LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
ExecutionEngine/ExecutionEngine.h
Go to the documentation of this file.
1 //===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the abstract interface that implements execution support
11 // for LLVM.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
16 #define LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
17 
18 #include "llvm-c/ExecutionEngine.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/ValueMap.h"
22 #include "llvm/MC/MCCodeGenInfo.h"
24 #include "llvm/Support/Mutex.h"
28 #include <map>
29 #include <string>
30 #include <vector>
31 
32 namespace llvm {
33 
34 struct GenericValue;
35 class Constant;
36 class DataLayout;
37 class ExecutionEngine;
38 class Function;
39 class GlobalVariable;
40 class GlobalValue;
41 class JITEventListener;
42 class JITMemoryManager;
43 class MachineCodeInfo;
44 class Module;
45 class MutexGuard;
46 class ObjectCache;
47 class RTDyldMemoryManager;
48 class Triple;
49 class Type;
50 
51 /// \brief Helper class for helping synchronize access to the global address map
52 /// table.
54 public:
55  struct AddressMapConfig : public ValueMapConfig<const GlobalValue*> {
58  static void onDelete(ExecutionEngineState *EES, const GlobalValue *Old);
59  static void onRAUW(ExecutionEngineState *, const GlobalValue *,
60  const GlobalValue *);
61  };
62 
65 
66 private:
67  ExecutionEngine &EE;
68 
69  /// GlobalAddressMap - A mapping between LLVM global values and their
70  /// actualized version...
71  GlobalAddressMapTy GlobalAddressMap;
72 
73  /// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap,
74  /// used to convert raw addresses into the LLVM global value that is emitted
75  /// at the address. This map is not computed unless getGlobalValueAtAddress
76  /// is called at some point.
77  std::map<void *, AssertingVH<const GlobalValue> > GlobalAddressReverseMap;
78 
79 public:
81 
83  return GlobalAddressMap;
84  }
85 
86  std::map<void*, AssertingVH<const GlobalValue> > &
88  return GlobalAddressReverseMap;
89  }
90 
91  /// \brief Erase an entry from the mapping table.
92  ///
93  /// \returns The address that \p ToUnmap was happed to.
94  void *RemoveMapping(const MutexGuard &, const GlobalValue *ToUnmap);
95 };
96 
97 /// \brief Abstract interface for implementation execution of LLVM modules,
98 /// designed to support both interpreter and just-in-time (JIT) compiler
99 /// implementations.
101  /// The state object holding the global address mapping, which must be
102  /// accessed synchronously.
103  //
104  // FIXME: There is no particular need the entire map needs to be
105  // synchronized. Wouldn't a reader-writer design be better here?
106  ExecutionEngineState EEState;
107 
108  /// The target data for the platform for which execution is being performed.
109  const DataLayout *TD;
110 
111  /// Whether lazy JIT compilation is enabled.
112  bool CompilingLazily;
113 
114  /// Whether JIT compilation of external global variables is allowed.
115  bool GVCompilationDisabled;
116 
117  /// Whether the JIT should perform lookups of external symbols (e.g.,
118  /// using dlsym).
119  bool SymbolSearchingDisabled;
120 
121  friend class EngineBuilder; // To allow access to JITCtor and InterpCtor.
122 
123 protected:
124  /// The list of Modules that we are JIT'ing from. We use a SmallVector to
125  /// optimize for the case where there is only one module.
127 
128  void setDataLayout(const DataLayout *td) { TD = td; }
129 
130  /// getMemoryforGV - Allocate memory for a global variable.
131  virtual char *getMemoryForGV(const GlobalVariable *GV);
132 
133  // To avoid having libexecutionengine depend on the JIT and interpreter
134  // libraries, the execution engine implementations set these functions to ctor
135  // pointers at startup time if they are linked in.
136  static ExecutionEngine *(*JITCtor)(
137  Module *M,
138  std::string *ErrorStr,
139  JITMemoryManager *JMM,
140  bool GVsWithCode,
141  TargetMachine *TM);
142  static ExecutionEngine *(*MCJITCtor)(
143  Module *M,
144  std::string *ErrorStr,
145  RTDyldMemoryManager *MCJMM,
146  bool GVsWithCode,
147  TargetMachine *TM);
148  static ExecutionEngine *(*InterpCtor)(Module *M, std::string *ErrorStr);
149 
150  /// LazyFunctionCreator - If an unknown function is needed, this function
151  /// pointer is invoked to create it. If this returns null, the JIT will
152  /// abort.
