LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
JITMemoryManager.cpp
Go to the documentation of this file.
1 //===-- JITMemoryManager.cpp - Memory Allocator for JIT'd code ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the DefaultJITMemoryManager class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "jit"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Config/config.h"
20 #include "llvm/IR/GlobalValue.h"
21 #include "llvm/Support/Allocator.h"
22 #include "llvm/Support/Compiler.h"
23 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/Memory.h"
28 #include <cassert>
29 #include <climits>
30 #include <cstring>
31 #include <vector>
32 
33 #if defined(__linux__)
34 #if defined(HAVE_SYS_STAT_H)
35 #include <sys/stat.h>
36 #endif
37 #include <fcntl.h>
38 #include <unistd.h>
39 #endif
40 
41 using namespace llvm;
42 
43 STATISTIC(NumSlabs, "Number of slabs of memory allocated by the JIT");
44 
46 
47 //===----------------------------------------------------------------------===//
48 // Memory Block Implementation.
49 //===----------------------------------------------------------------------===//
50 
51 namespace {
52  /// MemoryRangeHeader - For a range of memory, this is the header that we put
53  /// on the block of memory. It is carefully crafted to be one word of memory.
54  /// Allocated blocks have just this header, free'd blocks have FreeRangeHeader
55  /// which starts with this.
56  struct FreeRangeHeader;
57  struct MemoryRangeHeader {
58  /// ThisAllocated - This is true if this block is currently allocated. If
59  /// not, this can be converted to a FreeRangeHeader.
60  unsigned ThisAllocated : 1;
61 
62  /// PrevAllocated - Keep track of whether the block immediately before us is
63  /// allocated. If not, the word immediately before this header is the size
64  /// of the previous block.
65  unsigned PrevAllocated : 1;
66 
67  /// BlockSize - This is the size in bytes of this memory block,
68  /// including this header.
69  uintptr_t BlockSize : (sizeof(intptr_t)*CHAR_BIT - 2);
70 
71 
72  /// getBlockAfter - Return the memory block immediately after this one.
73  ///
74  MemoryRangeHeader &getBlockAfter() const {
75  return *reinterpret_cast<MemoryRangeHeader *>(
76  reinterpret_cast<char*>(
77  const_cast<MemoryRangeHeader *>(this))+BlockSize);
78  }
79 
80  /// getFreeBlockBefore - If the block before this one is free, return it,
81  /// otherwise return null.
82  FreeRangeHeader *getFreeBlockBefore() const {
83  if (PrevAllocated) return 0;
84  intptr_t PrevSize = reinterpret_cast<intptr_t *>(
85  const_cast<MemoryRangeHeader *>(this))[-1];
86  return reinterpret_cast<FreeRangeHeader *>(
87  reinterpret_cast<char*>(
88  const_cast<MemoryRangeHeader *>(this))-PrevSize);
89  }
90 
91  /// FreeBlock - Turn an allocated block into a free block, adjusting
92  /// bits in the object headers, and adding an end of region memory block.
93  FreeRangeHeader *FreeBlock(FreeRangeHeader *FreeList);
94 
95  /// TrimAllocationToSize - If this allocated block is significantly larger
96  /// than NewSize, split it into two pieces (where the former is NewSize
97  /// bytes, including the header), and add the new block to the free list.
98  FreeRangeHeader *TrimAllocationToSize(FreeRangeHeader *FreeList,
99  uint64_t NewSize);
100  };
101 
102  /// FreeRangeHeader - For a memory block that isn't already allocated, this
103  /// keeps track of the current block and has a pointer to the next free block.
104  /// Free blocks are kept on a circularly linked list.
105  struct FreeRangeHeader : public MemoryRangeHeader {
106  FreeRangeHeader *Prev;
107  FreeRangeHeader *Next;
108 
109  /// getMinBlockSize - Get the minimum size for a memory block. Blocks
110  /// smaller than this size cannot be created.
111  static unsigned getMinBlockSize() {
112  return sizeof(FreeRangeHeader)+sizeof(intptr_t);
113  }
114 
115  /// SetEndOfBlockSizeMarker - The word at the end of every free block is
116  /// known to be the size of the free block. Set it for this block.
117  void SetEndOfBlockSizeMarker() {
118  void *EndOfBlock = (char*)this + BlockSize;
119  ((intptr_t *)EndOfBlock)[-1] = BlockSize;
120  }
121 
122  FreeRangeHeader *RemoveFromFreeList() {
123  assert(Next->Prev == this && Prev->Next == this && "Freelist broken!");
124  Next->Prev = Prev;
125  return Prev->Next = Next;
126  }
127 
128  void AddToFreeList(FreeRangeHeader *FreeList) {
129  Next = FreeList;
130  Prev = FreeList->Prev;
131  Prev->Next = this;
132  Next->Prev = this;
133  }
134 
135  /// GrowBlock - The block after this block just got deallocated. Merge it
136  /// into the current block.
137  void GrowBlock(uintptr_t NewSize);
138 
139  /// AllocateBlock - Mark this entire block allocated, updating freelists
140  /// etc. This returns a pointer to the circular free-list.
