LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Dominators.cpp
Go to the documentation of this file.
1 //===- Dominators.cpp - Dominator Calculation -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements simple dominator construction algorithms for finding
11 // forward dominators. Postdominators are available in libanalysis, but are not
12 // included in libvmcore, because it's not needed. Forward dominators are
13 // needed to support the Verifier pass.
14 //
15 //===----------------------------------------------------------------------===//
16 
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/Assembly/Writer.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/Support/CFG.h"
26 #include "llvm/Support/Compiler.h"
27 #include "llvm/Support/Debug.h"
29 #include <algorithm>
30 using namespace llvm;
31 
32 // Always verify dominfo if expensive checking is enabled.
33 #ifdef XDEBUG
34 static bool VerifyDomInfo = true;
35 #else
36 static bool VerifyDomInfo = false;
37 #endif
38 static cl::opt<bool,true>
39 VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
40  cl::desc("Verify dominator info (time consuming)"));
41 
43  const TerminatorInst *TI = Start->getTerminator();
44  unsigned NumEdgesToEnd = 0;
45  for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) {
46  if (TI->getSuccessor(i) == End)
47  ++NumEdgesToEnd;
48  if (NumEdgesToEnd >= 2)
49  return false;
50  }
51  assert(NumEdgesToEnd == 1);
52  return true;
53 }
54 
55 //===----------------------------------------------------------------------===//
56 // DominatorTree Implementation
57 //===----------------------------------------------------------------------===//
58 //
59 // Provide public access to DominatorTree information. Implementation details
60 // can be found in DominatorInternals.h.
61 //
62 //===----------------------------------------------------------------------===//
63 
66 
67 char DominatorTree::ID = 0;
69  "Dominator Tree Construction", true, true)
70 
71 bool DominatorTree::runOnFunction(Function &F) {
72  DT->recalculate(F);
73  return false;
74 }
75 
77  if (!VerifyDomInfo) return;
78 
79  Function &F = *getRoot()->getParent();
80 
81  DominatorTree OtherDT;
82  OtherDT.getBase().recalculate(F);
83  if (compare(OtherDT)) {
84  errs() << "DominatorTree is not up to date!\nComputed:\n";
85  print(errs());
86  errs() << "\nActual:\n";
87  OtherDT.print(errs());
88  abort();
89  }
90 }
91 
92 void DominatorTree::print(raw_ostream &OS, const Module *) const {
93  DT->print(OS);
94 }
95 
96 // dominates - Return true if Def dominates a use in User. This performs
97 // the special checks necessary if Def and User are in the same basic block.
98 // Note that Def doesn't dominate a use in Def itself!
100  const Instruction *User) const {
101  const BasicBlock *UseBB = User->getParent();
102  const BasicBlock *DefBB = Def->getParent();
103 
104  // Any unreachable use is dominated, even if Def == User.
105  if (!isReachableFromEntry(UseBB))
106  return true;
107 
108  // Unreachable definitions don't dominate anything.
109  if (!isReachableFromEntry(DefBB))
110  return false;
111 
112  // An instruction doesn't dominate a use in itself.
113  if (Def == User)
114  return false;
115 
116  // The value defined by an invoke dominates an instruction only if
117  // it dominates every instruction in UseBB.
118  // A PHI is dominated only if the instruction dominates every possible use
119  // in the UseBB.
120  if (isa<InvokeInst>(Def) || isa<PHINode>(User))
121  return dominates(Def, UseBB);
122 
123  if (DefBB != UseBB)
124  return dominates(DefBB, UseBB);
125 
126  // Loop through the basic block until we find Def or User.
128  for (; &*I != Def && &*I != User; ++I)
129  /*empty*/;
130 
131  return &*I == Def;
132 }
133 
134 // true if Def would dominate a use in any instruction in UseBB.
135 // note that dominates(Def, Def->getParent()) is false.
137  const BasicBlock *UseBB) const {
138  const BasicBlock *DefBB = Def->getParent();
139 
140  // Any unreachable use is dominated, even if DefBB == UseBB.