153  void *(*LazyFunctionCreator)(const std::string &);
154 
155 public:
156  /// lock - This lock protects the ExecutionEngine, MCJIT, JIT, JITResolver and
157  /// JITEmitter classes. It must be held while changing the internal state of
158  /// any of those classes.
160 
161  //===--------------------------------------------------------------------===//
162  // ExecutionEngine Startup
163  //===--------------------------------------------------------------------===//
164 
165  virtual ~ExecutionEngine();
166 
167  /// create - This is the factory method for creating an execution engine which
168  /// is appropriate for the current machine. This takes ownership of the
169  /// module.
170  ///
171  /// \param GVsWithCode - Allocating globals with code breaks
172  /// freeMachineCodeForFunction and is probably unsafe and bad for performance.
173  /// However, we have clients who depend on this behavior, so we must support
174  /// it. Eventually, when we're willing to break some backwards compatibility,
175  /// this flag should be flipped to false, so that by default
176  /// freeMachineCodeForFunction works.
177  static ExecutionEngine *create(Module *M,
178  bool ForceInterpreter = false,
179  std::string *ErrorStr = 0,
180  CodeGenOpt::Level OptLevel =
182  bool GVsWithCode = true);
183 
184  /// createJIT - This is the factory method for creating a JIT for the current
185  /// machine, it does not fall back to the interpreter. This takes ownership
186  /// of the Module and JITMemoryManager if successful.
187  ///
188  /// Clients should make sure to initialize targets prior to calling this
189  /// function.
190  static ExecutionEngine *createJIT(Module *M,
191  std::string *ErrorStr = 0,
192  JITMemoryManager *JMM = 0,
193  CodeGenOpt::Level OptLevel =
195  bool GVsWithCode = true,
197  CodeModel::Model CMM =
199 
200  /// addModule - Add a Module to the list of modules that we can JIT from.
201  /// Note that this takes ownership of the Module: when the ExecutionEngine is
202  /// destroyed, it destroys the Module as well.
203  virtual void addModule(Module *M) {
204  Modules.push_back(M);
205  }
206 
207  //===--------------------------------------------------------------------===//
208 
209  const DataLayout *getDataLayout() const { return TD; }
210 
211  /// removeModule - Remove a Module from the list of modules. Returns true if
212  /// M is found.
213  virtual bool removeModule(Module *M);
214 
215  /// FindFunctionNamed - Search all of the active modules to find the one that
216  /// defines FnName. This is very slow operation and shouldn't be used for
217  /// general code.
218  virtual Function *FindFunctionNamed(const char *FnName);
219 
220  /// runFunction - Execute the specified function with the specified arguments,
221  /// and return the result.
223  const std::vector<GenericValue> &ArgValues) = 0;
224 
225  /// getPointerToNamedFunction - This method returns the address of the
226  /// specified function by using the dlsym function call. As such it is only
227  /// useful for resolving library symbols, not code generated symbols.
228  ///
229  /// If AbortOnFailure is false and no function with the given name is
230  /// found, this function silently returns a null pointer. Otherwise,
231  /// it prints a message to stderr and aborts.
232  ///
233  /// This function is deprecated for the MCJIT execution engine.
234  ///
235  /// FIXME: the JIT and MCJIT interfaces should be disentangled or united
236  /// again, if possible.
237  ///
238  virtual void *getPointerToNamedFunction(const std::string &Name,
239  bool AbortOnFailure = true) = 0;
240 
241  /// mapSectionAddress - map a section to its target address space value.
242  /// Map the address of a JIT section as returned from the memory manager
243  /// to the address in the target process as the running code will see it.
244  /// This is the address which will be used for relocation resolution.
245  virtual void mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress) {
246  llvm_unreachable("Re-mapping of section addresses not supported with this "
247  "EE!");
248  }
249 
250  /// generateCodeForModule - Run code generationen for the specified module and
251  /// load it into memory.
252  ///
253  /// When this function has completed, all code and data for the specified
254  /// module, and any module on which this module depends, will be generated
255  /// and loaded into memory, but relocations will not yet have been applied
256  /// and all memory will be readable and writable but not executable.
