uninitialized_copy(I, E, Dest);
219 #endif
220  }
221 
222  /// uninitialized_copy - Copy the range [I, E) onto the uninitialized
223  /// memory starting with "Dest", constructing elements as needed.
224  template<typename It1, typename It2>
225  static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
226  std::uninitialized_copy(I, E, Dest);
227  }
228 
229  /// grow - Grow the allocated memory (without initializing new
230  /// elements), doubling the size of the allocated memory.
231  /// Guarantees space for at least one more element, or MinSize more
232  /// elements if specified.
233  void grow(size_t MinSize = 0);
234 
235 public:
236  void push_back(const T &Elt) {
237  if (this->EndX < this->CapacityX) {
238  Retry:
239  ::new ((void*) this->end()) T(Elt);
240  this->setEnd(this->end()+1);
241  return;
242  }
243  this->grow();
244  goto Retry;
245  }
246 
247 #if LLVM_HAS_RVALUE_REFERENCES
248  void push_back(T &&Elt) {
249  if (this->EndX < this->CapacityX) {
250  Retry:
251  ::new ((void*) this->end()) T(::std::move(Elt));
252  this->setEnd(this->end()+1);
253  return;
254  }
255  this->grow();
256  goto Retry;
257  }
258 #endif
259 
260  void pop_back() {
261  this->setEnd(this->end()-1);
262  this->end()->~T();
263  }
264 };
265 
266 // Define this out-of-line to dissuade the C++ compiler from inlining it.
267 template <typename T, bool isPodLike>
269  size_t CurCapacity = this->capacity();
270  size_t CurSize = this->size();
271  // Always grow, even from zero.
272  size_t NewCapacity = size_t(NextPowerOf2(CurCapacity+2));
273  if (NewCapacity < MinSize)
274  NewCapacity = MinSize;
275  T *NewElts = static_cast<T*>(malloc(NewCapacity*sizeof(T)));
276 
277  // Move the elements over.
278  this->uninitialized_move(this->begin(), this->end(), NewElts);
279 
280  // Destroy the original elements.
281  destroy_range(this->begin(), this->end());
282 
283  // If this wasn't grown from the inline copy, deallocate the old space.
284  if (!this->isSmall())
285  free(this->begin());
286 
287  this->setEnd(NewElts+CurSize);
288  this->BeginX = NewElts;
289  this->CapacityX = this->begin()+NewCapacity;
290 }
291 
292 
293 /// SmallVectorTemplateBase<isPodLike = true> - This is where we put method
294 /// implementations that are designed to work with POD-like T's.
295 template <typename T>
297 protected:
299 
300  // No need to do a destroy loop for POD's.
301  static void destroy_range(T *, T *) {}
302 
303  /// move - Use move-assignment to move the range [I, E) onto the
304  /// objects starting with "Dest". For PODs, this is just memcpy.
305  template<typename It1, typename It2>
306  static It2 move(It1 I, It1 E, It2 Dest) {
307  return ::std::copy(I, E, Dest);
308  }
309 
310  /// move_backward - Use move-assignment to move the range
311  /// [I, E) onto the objects ending at "Dest", moving objects
312  /// in reverse order.
313  template<typename It1, typename It2>
314  static It2 move_backward(It1 I, It1 E, It2 Dest) {
315  return ::std::copy_backward(I, E, Dest);
316  }
317 
318  /// uninitialized_move - Move the range [I, E) onto the uninitialized memory
319  /// starting with "Dest", constructing elements into it as needed.
320  template<typename It1, typename It2>
321  static void uninitialized_move(It1 I, It1 E, It2 Dest) {
322  // Just do a copy.
323  uninitialized_copy(I, E, Dest);
324  }
325 
326  /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
327  /// starting with "Dest", constructing elements into it as needed.
328  template<typename It1, typename It2>
329  static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
330  // Arbitrary iterator types; just use the basic implementation.
331  std::uninitialized_copy(I, E, Dest);
332  }
333 
334  /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
335  /// starting with "Dest", constructing elements into it as needed.
336  template<typename T1, typename T2>
337  static void uninitialized_copy(T1 *I, T1 *E, T2 *Dest) {
338  // Use memcpy for PODs iterated by pointers (which includes SmallVector
339  // iterators): std::uninitialized_copy optimizes to memmove, but we can
340  // use memcpy here.