141  FreeRangeHeader *AllocateBlock();
142  };
143 }
144 
145 
146 /// AllocateBlock - Mark this entire block allocated, updating freelists
147 /// etc. This returns a pointer to the circular free-list.
148 FreeRangeHeader *FreeRangeHeader::AllocateBlock() {
149  assert(!ThisAllocated && !getBlockAfter().PrevAllocated &&
150  "Cannot allocate an allocated block!");
151  // Mark this block allocated.
152  ThisAllocated = 1;
153  getBlockAfter().PrevAllocated = 1;
154 
155  // Remove it from the free list.
156  return RemoveFromFreeList();
157 }
158 
159 /// FreeBlock - Turn an allocated block into a free block, adjusting
160 /// bits in the object headers, and adding an end of region memory block.
161 /// If possible, coalesce this block with neighboring blocks. Return the
162 /// FreeRangeHeader to allocate from.
163 FreeRangeHeader *MemoryRangeHeader::FreeBlock(FreeRangeHeader *FreeList) {
164  MemoryRangeHeader *FollowingBlock = &getBlockAfter();
165  assert(ThisAllocated && "This block is already free!");
166  assert(FollowingBlock->PrevAllocated && "Flags out of sync!");
167 
168  FreeRangeHeader *FreeListToReturn = FreeList;
169 
170  // If the block after this one is free, merge it into this block.
171  if (!FollowingBlock->ThisAllocated) {
172  FreeRangeHeader &FollowingFreeBlock = *(FreeRangeHeader *)FollowingBlock;
173  // "FreeList" always needs to be a valid free block. If we're about to
174  // coalesce with it, update our notion of what the free list is.
175  if (&FollowingFreeBlock == FreeList) {
176  FreeList = FollowingFreeBlock.Next;
177  FreeListToReturn = 0;
178  assert(&FollowingFreeBlock != FreeList && "No tombstone block?");
179  }
180  FollowingFreeBlock.RemoveFromFreeList();
181 
182  // Include the following block into this one.
183  BlockSize += FollowingFreeBlock.BlockSize;
184  FollowingBlock = &FollowingFreeBlock.getBlockAfter();
185 
186  // Tell the block after the block we are coalescing that this block is
187  // allocated.
188  FollowingBlock->PrevAllocated = 1;
189  }
190 
191  assert(FollowingBlock->ThisAllocated && "Missed coalescing?");
192 
193  if (FreeRangeHeader *PrevFreeBlock = getFreeBlockBefore()) {
194  PrevFreeBlock->GrowBlock(PrevFreeBlock->BlockSize + BlockSize);
195  return FreeListToReturn ? FreeListToReturn : PrevFreeBlock;
196  }
197 
198  // Otherwise, mark this block free.
199  FreeRangeHeader &FreeBlock = *(FreeRangeHeader*)this;
200  FollowingBlock->PrevAllocated = 0;
201  FreeBlock.ThisAllocated = 0;
202 
203  // Link this into the linked list of free blocks.
204  FreeBlock.AddToFreeList(FreeList);
205 
206  // Add a marker at the end of the block, indicating the size of this free
207  // block.
208  FreeBlock.SetEndOfBlockSizeMarker();
209  return FreeListToReturn ? FreeListToReturn : &FreeBlock;
210 }
211 
212 /// GrowBlock - The block after this block just got deallocated. Merge it
213 /// into the current block.
214 void FreeRangeHeader::GrowBlock(uintptr_t NewSize) {
215  assert(NewSize > BlockSize && "Not growing block?");
216  BlockSize = NewSize;
217  SetEndOfBlockSizeMarker();
218  getBlockAfter().PrevAllocated = 0;
219 }
220 
221 /// TrimAllocationToSize - If this allocated block is significantly larger
222 /// than NewSize, split it into two pieces (where the former is NewSize
223 /// bytes, including the header), and add the new block to the free list.
224 FreeRangeHeader *MemoryRangeHeader::
225 TrimAllocationToSize(FreeRangeHeader *FreeList, uint64_t NewSize) {
226  assert(ThisAllocated && getBlockAfter().PrevAllocated &&
227  "Cannot deallocate part of an allocated block!");
228 
229  // Don't allow blocks to be trimmed below minimum required size
230  NewSize = std::max<uint64_t>(FreeRangeHeader::getMinBlockSize(), NewSize);
231 
232  // Round up size for alignment of header.
233  unsigned HeaderAlign = __alignof(FreeRangeHeader);
234  NewSize = (NewSize+ (HeaderAlign-1)) & ~(HeaderAlign-1);
235 
236  // Size is now the size of the block we will remove from the start of the
237  // current block.
238  assert(NewSize <= BlockSize &&
239  "Allocating more space from this block than exists!");
240 
241  // If splitting this block will cause the remainder to be too small, do not
242  // split the block.
243  if (BlockSize <= NewSize+FreeRangeHeader::getMinBlockSize())
244  return FreeList;
245 
246  // Otherwise, we splice the required number of bytes out of this block, form
247  // a new block immediately after it, then mark this block allocated.
248  MemoryRangeHeader &FormerNextBlock = getBlockAfter();
249 
250  // Change the size of this block.