257  ///
258  /// This function is primarily useful when generating code for an external
259  /// target, allowing the client an opportunity to remap section addresses
260  /// before relocations are applied. Clients that intend to execute code
261  /// locally can use the getFunctionAddress call, which will generate code
262  /// and apply final preparations all in one step.
263  ///
264  /// This method has no effect for the legacy JIT engine or the interpeter.
265  virtual void generateCodeForModule(Module *M) {}
266 
267  /// finalizeObject - ensure the module is fully processed and is usable.
268  ///
269  /// It is the user-level function for completing the process of making the
270  /// object usable for execution. It should be called after sections within an
271  /// object have been relocated using mapSectionAddress. When this method is
272  /// called the MCJIT execution engine will reapply relocations for a loaded
273  /// object. This method has no effect for the legacy JIT engine or the
274  /// interpeter.
275  virtual void finalizeObject() {}
276 
277  /// runStaticConstructorsDestructors - This method is used to execute all of
278  /// the static constructors or destructors for a program.
279  ///
280  /// \param isDtors - Run the destructors instead of constructors.
281  virtual void runStaticConstructorsDestructors(bool isDtors);
282 
283  /// runStaticConstructorsDestructors - This method is used to execute all of
284  /// the static constructors or destructors for a particular module.
285  ///
286  /// \param isDtors - Run the destructors instead of constructors.
287  void runStaticConstructorsDestructors(Module *module, bool isDtors);
288 
289 
290  /// runFunctionAsMain - This is a helper function which wraps runFunction to
291  /// handle the common task of starting up main with the specified argc, argv,
292  /// and envp parameters.
293  int runFunctionAsMain(Function *Fn, const std::vector<std::string> &argv,
294  const char * const * envp);
295 
296 
297  /// addGlobalMapping - Tell the execution engine that the specified global is
298  /// at the specified location. This is used internally as functions are JIT'd
299  /// and as global variables are laid out in memory. It can and should also be
300  /// used by clients of the EE that want to have an LLVM global overlay
301  /// existing data in memory. Mappings are automatically removed when their
302  /// GlobalValue is destroyed.
303  void addGlobalMapping(const GlobalValue *GV, void *Addr);
304 
305  /// clearAllGlobalMappings - Clear all global mappings and start over again,
306  /// for use in dynamic compilation scenarios to move globals.
307  void clearAllGlobalMappings();
308 
309  /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
310  /// particular module, because it has been removed from the JIT.
312 
313  /// updateGlobalMapping - Replace an existing mapping for GV with a new
314  /// address. This updates both maps as required. If "Addr" is null, the
315  /// entry for the global is removed from the mappings. This returns the old
316  /// value of the pointer, or null if it was not in the map.
317  void *updateGlobalMapping(const GlobalValue *GV, void *Addr);
318 
319  /// getPointerToGlobalIfAvailable - This returns the address of the specified
320  /// global value if it is has already been codegen'd, otherwise it returns
321  /// null.
322  ///
323  /// This function is deprecated for the MCJIT execution engine. It doesn't
324  /// seem to be needed in that case, but an equivalent can be added if it is.
326 
327  /// getPointerToGlobal - This returns the address of the specified global
328  /// value. This may involve code generation if it's a function.
329  ///
330  /// This function is deprecated for the MCJIT execution engine. Use
331  /// getGlobalValueAddress instead.
332  void *getPointerToGlobal(const GlobalValue *GV);
333 
334  /// getPointerToFunction - The different EE's represent function bodies in
335  /// different ways. They should each implement this to say what a function
336  /// pointer should look like. When F is destroyed, the ExecutionEngine will
337  /// remove its global mapping and free any machine code. Be sure no threads
338  /// are running inside F when that happens.
339  ///
340  /// This function is deprecated for the MCJIT execution engine. Use
341  /// getFunctionAddress instead.
342  virtual void *getPointerToFunction(Function *F) = 0;
343 
344  /// getPointerToBasicBlock - The different EE's represent basic blocks in
345  /// different ways. Return the representation for a blockaddress of the
346  /// specified block.
347  ///
348  /// This function will not be implemented for the MCJIT execution engine.
349  virtual void *getPointerToBasicBlock(BasicBlock *BB) = 0;
350 
351  /// getPointerToFunctionOrStub - If the specified function has been
352  /// code-gen'd, return a pointer to the function. If not, compile it, or use
353  /// a stub to implement lazy compilation if available. See
354  /// getPointerToFunction for the requirements on destroying F.