341  memcpy(Dest, I, (E-I)*sizeof(T));
342  }
343 
344  /// grow - double the size of the allocated memory, guaranteeing space for at
345  /// least one more element or MinSize if specified.
346  void grow(size_t MinSize = 0) {
347  this->grow_pod(MinSize*sizeof(T), sizeof(T));
348  }
349 public:
350  void push_back(const T &Elt) {
351  if (this->EndX < this->CapacityX) {
352  Retry:
353  memcpy(this->end(), &Elt, sizeof(T));
354  this->setEnd(this->end()+1);
355  return;
356  }
357  this->grow();
358  goto Retry;
359  }
360 
361  void pop_back() {
362  this->setEnd(this->end()-1);
363  }
364 };
365 
366 
367 /// SmallVectorImpl - This class consists of common code factored out of the
368 /// SmallVector class to reduce code duplication based on the SmallVector 'N'
369 /// template parameter.
370 template <typename T>
371 class SmallVectorImpl : public SmallVectorTemplateBase<T, isPodLike<T>::value> {
372  typedef SmallVectorTemplateBase<T, isPodLike<T>::value > SuperClass;
373 
374  SmallVectorImpl(const SmallVectorImpl&) LLVM_DELETED_FUNCTION;
375 public:
376  typedef typename SuperClass::iterator iterator;
377  typedef typename SuperClass::size_type size_type;
378 
379 protected:
380  // Default ctor - Initialize to empty.
381  explicit SmallVectorImpl(unsigned N)
382  : SmallVectorTemplateBase<T, isPodLike<T>::value>(N*sizeof(T)) {
383  }
384 
385 public:
387  // Destroy the constructed elements in the vector.
388  this->destroy_range(this->begin(), this->end());
389 
390  // If this wasn't grown from the inline copy, deallocate the old space.
391  if (!this->isSmall())
392  free(this->begin());
393  }
394 
395 
396  void clear() {
397  this->destroy_range(this->begin(), this->end());
398  this->EndX = this->BeginX;
399  }
400 
401  void resize(unsigned N) {
402  if (N < this->size()) {
403  this->destroy_range(this->begin()+N, this->end());
404  this->setEnd(this->begin()+N);
405  } else if (N > this->size()) {
406  if (this->capacity() < N)
407  this->grow(N);
408  std::uninitialized_fill(this->end(), this->begin()+N, T());
409  this->setEnd(this->begin()+N);
410  }
411  }
412 
413  void resize(unsigned N, const T &NV) {
414  if (N < this->size()) {
415  this->destroy_range(this->begin()+N, this->end());
416  this->setEnd(this->begin()+N);
417  } else if (N > this->size()) {
418  if (this->capacity() < N)
419  this->grow(N);
420  std::uninitialized_fill(this->end(), this->begin()+N, NV);
421  this->setEnd(this->begin()+N);
422  }
423  }
424 
425  void reserve(unsigned N) {
426  if (this->capacity() < N)
427  this->grow(N);
428  }
429 
431 #if LLVM_HAS_RVALUE_REFERENCES
432  T Result = ::std::move(this->back());
433 #else
434  T Result = this->back();
435 #endif
436  this->pop_back();
437  return Result;
438  }
439 
440  void swap(SmallVectorImpl &RHS);
441 
442  /// append - Add the specified range to the end of the SmallVector.
443  ///
444  template<typename in_iter>
445  void append(in_iter in_start, in_iter in_end) {
446  size_type NumInputs = std::distance(in_start, in_end);
447  // Grow allocated space if needed.
448  if (NumInputs > size_type(this->capacity_ptr()-this->end()))
449  this->grow(this->size()+NumInputs);
450 
451  // Copy the new elements over.
452  // TODO: NEED To compile time dispatch on whether in_iter is a random access
453  // iterator to use the fast uninitialized_copy.
454  std::uninitialized_copy(in_start, in_end, this->end());
455  this->setEnd(this->end() + NumInputs);
456  }
457 
458  /// append - Add the specified range to the end of the SmallVector.
459  ///
460  void append(size_type NumInputs, const T &Elt) {
461  // Grow allocated space if needed.
462  if (NumInputs > size_type(this->capacity_ptr()-this->end()))
463  this->grow(this->size()+NumInputs);
464 
465  // Copy the new elements over.