251  BlockSize = NewSize;
252 
253  // Get the new block we just sliced out and turn it into a free block.
254  FreeRangeHeader &NewNextBlock = (FreeRangeHeader &)getBlockAfter();
255  NewNextBlock.BlockSize = (char*)&FormerNextBlock - (char*)&NewNextBlock;
256  NewNextBlock.ThisAllocated = 0;
257  NewNextBlock.PrevAllocated = 1;
258  NewNextBlock.SetEndOfBlockSizeMarker();
259  FormerNextBlock.PrevAllocated = 0;
260  NewNextBlock.AddToFreeList(FreeList);
261  return &NewNextBlock;
262 }
263 
264 //===----------------------------------------------------------------------===//
265 // Memory Block Implementation.
266 //===----------------------------------------------------------------------===//
267 
268 namespace {
269 
270  class DefaultJITMemoryManager;
271 
272  class JITSlabAllocator : public SlabAllocator {
273  DefaultJITMemoryManager &JMM;
274  public:
275  JITSlabAllocator(DefaultJITMemoryManager &jmm) : JMM(jmm) { }
276  virtual ~JITSlabAllocator() { }
277  virtual MemSlab *Allocate(size_t Size);
278  virtual void Deallocate(MemSlab *Slab);
279  };
280 
281  /// DefaultJITMemoryManager - Manage memory for the JIT code generation.
282  /// This splits a large block of MAP_NORESERVE'd memory into two
283  /// sections, one for function stubs, one for the functions themselves. We
284  /// have to do this because we may need to emit a function stub while in the
285  /// middle of emitting a function, and we don't know how large the function we
286  /// are emitting is.
287  class DefaultJITMemoryManager : public JITMemoryManager {
288 
289  // Whether to poison freed memory.
290  bool PoisonMemory;
291 
292  /// LastSlab - This points to the last slab allocated and is used as the
293  /// NearBlock parameter to AllocateRWX so that we can attempt to lay out all
294  /// stubs, data, and code contiguously in memory. In general, however, this
295  /// is not possible because the NearBlock parameter is ignored on Windows
296  /// platforms and even on Unix it works on a best-effort pasis.
297  sys::MemoryBlock LastSlab;
298 
299  // Memory slabs allocated by the JIT. We refer to them as slabs so we don't
300  // confuse them with the blocks of memory described above.
301  std::vector<sys::MemoryBlock> CodeSlabs;
302  JITSlabAllocator BumpSlabAllocator;
303  BumpPtrAllocator StubAllocator;
304  BumpPtrAllocator DataAllocator;
305 
306  // Circular list of free blocks.
307  FreeRangeHeader *FreeMemoryList;
308 
309  // When emitting code into a memory block, this is the block.
310  MemoryRangeHeader *CurBlock;
311 
312  uint8_t *GOTBase; // Target Specific reserved memory
313  public:
314  DefaultJITMemoryManager();
315  ~DefaultJITMemoryManager();
316 
317  /// allocateNewSlab - Allocates a new MemoryBlock and remembers it as the
318  /// last slab it allocated, so that subsequent allocations follow it.
319  sys::MemoryBlock allocateNewSlab(size_t size);
320 
321  /// DefaultCodeSlabSize - When we have to go map more memory, we allocate at
322  /// least this much unless more is requested.
323  static const size_t DefaultCodeSlabSize;
324 
325  /// DefaultSlabSize - Allocate data into slabs of this size unless we get
326  /// an allocation above SizeThreshold.
327  static const size_t DefaultSlabSize;
328 
329  /// DefaultSizeThreshold - For any allocation larger than this threshold, we
330  /// should allocate a separate slab.
331  static const size_t DefaultSizeThreshold;
332 
333  /// getPointerToNamedFunction - This method returns the address of the
334  /// specified function by using the dlsym function call.
335  virtual void *getPointerToNamedFunction(const std::string &Name,
336  bool AbortOnFailure = true);
337 
338  void AllocateGOT();
339 
340  // Testing methods.
341  virtual bool CheckInvariants(std::string &ErrorStr);
342  size_t GetDefaultCodeSlabSize() { return DefaultCodeSlabSize; }
343  size_t GetDefaultDataSlabSize() { return DefaultSlabSize; }
344  size_t GetDefaultStubSlabSize() { return DefaultSlabSize; }
345  unsigned GetNumCodeSlabs() { return CodeSlabs.size(); }
346  unsigned GetNumDataSlabs() { return DataAllocator.GetNumSlabs(); }
347  unsigned GetNumStubSlabs() { return StubAllocator.GetNumSlabs(); }
348 
349  /// startFunctionBody - When a function starts, allocate a block of free
350  /// executable memory, returning a pointer to it and its actual size.
351  uint8_t *startFunctionBody(const Function *F, uintptr_t &ActualSize) {
352 
353  FreeRangeHeader* candidateBlock = FreeMemoryList;
354  FreeRangeHeader* head = FreeMemoryList;
355  FreeRangeHeader* iter = head->Next;
356 
357  uintptr_t largest = candidateBlock->BlockSize;
358 
359  // Search for the largest free block
360  while (iter != head) {
361  if (iter->BlockSize > largest) {
362  largest = iter->BlockSize;
363  candidateBlock = iter;
364  }
365  iter = iter->Next;
366  }
367 
368  largest = largest - sizeof(MemoryRangeHeader);
369 
370  // If this block isn't big enough for the allocation desired, allocate
371  // another block of memory and add it to the free list.