355  ///
356  /// This function is deprecated for the MCJIT execution engine. Use
357  /// getFunctionAddress instead.
359  // Default implementation, just codegen the function.
360  return getPointerToFunction(F);
361  }
362 
363  /// getGlobalValueAddress - Return the address of the specified global
364  /// value. This may involve code generation.
365  ///
366  /// This function should not be called with the JIT or interpreter engines.
367  virtual uint64_t getGlobalValueAddress(const std::string &Name) {
368  // Default implementation for JIT and interpreter. MCJIT will override this.
369  // JIT and interpreter clients should use getPointerToGlobal instead.
370  return 0;
371  }
372 
373  /// getFunctionAddress - Return the address of the specified function.
374  /// This may involve code generation.
375  virtual uint64_t getFunctionAddress(const std::string &Name) {
376  // Default implementation for JIT and interpreter. MCJIT will override this.
377  // JIT and interpreter clients should use getPointerToFunction instead.
378  return 0;
379  }
380 
381  // The JIT overrides a version that actually does this.
382  virtual void runJITOnFunction(Function *, MachineCodeInfo * = 0) { }
383 
384  /// getGlobalValueAtAddress - Return the LLVM global value object that starts
385  /// at the specified address.
386  ///
387  const GlobalValue *getGlobalValueAtAddress(void *Addr);
388 
389  /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.
390  /// Ptr is the address of the memory at which to store Val, cast to
391  /// GenericValue *. It is not a pointer to a GenericValue containing the
392  /// address at which to store Val.
393  void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
394  Type *Ty);
395 
396  void InitializeMemory(const Constant *Init, void *Addr);
397 
398  /// recompileAndRelinkFunction - This method is used to force a function which
399  /// has already been compiled to be compiled again, possibly after it has been
400  /// modified. Then the entry to the old copy is overwritten with a branch to
401  /// the new copy. If there was no old copy, this acts just like
402  /// VM::getPointerToFunction().
403  virtual void *recompileAndRelinkFunction(Function *F) = 0;
404 
405  /// freeMachineCodeForFunction - Release memory in the ExecutionEngine
406  /// corresponding to the machine code emitted to execute this function, useful
407  /// for garbage-collecting generated code.
408  virtual void freeMachineCodeForFunction(Function *F) = 0;
409 
410  /// getOrEmitGlobalVariable - Return the address of the specified global
411  /// variable, possibly emitting it to memory if needed. This is used by the
412  /// Emitter.
413  ///
414  /// This function is deprecated for the MCJIT execution engine. Use
415  /// getGlobalValueAddress instead.
416  virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) {
417  return getPointerToGlobal((const GlobalValue *)GV);
418  }
419 
420  /// Registers a listener to be called back on various events within
421  /// the JIT. See JITEventListener.h for more details. Does not
422  /// take ownership of the argument. The argument may be NULL, in
423  /// which case these functions do nothing.
426 
427  /// Sets the pre-compiled object cache. The ownership of the ObjectCache is
428  /// not changed. Supported by MCJIT but not JIT.
429  virtual void setObjectCache(ObjectCache *) {
430  llvm_unreachable("No support for an object cache");
431  }
432 
433  /// DisableLazyCompilation - When lazy compilation is off (the default), the
434  /// JIT will eagerly compile every function reachable from the argument to
435  /// getPointerToFunction. If lazy compilation is turned on, the JIT will only
436  /// compile the one function and emit stubs to compile the rest when they're
437  /// first called. If lazy compilation is turned off again while some lazy
438  /// stubs are still around, and one of those stubs is called, the program will
439  /// abort.
440  ///
441  /// In order to safely compile lazily in a threaded program, the user must
442  /// ensure that 1) only one thread at a time can call any particular lazy
443  /// stub, and 2) any thread modifying LLVM IR must hold the JIT's lock
444  /// (ExecutionEngine::lock) or otherwise ensure that no other thread calls a
445  /// lazy stub. See http://llvm.org/PR5184 for details.
446  void DisableLazyCompilation(bool Disabled = true) {
447  CompilingLazily = !Disabled;
448  }
449  bool isCompilingLazily() const {
450  return CompilingLazily;
451  }
452  // Deprecated in favor of isCompilingLazily (to reduce double-negatives).
453  // Remove this in LLVM 2.8.
