LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
PostOrderIterator.h
Go to the documentation of this file.
1 //===- llvm/ADT/PostOrderIterator.h - PostOrder iterator --------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file builds on the ADT/GraphTraits.h file to build a generic graph
11 // post order iterator. This should work over any graph type that has a
12 // GraphTraits specialization.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_ADT_POSTORDERITERATOR_H
17 #define LLVM_ADT_POSTORDERITERATOR_H
18 
19 #include "llvm/ADT/GraphTraits.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include <set>
22 #include <vector>
23 
24 namespace llvm {
25 
26 // The po_iterator_storage template provides access to the set of already
27 // visited nodes during the po_iterator's depth-first traversal.
28 //
29 // The default implementation simply contains a set of visited nodes, while
30 // the Extended=true version uses a reference to an external set.
31 //
32 // It is possible to prune the depth-first traversal in several ways:
33 //
34 // - When providing an external set that already contains some graph nodes,
35 // those nodes won't be visited again. This is useful for restarting a
36 // post-order traversal on a graph with nodes that aren't dominated by a
37 // single node.
38 //
39 // - By providing a custom SetType class, unwanted graph nodes can be excluded
40 // by having the insert() function return false. This could for example
41 // confine a CFG traversal to blocks in a specific loop.
42 //
43 // - Finally, by specializing the po_iterator_storage template itself, graph
44 // edges can be pruned by returning false in the insertEdge() function. This
45 // could be used to remove loop back-edges from the CFG seen by po_iterator.
46 //
47 // A specialized po_iterator_storage class can observe both the pre-order and
48 // the post-order. The insertEdge() function is called in a pre-order, while
49 // the finishPostorder() function is called just before the po_iterator moves
50 // on to the next node.
51 
52 /// Default po_iterator_storage implementation with an internal set object.
53 template<class SetType, bool External>
55  SetType Visited;
56 public:
57  // Return true if edge destination should be visited.
58  template<typename NodeType>
59  bool insertEdge(NodeType *From, NodeType *To) {
60  return Visited.insert(To);
61  }
62 
63  // Called after all children of BB have been visited.
64  template<typename NodeType>
66 };
67 
68 /// Specialization of po_iterator_storage that references an external set.
69 template<class SetType>
70 class po_iterator_storage<SetType, true> {
71  SetType &Visited;
72 public:
73  po_iterator_storage(SetType &VSet) : Visited(VSet) {}
74  po_iterator_storage(const po_iterator_storage &S) : Visited(S.Visited) {}
75 
76  // Return true if edge destination should be visited, called with From = 0 for
77  // the root node.
78  // Graph edges can be pruned by specializing this function.
79  template<class NodeType>
80  bool insertEdge(NodeType *From, NodeType *To) { return Visited.insert(To); }
81 
82  // Called after all children of BB have been visited.
83  template<class NodeType>
85 };
86 
87 template<class GraphT,
89  bool ExtStorage = false,
90  class GT = GraphTraits<GraphT> >
91 class po_iterator : public std::iterator<std::forward_iterator_tag,
92  typename GT::NodeType, ptrdiff_t>,
93  public po_iterator_storage<SetType, ExtStorage> {
94  typedef std::iterator<std::forward_iterator_tag,
95  typename GT::NodeType, ptrdiff_t> super;
96  typedef typename GT::NodeType NodeType;
97  typedef typename GT::ChildIteratorType ChildItTy;
98 
99  // VisitStack - Used to maintain the ordering. Top = current block
100  // First element is basic block pointer, second is the 'next child' to visit
101  std::vector<std::pair<NodeType *, ChildItTy> > VisitStack;
102 
103  void traverseChild() {
104  while (VisitStack.back().second != GT::child_end(VisitStack.back().first)) {
105  NodeType *BB = *VisitStack.back().second++;
106  if (this->insertEdge(VisitStack.back().first, BB)) {
107  // If the block is not visited...
108  VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
109  }
110  }
111  }
112 
113  inline po_iterator(NodeType *BB) {
114  this->insertEdge((NodeType*)0, BB);
115  VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
116  traverseChild();
117  }
118  inline po_iterator() {} // End is when stack is empty.
119 
120  inline po_iterator(NodeType *BB, SetType &S) :
122  if (this->insertEdge((NodeType*)0, BB)) {
123  VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
124  traverseChild();
125  }
126  }
127 
128  inline po_iterator(SetType &S) :
130  } // End is when stack is empty.