372  if (largest < ActualSize ||
373  largest <= FreeRangeHeader::getMinBlockSize()) {
374  DEBUG(dbgs() << "JIT: Allocating another slab of memory for function.");
375  candidateBlock = allocateNewCodeSlab((size_t)ActualSize);
376  }
377 
378  // Select this candidate block for allocation
379  CurBlock = candidateBlock;
380 
381  // Allocate the entire memory block.
382  FreeMemoryList = candidateBlock->AllocateBlock();
383  ActualSize = CurBlock->BlockSize - sizeof(MemoryRangeHeader);
384  return (uint8_t *)(CurBlock + 1);
385  }
386 
387  /// allocateNewCodeSlab - Helper method to allocate a new slab of code
388  /// memory from the OS and add it to the free list. Returns the new
389  /// FreeRangeHeader at the base of the slab.
390  FreeRangeHeader *allocateNewCodeSlab(size_t MinSize) {
391  // If the user needs at least MinSize free memory, then we account for
392  // two MemoryRangeHeaders: the one in the user's block, and the one at the
393  // end of the slab.
394  size_t PaddedMin = MinSize + 2 * sizeof(MemoryRangeHeader);
395  size_t SlabSize = std::max(DefaultCodeSlabSize, PaddedMin);
396  sys::MemoryBlock B = allocateNewSlab(SlabSize);
397  CodeSlabs.push_back(B);
398  char *MemBase = (char*)(B.base());
399 
400  // Put a tiny allocated block at the end of the memory chunk, so when
401  // FreeBlock calls getBlockAfter it doesn't fall off the end.
402  MemoryRangeHeader *EndBlock =
403  (MemoryRangeHeader*)(MemBase + B.size()) - 1;
404  EndBlock->ThisAllocated = 1;
405  EndBlock->PrevAllocated = 0;
406  EndBlock->BlockSize = sizeof(MemoryRangeHeader);
407 
408  // Start out with a vast new block of free memory.
409  FreeRangeHeader *NewBlock = (FreeRangeHeader*)MemBase;
410  NewBlock->ThisAllocated = 0;
411  // Make sure getFreeBlockBefore doesn't look into unmapped memory.
412  NewBlock->PrevAllocated = 1;
413  NewBlock->BlockSize = (uintptr_t)EndBlock - (uintptr_t)NewBlock;
414  NewBlock->SetEndOfBlockSizeMarker();
415  NewBlock->AddToFreeList(FreeMemoryList);
416 
417  assert(NewBlock->BlockSize - sizeof(MemoryRangeHeader) >= MinSize &&
418  "The block was too small!");
419  return NewBlock;
420  }
421 
422  /// endFunctionBody - The function F is now allocated, and takes the memory
423  /// in the range [FunctionStart,FunctionEnd).
424  void endFunctionBody(const Function *F, uint8_t *FunctionStart,
425  uint8_t *FunctionEnd) {
426  assert(FunctionEnd > FunctionStart);
427  assert(FunctionStart == (uint8_t *)(CurBlock+1) &&
428  "Mismatched function start/end!");
429 
430  uintptr_t BlockSize = FunctionEnd - (uint8_t *)CurBlock;
431 
432  // Release the memory at the end of this block that isn't needed.
433  FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
434  }
435 
436  /// allocateSpace - Allocate a memory block of the given size. This method
437  /// cannot be called between calls to startFunctionBody and endFunctionBody.
438  uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) {
439  CurBlock = FreeMemoryList;
440  FreeMemoryList = FreeMemoryList->AllocateBlock();
441 
442  uint8_t *result = (uint8_t *)(CurBlock + 1);
443 
444  if (Alignment == 0) Alignment = 1;
445  result = (uint8_t*)(((intptr_t)result+Alignment-1) &
446  ~(intptr_t)(Alignment-1));
447 
448  uintptr_t BlockSize = result + Size - (uint8_t *)CurBlock;
449  FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
450 
451  return result;
452  }
453 
454  /// allocateStub - Allocate memory for a function stub.
455  uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize,
456  unsigned Alignment) {
457  return (uint8_t*)StubAllocator.Allocate(StubSize, Alignment);
458  }
459 
460  /// allocateGlobal - Allocate memory for a global.
461  uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) {
462  return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
463  }
464 
465  /// allocateCodeSection - Allocate memory for a code section.
466  uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
467  unsigned SectionID, StringRef SectionName) {
468  // Grow the required block size to account for the block header
469  Size += sizeof(*CurBlock);
470 
471  // Alignment handling.
472  if (!Alignment)
473  Alignment = 16;
474  Size += Alignment - 1;
475 
476  FreeRangeHeader* candidateBlock = FreeMemoryList;
477  FreeRangeHeader* head = FreeMemoryList;
478  FreeRangeHeader* iter = head->Next;
479 
480  uintptr_t largest = candidateBlock->BlockSize;
481 
482  // Search for the largest free block.