466  std::uninitialized_fill_n(this->end(), NumInputs, Elt);
467  this->setEnd(this->end() + NumInputs);
468  }
469 
470  void assign(unsigned NumElts, const T &Elt) {
471  clear();
472  if (this->capacity() < NumElts)
473  this->grow(NumElts);
474  this->setEnd(this->begin()+NumElts);
475  std::uninitialized_fill(this->begin(), this->end(), Elt);
476  }
477 
479  assert(I >= this->begin() && "Iterator to erase is out of bounds.");
480  assert(I < this->end() && "Erasing at past-the-end iterator.");
481 
482  iterator N = I;
483  // Shift all elts down one.
484  this->move(I+1, this->end(), I);
485  // Drop the last elt.
486  this->pop_back();
487  return(N);
488  }
489 
491  assert(S >= this->begin() && "Range to erase is out of bounds.");
492  assert(S <= E && "Trying to erase invalid range.");
493  assert(E <= this->end() && "Trying to erase past the end.");
494 
495  iterator N = S;
496  // Shift all elts down.
497  iterator I = this->move(E, this->end(), S);
498  // Drop the last elts.
499  this->destroy_range(I, this->end());
500  this->setEnd(I);
501  return(N);
502  }
503 
504 #if LLVM_HAS_RVALUE_REFERENCES
505  iterator insert(iterator I, T &&Elt) {
506  if (I == this->end()) { // Important special case for empty vector.
507  this->push_back(::std::move(Elt));
508  return this->end()-1;
509  }
510 
511  assert(I >= this->begin() && "Insertion iterator is out of bounds.");
512  assert(I <= this->end() && "Inserting past the end of the vector.");
513 
514  if (this->EndX < this->CapacityX) {
515  Retry:
516  ::new ((void*) this->end()) T(::std::move(this->back()));
517  this->setEnd(this->end()+1);
518  // Push everything else over.
519  this->move_backward(I, this->end()-1, this->end());
520 
521  // If we just moved the element we're inserting, be sure to update
522  // the reference.
523  T *EltPtr = &Elt;
524  if (I <= EltPtr && EltPtr < this->EndX)
525  ++EltPtr;
526 
527  *I = ::std::move(*EltPtr);
528  return I;
529  }
530  size_t EltNo = I-this->begin();
531  this->grow();
532  I = this->begin()+EltNo;
533  goto Retry;
534  }
535 #endif
536 
537  iterator insert(iterator I, const T &Elt) {
538  if (I == this->end()) { // Important special case for empty vector.
539  this->push_back(Elt);
540  return this->end()-1;
541  }
542 
543  assert(I >= this->begin() && "Insertion iterator is out of bounds.");
544  assert(I <= this->end() && "Inserting past the end of the vector.");
545 
546  if (this->EndX < this->CapacityX) {
547  Retry:
548  ::new ((void*) this->end()) T(this->back());
549  this->setEnd(this->end()+1);
550  // Push everything else over.
551  this->move_backward(I, this->end()-1, this->end());
552 
553  // If we just moved the element we're inserting, be sure to update
554  // the reference.
555  const T *EltPtr = &Elt;
556  if (I <= EltPtr && EltPtr < this->EndX)
557  ++EltPtr;
558 
559  *I = *EltPtr;
560  return I;
561  }
562  size_t EltNo = I-this->begin();
563  this->grow();
564  I = this->begin()+EltNo;
565  goto Retry;
566  }
567 
568  iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
569  // Convert iterator to elt# to avoid invalidating iterator when we reserve()
570  size_t InsertElt = I - this->begin();
571 
572  if (I == this->end()) { // Important special case for empty vector.
573  append(NumToInsert, Elt);
574  return this->begin()+InsertElt;
575  }
576 
577  assert(I >= this->begin() && "Insertion iterator is out of bounds.");
578  assert(I <= this->end() && "Inserting past the end of the vector.");
579 
580  // Ensure there is enough space.
581  reserve(static_cast<unsigned>(this->size() + NumToInsert));
582 
583  // Uninvalidate the iterator.
584  I = this->begin()+InsertElt;
585 
586  // If there are more elements between the insertion point and the end of the
587  // range than there are being inserted, we can use a simple approach to
588  // insertion. Since we already reserved space, we know that this won't
589  // reallocate the vector.
590  if (size_t(this->end()-I) >= NumToInsert) {
591  T *OldEnd = this->end();
592  append(this->end()-NumToInsert, this->end());
593 
594  // Copy the existing elements that get replaced.