455  return !CompilingLazily;
456  }
457 
458  /// DisableGVCompilation - If called, the JIT will abort if it's asked to
459  /// allocate space and populate a GlobalVariable that is not internal to
460  /// the module.
461  void DisableGVCompilation(bool Disabled = true) {
462  GVCompilationDisabled = Disabled;
463  }
464  bool isGVCompilationDisabled() const {
465  return GVCompilationDisabled;
466  }
467 
468  /// DisableSymbolSearching - If called, the JIT will not try to lookup unknown
469  /// symbols with dlsym. A client can still use InstallLazyFunctionCreator to
470  /// resolve symbols in a custom way.
471  void DisableSymbolSearching(bool Disabled = true) {
472  SymbolSearchingDisabled = Disabled;
473  }
475  return SymbolSearchingDisabled;
476  }
477 
478  /// InstallLazyFunctionCreator - If an unknown function is needed, the
479  /// specified function pointer is invoked to create it. If it returns null,
480  /// the JIT will abort.
481  void InstallLazyFunctionCreator(void* (*P)(const std::string &)) {
483  }
484 
485 protected:
486  explicit ExecutionEngine(Module *M);
487 
488  void emitGlobals();
489 
490  void EmitGlobalVariable(const GlobalVariable *GV);
491 
493  void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr,
494  Type *Ty);
495 };
496 
497 namespace EngineKind {
498  // These are actually bitmasks that get or-ed together.
499  enum Kind {
500  JIT = 0x1,
502  };
503  const static Kind Either = (Kind)(JIT | Interpreter);
504 }
505 
506 /// EngineBuilder - Builder class for ExecutionEngines. Use this by
507 /// stack-allocating a builder, chaining the various set* methods, and
508 /// terminating it with a .create() call.
510 private:
511  Module *M;
512  EngineKind::Kind WhichEngine;
513  std::string *ErrorStr;
514  CodeGenOpt::Level OptLevel;
515  RTDyldMemoryManager *MCJMM;
516  JITMemoryManager *JMM;
517  bool AllocateGVsWithCode;
518  TargetOptions Options;
519  Reloc::Model RelocModel;
520  CodeModel::Model CMModel;
521  std::string MArch;
522  std::string MCPU;
524  bool UseMCJIT;
525 
526  /// InitEngine - Does the common initialization of default options.
527  void InitEngine() {
528  WhichEngine = EngineKind::Either;
529  ErrorStr = NULL;
530  OptLevel = CodeGenOpt::Default;
531  MCJMM = NULL;
532  JMM = NULL;
533  Options = TargetOptions();
534  AllocateGVsWithCode = false;
535  RelocModel = Reloc::Default;
536  CMModel = CodeModel::JITDefault;
537  UseMCJIT = false;
538  }
539 
540 public:
541  /// EngineBuilder - Constructor for EngineBuilder. If create() is called and
542  /// is successful, the created engine takes ownership of the module.
543  EngineBuilder(Module *m) : M(m) {
544  InitEngine();
545  }
546 
547  /// setEngineKind - Controls whether the user wants the interpreter, the JIT,
548  /// or whichever engine works. This option defaults to EngineKind::Either.
550  WhichEngine = w;
551  return *this;
552  }
553 
554  /// setMCJITMemoryManager - Sets the MCJIT memory manager to use. This allows
555  /// clients to customize their memory allocation policies for the MCJIT. This
556  /// is only appropriate for the MCJIT; setting this and configuring the builder
557  /// to create anything other than MCJIT will cause a runtime error. If create()
558  /// is called and is successful, the created engine takes ownership of the
559  /// memory manager. This option defaults to NULL. Using this option nullifies
560  /// the setJITMemoryManager() option.
562  MCJMM = mcjmm;
563  JMM = NULL;
564  return *this;
565  }
566 
567  /// setJITMemoryManager - Sets the JIT memory manager to use. This allows
568  /// clients to customize their memory allocation policies. This is only
569  /// appropriate for either JIT or MCJIT; setting this and configuring the
570  /// builder to create an interpreter will cause a runtime error. If create()
571  /// is called and is successful, the created engine takes ownership of the
572  /// memory manager. This option defaults to NULL. This option overrides
573  /// setMCJITMemoryManager() as well.
575  MCJMM = NULL;
576  JMM = jmm;
577  return *this;
578  }
579 
580  /// setErrorStr - Set the error string to write to on error. This option
581  /// defaults to NULL.