483  while (iter != head) {
484  if (iter->BlockSize > largest) {
485  largest = iter->BlockSize;
486  candidateBlock = iter;
487  }
488  iter = iter->Next;
489  }
490 
491  largest = largest - sizeof(MemoryRangeHeader);
492 
493  // If this block isn't big enough for the allocation desired, allocate
494  // another block of memory and add it to the free list.
495  if (largest < Size || largest <= FreeRangeHeader::getMinBlockSize()) {
496  DEBUG(dbgs() << "JIT: Allocating another slab of memory for function.");
497  candidateBlock = allocateNewCodeSlab((size_t)Size);
498  }
499 
500  // Select this candidate block for allocation
501  CurBlock = candidateBlock;
502 
503  // Allocate the entire memory block.
504  FreeMemoryList = candidateBlock->AllocateBlock();
505  // Release the memory at the end of this block that isn't needed.
506  FreeMemoryList = CurBlock->TrimAllocationToSize(FreeMemoryList, Size);
507  uintptr_t unalignedAddr = (uintptr_t)CurBlock + sizeof(*CurBlock);
508  return (uint8_t*)RoundUpToAlignment((uint64_t)unalignedAddr, Alignment);
509  }
510 
511  /// allocateDataSection - Allocate memory for a data section.
512  uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
513  unsigned SectionID, StringRef SectionName,
514  bool IsReadOnly) {
515  return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
516  }
517 
518  bool finalizeMemory(std::string *ErrMsg) {
519  return false;
520  }
521 
522  uint8_t *getGOTBase() const {
523  return GOTBase;
524  }
525 
526  void deallocateBlock(void *Block) {
527  // Find the block that is allocated for this function.
528  MemoryRangeHeader *MemRange = static_cast<MemoryRangeHeader*>(Block) - 1;
529  assert(MemRange->ThisAllocated && "Block isn't allocated!");
530 
531  // Fill the buffer with garbage!
532  if (PoisonMemory) {
533  memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange));
534  }
535 
536  // Free the memory.
537  FreeMemoryList = MemRange->FreeBlock(FreeMemoryList);
538  }
539 
540  /// deallocateFunctionBody - Deallocate all memory for the specified
541  /// function body.
542  void deallocateFunctionBody(void *Body) {
543  if (Body) deallocateBlock(Body);
544  }
545 
546  /// setMemoryWritable - When code generation is in progress,
547  /// the code pages may need permissions changed.
548  void setMemoryWritable()
549  {
550  for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
551  sys::Memory::setWritable(CodeSlabs[i]);
552  }
553  /// setMemoryExecutable - When code generation is done and we're ready to
554  /// start execution, the code pages may need permissions changed.
555  void setMemoryExecutable()
556  {
557  for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
558  sys::Memory::setExecutable(CodeSlabs[i]);
559  }
560 
561  /// setPoisonMemory - Controls whether we write garbage over freed memory.
562  ///
563  void setPoisonMemory(bool poison) {
564  PoisonMemory = poison;
565  }
566  };
567 }
568 
569 MemSlab *JITSlabAllocator::Allocate(size_t Size) {
570  sys::MemoryBlock B = JMM.allocateNewSlab(Size);
571  MemSlab *Slab = (MemSlab*)B.base();
572  Slab->Size = B.size();
573  Slab->NextPtr = 0;
574  return Slab;
575 }
576 
577 void JITSlabAllocator::Deallocate(MemSlab *Slab) {
578  sys::MemoryBlock B(Slab, Slab->Size);
580 }
581 
582 DefaultJITMemoryManager::DefaultJITMemoryManager()
583  :
584 #ifdef NDEBUG
585  PoisonMemory(false),
586 #else
587  PoisonMemory(true),
588 #endif
589  LastSlab(0, 0),
590  BumpSlabAllocator(*this),
591  StubAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator),
592  DataAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator) {
593 
594  // Allocate space for code.
595  sys::MemoryBlock MemBlock = allocateNewSlab(DefaultCodeSlabSize);
596  CodeSlabs.push_back(MemBlock);
597  uint8_t *MemBase = (uint8_t*)MemBlock.base();
598 
599  // We set up the memory chunk with 4 mem regions, like this:
600  // [ START
601  // [ Free #0 ] -> Large space to allocate functions from.
602  // [ Allocated #1 ] -> Tiny space to separate regions.
603  // [ Free #2 ] -> Tiny space so there is always at least 1 free block.
604  // [ Allocated #3 ] -> Tiny space to prevent looking past end of block.
605  // END ]
606  //
607  // The last three blocks are never deallocated or touched.
608 
609  // Add MemoryRangeHeader to the end of the memory region, indicating that
610  // the space after the block of memory is allocated. This is block #3.
611  MemoryRangeHeader *Mem3 = (MemoryRangeHeader*)(MemBase+MemBlock.size())-1;
612  Mem3->ThisAllocated = 1;
613  Mem3->PrevAllocated = 0;
614  Mem3->BlockSize = sizeof(MemoryRangeHeader);
615 
616  /// Add a tiny free region so that the free list always has one entry.