595  this->move_backward(I, OldEnd-NumToInsert, OldEnd);
596 
597  std::fill_n(I, NumToInsert, Elt);
598  return I;
599  }
600 
601  // Otherwise, we're inserting more elements than exist already, and we're
602  // not inserting at the end.
603 
604  // Move over the elements that we're about to overwrite.
605  T *OldEnd = this->end();
606  this->setEnd(this->end() + NumToInsert);
607  size_t NumOverwritten = OldEnd-I;
608  this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
609 
610  // Replace the overwritten part.
611  std::fill_n(I, NumOverwritten, Elt);
612 
613  // Insert the non-overwritten middle part.
614  std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
615  return I;
616  }
617 
618  template<typename ItTy>
619  iterator insert(iterator I, ItTy From, ItTy To) {
620  // Convert iterator to elt# to avoid invalidating iterator when we reserve()
621  size_t InsertElt = I - this->begin();
622 
623  if (I == this->end()) { // Important special case for empty vector.
624  append(From, To);
625  return this->begin()+InsertElt;
626  }
627 
628  assert(I >= this->begin() && "Insertion iterator is out of bounds.");
629  assert(I <= this->end() && "Inserting past the end of the vector.");
630 
631  size_t NumToInsert = std::distance(From, To);
632 
633  // Ensure there is enough space.
634  reserve(static_cast<unsigned>(this->size() + NumToInsert));
635 
636  // Uninvalidate the iterator.
637  I = this->begin()+InsertElt;
638 
639  // If there are more elements between the insertion point and the end of the
640  // range than there are being inserted, we can use a simple approach to
641  // insertion. Since we already reserved space, we know that this won't
642  // reallocate the vector.
643  if (size_t(this->end()-I) >= NumToInsert) {
644  T *OldEnd = this->end();
645  append(this->end()-NumToInsert, this->end());
646 
647  // Copy the existing elements that get replaced.
648  this->move_backward(I, OldEnd-NumToInsert, OldEnd);
649 
650  std::copy(From, To, I);
651  return I;
652  }
653 
654  // Otherwise, we're inserting more elements than exist already, and we're
655  // not inserting at the end.
656 
657  // Move over the elements that we're about to overwrite.
658  T *OldEnd = this->end();
659  this->setEnd(this->end() + NumToInsert);
660  size_t NumOverwritten = OldEnd-I;
661  this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
662 
663  // Replace the overwritten part.
664  for (T *J = I; NumOverwritten > 0; --NumOverwritten) {
665  *J = *From;
666  ++J; ++From;
667  }
668 
669  // Insert the non-overwritten middle part.
670  this->uninitialized_copy(From, To, OldEnd);
671  return I;
672  }
673 
674  SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
675 
676 #if LLVM_HAS_RVALUE_REFERENCES
677  SmallVectorImpl &operator=(SmallVectorImpl &&RHS);
678 #endif
679 
680  bool operator==(const SmallVectorImpl &RHS) const {
681  if (this->size() != RHS.size()) return false;
682  return std::equal(this->begin(), this->end(), RHS.begin());
683  }
684  bool operator!=(const SmallVectorImpl &RHS) const {
685  return !(*this == RHS);
686  }
687 
688  bool operator<(const SmallVectorImpl &RHS) const {
689  return std::lexicographical_compare(this->begin(), this->end(),
690  RHS.begin(), RHS.end());
691  }
692 
693  /// Set the array size to \p N, which the current array must have enough
694  /// capacity for.
695  ///
696  /// This does not construct or destroy any elements in the vector.
697  ///
698  /// Clients can use this in conjunction with capacity() to write past the end
699  /// of the buffer when they know that more elements are available, and only
700  /// update the size later. This avoids the cost of value initializing elements
701  /// which will only be overwritten.
702  void set_size(unsigned N) {
703  assert(N <= this->capacity());
704  this->setEnd(this->begin() + N);
705  }
706 };
707 
708 
709 template <typename T>
711  if (this == &RHS) return;
712 
713  // We can only avoid copying elements if neither vector is small.
714  if (!this->isSmall() && !RHS.isSmall()) {
715  std::swap(this->BeginX, RHS.BeginX);
716  std::swap(this->EndX, RHS.EndX);
717  std::swap(this->CapacityX, RHS.CapacityX);
718  return;
719  }
720  if (RHS.size() > this->capacity())
721  this->grow(RHS.size());
722  if (this->size() > RHS.capacity())
723  RHS.grow(this->size());
724 
725  // Swap the shared elements.