582  EngineBuilder &setErrorStr(std::string *e) {
583  ErrorStr = e;
584  return *this;
585  }
586 
587  /// setOptLevel - Set the optimization level for the JIT. This option
588  /// defaults to CodeGenOpt::Default.
590  OptLevel = l;
591  return *this;
592  }
593 
594  /// setTargetOptions - Set the target options that the ExecutionEngine
595  /// target is using. Defaults to TargetOptions().
597  Options = Opts;
598  return *this;
599  }
600 
601  /// setRelocationModel - Set the relocation model that the ExecutionEngine
602  /// target is using. Defaults to target specific default "Reloc::Default".
604  RelocModel = RM;
605  return *this;
606  }
607 
608  /// setCodeModel - Set the CodeModel that the ExecutionEngine target
609  /// data is using. Defaults to target specific default
610  /// "CodeModel::JITDefault".
612  CMModel = M;
613  return *this;
614  }
615 
616  /// setAllocateGVsWithCode - Sets whether global values should be allocated
617  /// into the same buffer as code. For most applications this should be set
618  /// to false. Allocating globals with code breaks freeMachineCodeForFunction
619  /// and is probably unsafe and bad for performance. However, we have clients
620  /// who depend on this behavior, so we must support it. This option defaults
621  /// to false so that users of the new API can safely use the new memory
622  /// manager and free machine code.
624  AllocateGVsWithCode = a;
625  return *this;
626  }
627 
628  /// setMArch - Override the architecture set by the Module's triple.
630  MArch.assign(march.begin(), march.end());
631  return *this;
632  }
633 
634  /// setMCPU - Target a specific cpu type.
636  MCPU.assign(mcpu.begin(), mcpu.end());
637  return *this;
638  }
639 
640  /// setUseMCJIT - Set whether the MC-JIT implementation should be used
641  /// (experimental).
643  UseMCJIT = Value;
644  return *this;
645  }
646 
647  /// setMAttrs - Set cpu-specific attributes.
648  template<typename StringSequence>
649  EngineBuilder &setMAttrs(const StringSequence &mattrs) {
650  MAttrs.clear();
651  MAttrs.append(mattrs.begin(), mattrs.end());
652  return *this;
653  }
654 
656 
657  /// selectTarget - Pick a target either via -march or by guessing the native
658  /// arch. Add any CPU features specified via -mcpu or -mattr.
659  TargetMachine *selectTarget(const Triple &TargetTriple,
660  StringRef MArch,
661  StringRef MCPU,
662  const SmallVectorImpl<std::string>& MAttrs);
663 
665  return create(selectTarget());
666  }
667 
669 };
670 
671 // Create wrappers for C Binding types (see CBindingWrapping.h).
673 
674 } // End llvm namespace
675 
676 #endif
EngineBuilder & setMCJITMemoryManager(RTDyldMemoryManager *mcjmm)
void * RemoveMapping(const MutexGuard &, const GlobalValue *ToUnmap)
Erase an entry from the mapping table.
COFF::RelocationTypeX86 Type
Definition: COFFYAML.cpp:227
virtual void * getOrEmitGlobalVariable(const GlobalVariable *GV)
struct LLVMOpaqueExecutionEngine * LLVMExecutionEngineRef
int runFunctionAsMain(Function *Fn, const std::vector< std::string > &argv, const char *const *envp)
The main container class for the LLVM Intermediate Representation.
Definition: Module.h:112
virtual bool removeModule(Module *M)
ValueMap< const GlobalValue *, void *, AddressMapConfig > GlobalAddressMapTy
virtual void setObjectCache(ObjectCache *)
void EmitGlobalVariable(const GlobalVariable *GV)
virtual void * getPointerToFunctionOrStub(Function *F)
F(f)
virtual void RegisterJITEventListener(JITEventListener *)
EngineBuilder & setMArch(StringRef march)
setMArch - Override the architecture set by the Module's triple.