617  FreeRangeHeader *Mem2 =
618  (FreeRangeHeader *)(((char*)Mem3)-FreeRangeHeader::getMinBlockSize());
619  Mem2->ThisAllocated = 0;
620  Mem2->PrevAllocated = 1;
621  Mem2->BlockSize = FreeRangeHeader::getMinBlockSize();
622  Mem2->SetEndOfBlockSizeMarker();
623  Mem2->Prev = Mem2; // Mem2 *is* the free list for now.
624  Mem2->Next = Mem2;
625 
626  /// Add a tiny allocated region so that Mem2 is never coalesced away.
627  MemoryRangeHeader *Mem1 = (MemoryRangeHeader*)Mem2-1;
628  Mem1->ThisAllocated = 1;
629  Mem1->PrevAllocated = 0;
630  Mem1->BlockSize = sizeof(MemoryRangeHeader);
631 
632  // Add a FreeRangeHeader to the start of the function body region, indicating
633  // that the space is free. Mark the previous block allocated so we never look
634  // at it.
635  FreeRangeHeader *Mem0 = (FreeRangeHeader*)MemBase;
636  Mem0->ThisAllocated = 0;
637  Mem0->PrevAllocated = 1;
638  Mem0->BlockSize = (char*)Mem1-(char*)Mem0;
639  Mem0->SetEndOfBlockSizeMarker();
640  Mem0->AddToFreeList(Mem2);
641 
642  // Start out with the freelist pointing to Mem0.
643  FreeMemoryList = Mem0;
644 
645  GOTBase = NULL;
646 }
647 
648 void DefaultJITMemoryManager::AllocateGOT() {
649  assert(GOTBase == 0 && "Cannot allocate the got multiple times");
650  GOTBase = new uint8_t[sizeof(void*) * 8192];
651  HasGOT = true;
652 }
653 
654 DefaultJITMemoryManager::~DefaultJITMemoryManager() {
655  for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
656  sys::Memory::ReleaseRWX(CodeSlabs[i]);
657 
658  delete[] GOTBase;
659 }
660 
661 sys::MemoryBlock DefaultJITMemoryManager::allocateNewSlab(size_t size) {
662  // Allocate a new block close to the last one.
663  std::string ErrMsg;
664  sys::MemoryBlock *LastSlabPtr = LastSlab.base() ? &LastSlab : 0;
665  sys::MemoryBlock B = sys::Memory::AllocateRWX(size, LastSlabPtr, &ErrMsg);
666  if (B.base() == 0) {
667  report_fatal_error("Allocation failed when allocating new memory in the"
668  " JIT\n" + Twine(ErrMsg));
669  }
670  LastSlab = B;
671  ++NumSlabs;
672  // Initialize the slab to garbage when debugging.
673  if (PoisonMemory) {
674  memset(B.base(), 0xCD, B.size());
675  }
676  return B;
677 }
678 
679 /// CheckInvariants - For testing only. Return "" if all internal invariants
680 /// are preserved, and a helpful error message otherwise. For free and
681 /// allocated blocks, make sure that adding BlockSize gives a valid block.
682 /// For free blocks, make sure they're in the free list and that their end of
683 /// block size marker is correct. This function should return an error before
684 /// accessing bad memory. This function is defined here instead of in
685 /// JITMemoryManagerTest.cpp so that we don't have to expose all of the
686 /// implementation details of DefaultJITMemoryManager.
687 bool DefaultJITMemoryManager::CheckInvariants(std::string &ErrorStr) {
688  raw_string_ostream Err(ErrorStr);
689 
690  // Construct a the set of FreeRangeHeader pointers so we can query it
691  // efficiently.
693  FreeRangeHeader* FreeHead = FreeMemoryList;
694  FreeRangeHeader* FreeRange = FreeHead;
695 
696  do {
697  // Check that the free range pointer is in the blocks we've allocated.
698  bool Found = false;
699  for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
700  E = CodeSlabs.end(); I != E && !Found; ++I) {
701  char *Start = (char*)I->base();
702  char *End = Start + I->size();
703  Found = (Start <= (char*)FreeRange && (char*)FreeRange < End);
704  }
705  if (!Found) {
706  Err << "Corrupt free list; points to " << FreeRange;
707  return false;
708  }
709 
710  if (FreeRange->Next->Prev != FreeRange) {
711  Err << "Next and Prev pointers do not match.";
712  return false;
713  }
714 
715  // Otherwise, add it to the set.
716  FreeHdrSet.insert(FreeRange);
717  FreeRange = FreeRange->Next;
718  } while (FreeRange != FreeHead);
719 
720  // Go over each block, and look at each MemoryRangeHeader.
721  for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
722  E = CodeSlabs.end(); I != E; ++I) {
723  char *Start = (char*)I->base();
724  char *End = Start + I->size();
725 
726  // Check each memory range.
727  for (MemoryRangeHeader *Hdr = (MemoryRangeHeader*)Start, *LastHdr = NULL;
728  Start <= (char*)Hdr && (char*)Hdr < End;
729  Hdr = &Hdr->getBlockAfter()) {
730  if (Hdr->ThisAllocated == 0) {
731  // Check that this range is in the free list.