726  size_t NumShared = this->size();
727  if (NumShared > RHS.size()) NumShared = RHS.size();
728  for (unsigned i = 0; i != static_cast<unsigned>(NumShared); ++i)
729  std::swap((*this)[i], RHS[i]);
730 
731  // Copy over the extra elts.
732  if (this->size() > RHS.size()) {
733  size_t EltDiff = this->size() - RHS.size();
734  this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
735  RHS.setEnd(RHS.end()+EltDiff);
736  this->destroy_range(this->begin()+NumShared, this->end());
737  this->setEnd(this->begin()+NumShared);
738  } else if (RHS.size() > this->size()) {
739  size_t EltDiff = RHS.size() - this->size();
740  this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
741  this->setEnd(this->end() + EltDiff);
742  this->destroy_range(RHS.begin()+NumShared, RHS.end());
743  RHS.setEnd(RHS.begin()+NumShared);
744  }
745 }
746 
747 template <typename T>
750  // Avoid self-assignment.
751  if (this == &RHS) return *this;
752 
753  // If we already have sufficient space, assign the common elements, then
754  // destroy any excess.
755  size_t RHSSize = RHS.size();
756  size_t CurSize = this->size();
757  if (CurSize >= RHSSize) {
758  // Assign common elements.
759  iterator NewEnd;
760  if (RHSSize)
761  NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
762  else
763  NewEnd = this->begin();
764 
765  // Destroy excess elements.
766  this->destroy_range(NewEnd, this->end());
767 
768  // Trim.
769  this->setEnd(NewEnd);
770  return *this;
771  }
772 
773  // If we have to grow to have enough elements, destroy the current elements.
774  // This allows us to avoid copying them during the grow.
775  // FIXME: don't do this if they're efficiently moveable.
776  if (this->capacity() < RHSSize) {
777  // Destroy current elements.
778  this->destroy_range(this->begin(), this->end());
779  this->setEnd(this->begin());
780  CurSize = 0;
781  this->grow(RHSSize);
782  } else if (CurSize) {
783  // Otherwise, use assignment for the already-constructed elements.
784  std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
785  }
786 
787  // Copy construct the new elements in place.
788  this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
789  this->begin()+CurSize);
790 
791  // Set end.
792  this->setEnd(this->begin()+RHSSize);
793  return *this;
794 }
795 
796 #if LLVM_HAS_RVALUE_REFERENCES
797 template <typename T>
799  // Avoid self-assignment.
800  if (this == &RHS) return *this;
801 
802  // If the RHS isn't small, clear this vector and then steal its buffer.
803  if (!RHS.isSmall()) {
804  this->destroy_range(this->begin(), this->end());
805  if (!this->isSmall()) free(this->begin());
806  this->BeginX = RHS.BeginX;
807  this->EndX = RHS.EndX;
808  this->CapacityX = RHS.CapacityX;
809  RHS.resetToSmall();
810  return *this;
811  }
812 
813  // If we already have sufficient space, assign the common elements, then
814  // destroy any excess.
815  size_t RHSSize = RHS.size();
816  size_t CurSize = this->size();
817  if (CurSize >= RHSSize) {
818  // Assign common elements.
819  iterator NewEnd = this->begin();
820  if (RHSSize)
821  NewEnd = this->move(RHS.begin(), RHS.end(), NewEnd);
822 
823  // Destroy excess elements and trim the bounds.
824  this->destroy_range(NewEnd, this->end());
825  this->setEnd(NewEnd);
826 
827  // Clear the RHS.
828  RHS.clear();
829 
830  return *this;
831  }
832 
833  // If we have to grow to have enough elements, destroy the current elements.
834  // This allows us to avoid copying them during the grow.
835  // FIXME: this may not actually make any sense if we can efficiently move
836  // elements.
837  if (this->capacity() < RHSSize) {
838  // Destroy current elements.
839  this->destroy_range(this->begin(), this->end());
840  this->setEnd(this->begin());
841  CurSize = 0;
842  this->grow(RHSSize);
843  } else if (CurSize) {
844  // Otherwise, use assignment for the already-constructed elements.
845  this->move(RHS.begin(), RHS.end(), this->begin());
846  }
847 
848  // Move-construct the new elements in place.
849  this->uninitialized_move(RHS.begin()+CurSize, RHS.end(),
850  this->begin()+CurSize);
851 
852  // Set end.