141  if (!isReachableFromEntry(UseBB))
142  return true;
143 
144  // Unreachable definitions don't dominate anything.
145  if (!isReachableFromEntry(DefBB))
146  return false;
147 
148  if (DefBB == UseBB)
149  return false;
150 
151  const InvokeInst *II = dyn_cast<InvokeInst>(Def);
152  if (!II)
153  return dominates(DefBB, UseBB);
154 
155  // Invoke results are only usable in the normal destination, not in the
156  // exceptional destination.
157  BasicBlock *NormalDest = II->getNormalDest();
158  BasicBlockEdge E(DefBB, NormalDest);
159  return dominates(E, UseBB);
160 }
161 
163  const BasicBlock *UseBB) const {
164  // Assert that we have a single edge. We could handle them by simply
165  // returning false, but since isSingleEdge is linear on the number of
166  // edges, the callers can normally handle them more efficiently.
167  assert(BBE.isSingleEdge());
168 
169  // If the BB the edge ends in doesn't dominate the use BB, then the
170  // edge also doesn't.
171  const BasicBlock *Start = BBE.getStart();
172  const BasicBlock *End = BBE.getEnd();
173  if (!dominates(End, UseBB))
174  return false;
175 
176  // Simple case: if the end BB has a single predecessor, the fact that it
177  // dominates the use block implies that the edge also does.
178  if (End->getSinglePredecessor())
179  return true;
180 
181  // The normal edge from the invoke is critical. Conceptually, what we would
182  // like to do is split it and check if the new block dominates the use.
183  // With X being the new block, the graph would look like:
184  //
185  // DefBB
186  // /\ . .
187  // / \ . .
188  // / \ . .
189  // / \ | |
190  // A X B C
191  // | \ | /
192  // . \|/
193  // . NormalDest
194  // .
195  //
196  // Given the definition of dominance, NormalDest is dominated by X iff X
197  // dominates all of NormalDest's predecessors (X, B, C in the example). X
198  // trivially dominates itself, so we only have to find if it dominates the
199  // other predecessors. Since the only way out of X is via NormalDest, X can
200  // only properly dominate a node if NormalDest dominates that node too.
201  for (const_pred_iterator PI = pred_begin(End), E = pred_end(End);
202  PI != E; ++PI) {
203  const BasicBlock *BB = *PI;
204  if (BB == Start)
205  continue;
206 
207  if (!dominates(End, BB))
208  return false;
209  }
210  return true;
211 }
212 
214  const Use &U) const {
215  // Assert that we have a single edge. We could handle them by simply
216  // returning false, but since isSingleEdge is linear on the number of
217  // edges, the callers can normally handle them more efficiently.
218  assert(BBE.isSingleEdge());
219 
220  Instruction *UserInst = cast<Instruction>(U.getUser());
221  // A PHI in the end of the edge is dominated by it.
222  PHINode *PN = dyn_cast<PHINode>(UserInst);
223  if (PN && PN->getParent() == BBE.getEnd() &&
224  PN->getIncomingBlock(U) == BBE.getStart())
225  return true;
226 
227  // Otherwise use the edge-dominates-block query, which
228  // handles the crazy critical edge cases properly.
229  const BasicBlock *UseBB;
230  if (PN)
231  UseBB = PN->getIncomingBlock(U);
232  else
233  UseBB = UserInst->getParent();
234  return dominates(BBE, UseBB);
235 }
236 
238  const Use &U) const {
239  Instruction *UserInst = cast<Instruction>(U.getUser());
240  const BasicBlock *DefBB = Def->getParent();
241 
242  // Determine the block in which the use happens. PHI nodes use
243  // their operands on edges; simulate this by thinking of the use
244  // happening at the end of the predecessor block.
245  const BasicBlock *UseBB;
246  if (PHINode *PN = dyn_cast<PHINode>(UserInst))
247  UseBB = PN->getIncomingBlock(U);
248  else
249  UseBB = UserInst->getParent();
250 
251  // Any unreachable use is dominated, even if Def == User.
252  if (!isReachableFromEntry(UseBB))
253  return true;
254 
255  // Unreachable definitions don't dominate anything.