732  if (!FreeHdrSet.count(Hdr)) {
733  Err << "Found free header at " << Hdr << " that is not in free list.";
734  return false;
735  }
736 
737  // Now make sure the size marker at the end of the block is correct.
738  uintptr_t *Marker = ((uintptr_t*)&Hdr->getBlockAfter()) - 1;
739  if (!(Start <= (char*)Marker && (char*)Marker < End)) {
740  Err << "Block size in header points out of current MemoryBlock.";
741  return false;
742  }
743  if (Hdr->BlockSize != *Marker) {
744  Err << "End of block size marker (" << *Marker << ") "
745  << "and BlockSize (" << Hdr->BlockSize << ") don't match.";
746  return false;
747  }
748  }
749 
750  if (LastHdr && LastHdr->ThisAllocated != Hdr->PrevAllocated) {
751  Err << "Hdr->PrevAllocated (" << Hdr->PrevAllocated << ") != "
752  << "LastHdr->ThisAllocated (" << LastHdr->ThisAllocated << ")";
753  return false;
754  } else if (!LastHdr && !Hdr->PrevAllocated) {
755  Err << "The first header should have PrevAllocated true.";
756  return false;
757  }
758 
759  // Remember the last header.
760  LastHdr = Hdr;
761  }
762  }
763 
764  // All invariants are preserved.
765  return true;
766 }
767 
768 //===----------------------------------------------------------------------===//
769 // getPointerToNamedFunction() implementation.
770 //===----------------------------------------------------------------------===//
771 
772 // AtExitHandlers - List of functions to call when the program exits,
773 // registered with the atexit() library function.
774 static std::vector<void (*)()> AtExitHandlers;
775 
776 /// runAtExitHandlers - Run any functions registered by the program's
777 /// calls to atexit(3), which we intercept and store in
778 /// AtExitHandlers.
779 ///
780 static void runAtExitHandlers() {
781  while (!AtExitHandlers.empty()) {
782  void (*Fn)() = AtExitHandlers.back();
783  AtExitHandlers.pop_back();
784  Fn();
785  }
786 }
787 
788 //===----------------------------------------------------------------------===//
789 // Function stubs that are invoked instead of certain library calls
790 //
791 // Force the following functions to be linked in to anything that uses the
792 // JIT. This is a hack designed to work around the all-too-clever Glibc
793 // strategy of making these functions work differently when inlined vs. when
794 // not inlined, and hiding their real definitions in a separate archive file
795 // that the dynamic linker can't see. For more info, search for
796 // 'libc_nonshared.a' on Google, or read http://llvm.org/PR274.
797 #if defined(__linux__) && defined(__GLIBC__)
798 /* stat functions are redirecting to __xstat with a version number. On x86-64
799  * linking with libc_nonshared.a and -Wl,--export-dynamic doesn't make 'stat'
800  * available as an exported symbol, so we have to add it explicitly.
801  */
802 namespace {
803 class StatSymbols {
804 public:
805  StatSymbols() {
810  sys::DynamicLibrary::AddSymbol("\x1stat64", (void*)(intptr_t)stat64);
811  sys::DynamicLibrary::AddSymbol("\x1open64", (void*)(intptr_t)open64);
812  sys::DynamicLibrary::AddSymbol("\x1lseek64", (void*)(intptr_t)lseek64);
813  sys::DynamicLibrary::AddSymbol("fstat64", (void*)(intptr_t)fstat64);
814  sys::DynamicLibrary::AddSymbol("lstat64", (void*)(intptr_t)lstat64);
815  sys::DynamicLibrary::AddSymbol("atexit", (void*)(intptr_t)atexit);
816  sys::DynamicLibrary::AddSymbol("mknod", (void*)(intptr_t)mknod);
817  }
818 };
819 }
820 static StatSymbols initStatSymbols;
821 #endif // __linux__
822 
823 // jit_exit - Used to intercept the "exit" library call.
824 static void jit_exit(int Status) {
825  runAtExitHandlers(); // Run atexit handlers...
826  exit(Status);
827 }
828 
829 // jit_atexit - Used to intercept the "atexit" library call.
830 static int jit_atexit(void (*Fn)()) {
831  AtExitHandlers.push_back(Fn); // Take note of atexit handler...
832  return 0; // Always successful
833 }
834 
835 static int jit_noop() {
836  return 0;
837 }
838 
839 //===----------------------------------------------------------------------===//
840 //
841 /// getPointerToNamedFunction - This method returns the address of the specified
842 /// function by using the dynamic loader interface. As such it is only useful
843 /// for resolving library symbols, not code generated symbols.
844 ///
846  bool AbortOnFailure) {
847  // Check to see if this is one of the functions we want to intercept. Note,
848  // we cast to intptr_t here to silence a -pedantic warning that complains
849  // about casting a function pointer to a normal pointer.
850  if (Name == "exit") return (void*)(intptr_t)&jit_exit;
851  if (Name == "atexit") return (void*)(intptr_t)&jit_atexit;
852 
853  // We should not invoke parent's ctors/dtors from generated main()!