853  this->setEnd(this->begin()+RHSSize);
854 
855  RHS.clear();
856  return *this;
857 }
858 #endif
859 
860 /// Storage for the SmallVector elements which aren't contained in
861 /// SmallVectorTemplateCommon. There are 'N-1' elements here. The remaining '1'
862 /// element is in the base class. This is specialized for the N=1 and N=0 cases
863 /// to avoid allocating unnecessary storage.
864 template <typename T, unsigned N>
865 struct SmallVectorStorage {
866  typename SmallVectorTemplateCommon<T>::U InlineElts[N - 1];
867 };
868 template <typename T> struct SmallVectorStorage<T, 1> {};
869 template <typename T> struct SmallVectorStorage<T, 0> {};
870 
871 /// SmallVector - This is a 'vector' (really, a variable-sized array), optimized
872 /// for the case when the array is small. It contains some number of elements
873 /// in-place, which allows it to avoid heap allocation when the actual number of
874 /// elements is below that threshold. This allows normal "small" cases to be
875 /// fast without losing generality for large inputs.
876 ///
877 /// Note that this does not attempt to be exception safe.
878 ///
879 template <typename T, unsigned N>
880 class SmallVector : public SmallVectorImpl<T> {
881  /// Storage - Inline space for elements which aren't stored in the base class.
882  SmallVectorStorage<T, N> Storage;
883 public:
885  }
886 
887  explicit SmallVector(unsigned Size, const T &Value = T())
888  : SmallVectorImpl<T>(N) {
889  this->assign(Size, Value);
890  }
891 
892  template<typename ItTy>
893  SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
894  this->append(S, E);
895  }
896 
898  if (!RHS.empty())
900  }
901 
902  const SmallVector &operator=(const SmallVector &RHS) {
904  return *this;
905  }
906 
907 #if LLVM_HAS_RVALUE_REFERENCES
909  if (!RHS.empty())
910  SmallVectorImpl<T>::operator=(::std::move(RHS));
911  }
912 
913  const SmallVector &operator=(SmallVector &&RHS) {
914  SmallVectorImpl<T>::operator=(::std::move(RHS));
915  return *this;
916  }
917 #endif
918 
919 };
920 
921 template<typename T, unsigned N>
922 static inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
923  return X.capacity_in_bytes();
924 }
925 
926 } // End llvm namespace
927 
928 namespace std {
929  /// Implement std::swap in terms of SmallVector swap.
930  template<typename T>
931  inline void
933  LHS.swap(RHS);
934  }
935 
936  /// Implement std::swap in terms of SmallVector swap.
937  template<typename T, unsigned N>
938  inline void
940  LHS.swap(RHS);
941  }
942 }
943 
944 #endif
void set_size(unsigned N)
Definition: SmallVector.h:702
std::reverse_iterator< iterator > reverse_iterator
Definition: SmallVector.h:104
void push_back(const T &Elt)
Definition: SmallVector.h:236
static void uninitialized_copy(It1 I, It1 E, It2 Dest)
Definition: SmallVector.h:329
void reserve(unsigned N)
Definition: SmallVector.h:425
#define LLVM_ATTRIBUTE_UNUSED_RESULT
Definition: Compiler.h:185
static It2 move_backward(It1 I, It1 E, It2 Dest)
Definition: SmallVector.h:314
static It2 move(It1 I, It1 E, It2 Dest)
Definition: SmallVector.h:185
iterator insert(iterator I, const T &Elt)
Definition: SmallVector.h:537
iterator insert(iterator I, size_type NumToInsert, const T &Elt)
Definition: SmallVector.h:568
static void uninitialized_move(It1 I, It1 E, It2 Dest)
Definition: SmallVector.h:213
void append(size_type NumInputs, const T &Elt)
Definition: SmallVector.h:460
size_t capacity_in_bytes() const
capacity_in_bytes - This returns capacity()*sizeof(T).
Definition: SmallVector.h:52
void resize(unsigned N, const T &NV)
Definition: SmallVector.h:413
static It2 move_backward(It1 I, It1 E, It2 Dest)
Definition: SmallVector.h:200
void swap(OwningPtr< T > &a, OwningPtr< T > &b)
Definition: OwningPtr.h:85
void append(SmallVectorImpl< char > &path, const Twine &a, const Twine &b="", const Twine &c="", const Twine &d="")
Append to path.