256  if (!isReachableFromEntry(DefBB))
257  return false;
258 
259  // Invoke instructions define their return values on the edges
260  // to their normal successors, so we have to handle them specially.
261  // Among other things, this means they don't dominate anything in
262  // their own block, except possibly a phi, so we don't need to
263  // walk the block in any case.
264  if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
265  BasicBlock *NormalDest = II->getNormalDest();
266  BasicBlockEdge E(DefBB, NormalDest);
267  return dominates(E, U);
268  }
269 
270  // If the def and use are in different blocks, do a simple CFG dominator
271  // tree query.
272  if (DefBB != UseBB)
273  return dominates(DefBB, UseBB);
274 
275  // Ok, def and use are in the same block. If the def is an invoke, it
276  // doesn't dominate anything in the block. If it's a PHI, it dominates
277  // everything in the block.
278  if (isa<PHINode>(UserInst))
279  return true;
280 
281  // Otherwise, just loop through the basic block until we find Def or User.
282  BasicBlock::const_iterator I = DefBB->begin();
283  for (; &*I != Def && &*I != UserInst; ++I)
284  /*empty*/;
285 
286  return &*I != UserInst;
287 }
288 
291 
292  // ConstantExprs aren't really reachable from the entry block, but they
293  // don't need to be treated like unreachable code either.
294  if (!I) return true;
295 
296  // PHI nodes use their operands on their incoming edges.
297  if (PHINode *PN = dyn_cast<PHINode>(I))
298  return isReachableFromEntry(PN->getIncomingBlock(U));
299 
300  // Everything else uses their operands in their own block.
301  return isReachableFromEntry(I->getParent());
302 }
static bool VerifyDomInfo
Definition: Dominators.cpp:36
raw_ostream & errs()
DominatorTreeBase< BasicBlock > * DT
Definition: Dominators.h:743
The main container class for the LLVM Intermediate Representation.
Definition: Module.h:112
bool isReachableFromEntry(const BasicBlock *A) const
Definition: Dominators.h:879
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
const BasicBlock * getStart() const
Definition: Dominators.h:727
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:116
F(f)
iterator begin()
Definition: BasicBlock.h:193
TEMPLATE_INSTANTIATION(class DomTreeNodeBase< MachineBasicBlock >)
Definition: Use.h:60
DominatorTreeBase< BasicBlock > & getBase()
Definition: Dominators.h:754
BasicBlock * getNormalDest() const
unsigned getNumSuccessors() const
Definition: InstrTypes.h:59
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
BasicBlock * getSuccessor(unsigned idx) const
Definition: InstrTypes.h:65
Interval::pred_iterator pred_begin(Interval *I)
Definition: Interval.h:117
User * getUser() const
Definition: Use.cpp:137
Interval::pred_iterator pred_end(Interval *I)
Definition: Interval.h:120
bool dominates(const DomTreeNode *A, const DomTreeNode *B) const
Definition: Dominators.h:801
static cl::opt< bool, true > VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo), cl::desc("Verify dominator info (time consuming)"))
const BasicBlock * getEnd() const
Definition: Dominators.h:730
INITIALIZE_PASS(DominatorTree,"domtree","Dominator Tree Construction", true, true) bool DominatorTree
Definition: Dominators.cpp:68
virtual void print(raw_ostream &OS, const Module *M=0) const
Definition: Dominators.cpp:92
BasicBlock * getRoot() const
Definition: Dominators.h:764
BasicBlock * getSinglePredecessor()
Return this block if it has a single predecessor block. Otherwise return a null pointer.
Definition: BasicBlock.cpp:183
bool compare(DominatorTree &Other) const
Definition: Dominators.h:780
#define I(x, y, z)
Definition: MD5.cpp:54
TerminatorInst * getTerminator()
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:120
virtual void verifyAnalysis() const
Definition: Dominators.cpp:76
bool isSingleEdge() const
Definition: Dominators.cpp:42
static char ID
Definition: Dominators.h:742
LocationClass< Ty > location(Ty &L)
Definition: CommandLine.h:333
const BasicBlock * getParent() const
Definition: Instruction.h:52