854  // On Mingw and Cygwin, the symbol __main is resolved to
855  // callee's(eg. tools/lli) one, to invoke wrong duplicated ctors
856  // (and register wrong callee's dtors with atexit(3)).
857  // We expect ExecutionEngine::runStaticConstructorsDestructors()
858  // is called before ExecutionEngine::runFunctionAsMain() is called.
859  if (Name == "__main") return (void*)(intptr_t)&jit_noop;
860 
861  const char *NameStr = Name.c_str();
862  // If this is an asm specifier, skip the sentinal.
863  if (NameStr[0] == 1) ++NameStr;
864 
865  // If it's an external function, look it up in the process image...
867  if (Ptr) return Ptr;
868 
869  // If it wasn't found and if it starts with an underscore ('_') character,
870  // try again without the underscore.
871  if (NameStr[0] == '_') {
873  if (Ptr) return Ptr;
874  }
875 
876  // Darwin/PPC adds $LDBLStub suffixes to various symbols like printf. These
877  // are references to hidden visibility symbols that dlsym cannot resolve.
878  // If we have one of these, strip off $LDBLStub and try again.
879 #if defined(__APPLE__) && defined(__ppc__)
880  if (Name.size() > 9 && Name[Name.size()-9] == '$' &&
881  memcmp(&Name[Name.size()-8], "LDBLStub", 8) == 0) {
882  // First try turning $LDBLStub into $LDBL128. If that fails, strip it off.
883  // This mirrors logic in libSystemStubs.a.
884  std::string Prefix = std::string(Name.begin(), Name.end()-9);
885  if (void *Ptr = getPointerToNamedFunction(Prefix+"$LDBL128", false))
886  return Ptr;
887  if (void *Ptr = getPointerToNamedFunction(Prefix, false))
888  return Ptr;
889  }
890 #endif
891 
892  if (AbortOnFailure) {
893  report_fatal_error("Program used external function '"+Name+
894  "' which could not be resolved!");
895  }
896  return 0;
897 }
898 
899 
900 
902  return new DefaultJITMemoryManager();
903 }
904 
905 // Allocate memory for code in 512K slabs.
906 const size_t DefaultJITMemoryManager::DefaultCodeSlabSize = 512 * 1024;
907 
908 // Allocate globals and stubs in slabs of 64K. (probably 16 pages)
909 const size_t DefaultJITMemoryManager::DefaultSlabSize = 64 * 1024;
910 
911 // Waste at most 16K at the end of each bump slab. (probably 4 pages)
912 const size_t DefaultJITMemoryManager::DefaultSizeThreshold = 16 * 1024;
static void * SearchForAddressOfSymbol(const char *symbolName)
Search through libraries for address of a symbol.
int fstat(int fildes, struct stat *buf);
int fstat64(int filedes, struct stat64 *buf)
static int jit_atexit(void(*Fn)())
int lstat64(const char *path, struct stat64 *buf);
bool insert(PtrType Ptr)
Definition: SmallPtrSet.h:253
F(f)
LLVM_ATTRIBUTE_NORETURN void report_fatal_error(const char *reason, bool gen_crash_diag=true)
size_t Size
Definition: Allocator.h:55
static JITMemoryManager * CreateDefaultMemManager()
#define false
Definition: ConvertUTF.c:64
bool count(PtrType Ptr) const
count - Return true if the specified pointer is in the set.
Definition: SmallPtrSet.h:264
static bool ReleaseRWX(MemoryBlock &block, std::string *ErrMsg=0)
Release Read/Write/Execute memory.
static bool setExecutable(MemoryBlock &M, std::string *ErrMsg=0)
static std::vector< void(*)()> AtExitHandlers
int memcmp(const void *s1, const void *s2, size_t n);
#define true
Definition: ConvertUTF.c:65
int lstat(const char *path, struct stat *buf);
static void AddSymbol(StringRef symbolName, void *symbolValue)
Add searchable symbol/value pair.
static void runAtExitHandlers()
int stat(const char *path, struct stat *buf);
int stat64(const char *path, struct stat64 *buf);
size_t size() const
Definition: Memory.h:34
static MemoryBlock AllocateRWX(size_t NumBytes, const MemoryBlock *NearBlock, std::string *ErrMsg=0)
Allocate Read/Write/Execute memory.
static void jit_exit(int Status)
Memory block abstraction.
Definition: Memory.h:29
STATISTIC(NumSlabs,"Number of slabs of memory allocated by the JIT")
static bool setWritable(MemoryBlock &M, std::string *ErrMsg=0)
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
int open64(const char *filename, int flags[, mode_t mode])
#define NDEBUG
Definition: regutils.h:45
uint64_t RoundUpToAlignment(uint64_t Value, uint64_t Align)
Definition: MathExtras.h:565
void * base() const
Definition: Memory.h:33
MemSlab * NextPtr
Definition: Allocator.h:56
#define I(x, y, z)
Definition: MD5.cpp:54
#define DEBUG(X)
Definition: Debug.h:97
static int jit_noop()
void * getPointerToNamedFunction(const char *Name)
Definition: JIT.cpp:131