Definition: Path.cpp:372
const_iterator end() const
Definition: SmallVector.h:115
SmallVectorTemplateBase(size_t Size)
Definition: SmallVector.h:172
static void uninitialized_copy(It1 I, It1 E, It2 Dest)
Definition: SmallVector.h:225
T LLVM_ATTRIBUTE_UNUSED_RESULT pop_back_val()
Definition: SmallVector.h:430
void assign(unsigned NumElts, const T &Elt)
Definition: SmallVector.h:470
const_reverse_iterator rend() const
Definition: SmallVector.h:125
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
#define T
const SmallVector & operator=(const SmallVector &RHS)
Definition: SmallVector.h:902
#define P(N)
#define true
Definition: ConvertUTF.c:65
static It2 move(It1 I, It1 E, It2 Dest)
Definition: SmallVector.h:306
const_reference front() const
Definition: SmallVector.h:152
* if(!EatIfPresent(lltok::kw_thread_local)) return false
bool operator==(const SmallVectorImpl &RHS) const
Definition: SmallVector.h:680
reference operator[](unsigned idx)
Definition: SmallVector.h:139
void swap(SmallVectorImpl &RHS)
Definition: SmallVector.h:710
const_iterator begin() const
Definition: SmallVector.h:113
const_reference back() const
Definition: SmallVector.h:161
void grow(size_t MinSize=0)
Definition: SmallVector.h:268
void free(void *ptr);
bool operator!=(const SmallVectorImpl &RHS) const
Definition: SmallVector.h:684
bool operator<(const SmallVectorImpl &RHS) const
Definition: SmallVector.h:688
const_reference operator[](unsigned idx) const
Definition: SmallVector.h:143
SmallVectorBase(void *FirstEl, size_t Size)
Definition: SmallVector.h:38
iterator erase(iterator S, iterator E)
Definition: SmallVector.h:490
void append(in_iter in_start, in_iter in_end)
Definition: SmallVector.h:445
uint64_t NextPowerOf2(uint64_t A)
Definition: MathExtras.h:546
iterator erase(iterator I)
Definition: SmallVector.h:478
const_iterator capacity_ptr() const
Definition: SmallVector.h:118
SmallVector(ItTy S, ItTy E)
Definition: SmallVector.h:893
std::reverse_iterator< const_iterator > const_reverse_iterator
Definition: SmallVector.h:103
iterator insert(iterator I, ItTy From, ItTy To)
Definition: SmallVector.h:619
#define LLVM_DELETED_FUNCTION
Definition: Compiler.h:137
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:591
SmallVectorImpl & operator=(const SmallVectorImpl &RHS)
Definition: SmallVector.h:749
static void destroy_range(T *S, T *E)
Definition: SmallVector.h:174
pointer data()
data - Return a pointer to the vector's buffer, even if empty().
Definition: SmallVector.h:135
void *malloc(size_t size);
#define I(x, y, z)
Definition: MD5.cpp:54
#define N
void resize(unsigned N)
Definition: SmallVector.h:401
size_t size_in_bytes() const
size_in_bytes - This returns size()*sizeof(T).
Definition: SmallVector.h:47
SmallVectorTemplateCommon(size_t Size)
Definition: SmallVector.h:78
SmallVector(const SmallVector &RHS)
Definition: SmallVector.h:897
LLVM Value Representation.
Definition: Value.h:66
static void uninitialized_move(It1 I, It1 E, It2 Dest)
Definition: SmallVector.h:321
void grow_pod(size_t MinSizeInBytes, size_t TSize)
Definition: SmallVector.h:80
static void uninitialized_copy(T1 *I, T1 *E, T2 *Dest)
Definition: SmallVector.h:337
void grow_pod(void *FirstEl, size_t MinSizeInBytes, size_t TSize)
Definition: SmallVector.cpp:19
static RegisterPass< NVPTXAllocaHoisting > X("alloca-hoisting","Hoisting alloca instructions in non-entry ""blocks to the entry block")
#define T1
size_type max_size() const
Definition: SmallVector.h:128
void resetToSmall()
resetToSmall - Put this vector in a state of being small.
Definition: SmallVector.h:91
const_pointer data() const
data - Return a pointer to the vector's buffer, even if empty().
Definition: SmallVector.h:137
SmallVector(unsigned Size, const T &Value=T())
Definition: SmallVector.h:887
const_reverse_iterator rbegin() const
Definition: SmallVector.h:123