GlobalAddressMapTy & getGlobalAddressMap(const MutexGuard &)
static ExecutionEngine * create(Module *M, bool ForceInterpreter=false, std::string *ErrorStr=0, CodeGenOpt::Level OptLevel=CodeGenOpt::Default, bool GVsWithCode=true)
#define DEFINE_SIMPLE_CONVERSION_FUNCTIONS(ty, ref)
virtual void runStaticConstructorsDestructors(bool isDtors)
void setDataLayout(const DataLayout *td)
void * getPointerToGlobal(const GlobalValue *GV)
void InitializeMemory(const Constant *Init, void *Addr)
#define llvm_unreachable(msg)
void *(* LazyFunctionCreator)(const std::string &)
virtual GenericValue runFunction(Function *F, const std::vector< GenericValue > &ArgValues)=0
virtual char * getMemoryForGV(const GlobalVariable *GV)
getMemoryforGV - Allocate memory for a global variable.
void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr, Type *Ty)
static void onDelete(ExecutionEngineState *EES, const GlobalValue *Old)
EngineBuilder & setCodeModel(CodeModel::Model M)
GenericValue getConstantValue(const Constant *C)
Converts a Constant* into a GenericValue, including handling of ConstantExpr values.
static void onRAUW(ExecutionEngineState *, const GlobalValue *, const GlobalValue *)
EngineBuilder & setAllocateGVsWithCode(bool a)
void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr, Type *Ty)
EngineBuilder & setEngineKind(EngineKind::Kind w)
iterator begin() const
Definition: StringRef.h:97
virtual void runJITOnFunction(Function *, MachineCodeInfo *=0)
virtual void generateCodeForModule(Module *M)
Guard a section of code with a Mutex.
Definition: MutexGuard.h:27
#define P(N)
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
virtual void * getPointerToBasicBlock(BasicBlock *BB)=0
LLVM Constant Representation.
Definition: Constant.h:41
static ExecutionEngine * createJIT(Module *M, std::string *ErrorStr=0, JITMemoryManager *JMM=0, CodeGenOpt::Level OptLevel=CodeGenOpt::Default, bool GVsWithCode=true, Reloc::Model RM=Reloc::Default, CodeModel::Model CMM=CodeModel::JITDefault)
EngineBuilder & setErrorStr(std::string *e)
EngineBuilder & setMAttrs(const StringSequence &mattrs)
setMAttrs - Set cpu-specific attributes.
EngineBuilder & setUseMCJIT(bool Value)
void * getPointerToGlobalIfAvailable(const GlobalValue *GV)
void append(in_iter in_start, in_iter in_end)
Definition: SmallVector.h:445
void clearGlobalMappingsFromModule(Module *M)
Abstract interface for implementation execution of LLVM modules, designed to support both interpreter...
EngineBuilder & setJITMemoryManager(JITMemoryManager *jmm)
void * updateGlobalMapping(const GlobalValue *GV, void *Addr)
virtual void freeMachineCodeForFunction(Function *F)=0
void DisableSymbolSearching(bool Disabled=true)
EngineBuilder & setRelocationModel(Reloc::Model RM)
static sys::Mutex * getMutex(ExecutionEngineState *EES)
EngineBuilder & setTargetOptions(const TargetOptions &Opts)
void InstallLazyFunctionCreator(void *(*P)(const std::string &))
virtual Function * FindFunctionNamed(const char *FnName)
virtual void * getPointerToFunction(Function *F)=0
void DisableLazyCompilation(bool Disabled=true)
void addGlobalMapping(const GlobalValue *GV, void *Addr)
const DataLayout * getDataLayout() const
SmallVector< Module *, 1 > Modules
const GlobalValue * getGlobalValueAtAddress(void *Addr)
Helper class for helping synchronize access to the global address map table.
virtual void mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress)
TargetMachine * selectTarget()
ExecutionEngineState(ExecutionEngine &EE)
LLVM Value Representation.
Definition: Value.h:66
iterator end() const
Definition: StringRef.h:99
virtual void * getPointerToNamedFunction(const std::string &Name, bool AbortOnFailure=true)=0
void DisableGVCompilation(bool Disabled=true)
virtual uint64_t getFunctionAddress(const std::string &Name)
virtual void UnregisterJITEventListener(JITEventListener *)
virtual uint64_t getGlobalValueAddress(const std::string &Name)
virtual void * recompileAndRelinkFunction(Function *F)=0
std::map< void *, AssertingVH< const GlobalValue > > & getGlobalAddressReverseMap(const MutexGuard &)
INITIALIZE_PASS(GlobalMerge,"global-merge","Global Merge", false, false) bool GlobalMerge const DataLayout * TD
EngineBuilder & setOptLevel(CodeGenOpt::Level l)
EngineBuilder & setMCPU(StringRef mcpu)
setMCPU - Target a specific cpu type.