131 public:
132  typedef typename super::pointer pointer;
134 
135  // Provide static "constructors"...
136  static inline _Self begin(GraphT G) { return _Self(GT::getEntryNode(G)); }
137  static inline _Self end (GraphT G) { return _Self(); }
138 
139  static inline _Self begin(GraphT G, SetType &S) {
140  return _Self(GT::getEntryNode(G), S);
141  }
142  static inline _Self end (GraphT G, SetType &S) { return _Self(S); }
143 
144  inline bool operator==(const _Self& x) const {
145  return VisitStack == x.VisitStack;
146  }
147  inline bool operator!=(const _Self& x) const { return !operator==(x); }
148 
149  inline pointer operator*() const {
150  return VisitStack.back().first;
151  }
152 
153  // This is a nonstandard operator-> that dereferences the pointer an extra
154  // time... so that you can actually call methods ON the BasicBlock, because
155  // the contained type is a pointer. This allows BBIt->getTerminator() f.e.
156  //
157  inline NodeType *operator->() const { return operator*(); }
158 
159  inline _Self& operator++() { // Preincrement
160  this->finishPostorder(VisitStack.back().first);
161  VisitStack.pop_back();
162  if (!VisitStack.empty())
163  traverseChild();
164  return *this;
165  }
166 
167  inline _Self operator++(int) { // Postincrement
168  _Self tmp = *this; ++*this; return tmp;
169  }
170 };
171 
172 // Provide global constructors that automatically figure out correct types...
173 //
174 template <class T>
176 template <class T>
178 
179 // Provide global definitions of external postorder iterators...
181 struct po_ext_iterator : public po_iterator<T, SetType, true> {
183  po_iterator<T, SetType, true>(V) {}
184 };
185 
186 template<class T, class SetType>
189 }
190 
191 template<class T, class SetType>
194 }
195 
196 // Provide global definitions of inverse post order iterators...
197 template <class T,
199  bool External = false>
200 struct ipo_iterator : public po_iterator<Inverse<T>, SetType, External > {
201  ipo_iterator(const po_iterator<Inverse<T>, SetType, External> &V) :
202  po_iterator<Inverse<T>, SetType, External> (V) {}
203 };
204 
205 template <class T>
206 ipo_iterator<T> ipo_begin(T G, bool Reverse = false) {
207  return ipo_iterator<T>::begin(G, Reverse);
208 }
209 
210 template <class T>
212  return ipo_iterator<T>::end(G);
213 }
214 
215 // Provide global definitions of external inverse postorder iterators...
216 template <class T,
218 struct ipo_ext_iterator : public ipo_iterator<T, SetType, true> {
220  ipo_iterator<T, SetType, true>(V) {}
221  ipo_ext_iterator(const po_iterator<Inverse<T>, SetType, true> &V) :
222  ipo_iterator<T, SetType, true>(V) {}
223 };
224 
225 template <class T, class SetType>
228 }
229 
230 template <class T, class SetType>
233 }
234 
235 //===--------------------------------------------------------------------===//
236 // Reverse Post Order CFG iterator code
237 //===--------------------------------------------------------------------===//
238 //
239 // This is used to visit basic blocks in a method in reverse post order. This
240 // class is awkward to use because I don't know a good incremental algorithm to
241 // computer RPO from a graph. Because of this, the construction of the
242 // ReversePostOrderTraversal object is expensive (it must walk the entire graph
243 // with a postorder iterator to build the data structures). The moral of this
244 // story is: Don't create more ReversePostOrderTraversal classes than necessary.
245 //
246 // This class should be used like this:
247 // {
248 // ReversePostOrderTraversal<Function*> RPOT(FuncPtr); // Expensive to create
249 // for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
250 // ...
251 // }
252 // for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
253 // ...
254 // }
255 // }
256 //
257 
258 template<class GraphT, class GT = GraphTraits<GraphT> >
260  typedef typename GT::NodeType NodeType;
261  std::vector<NodeType*> Blocks; // Block list in normal PO order
262  inline void Initialize(NodeType *BB) {
263  std::copy(po_begin(BB), po_end(BB), std::back_inserter(Blocks));
264  }
265 public:
267 
268  inline ReversePostOrderTraversal(GraphT G) {
269  Initialize(GT::getEntryNode(G));
270  }
271 
272  // Because we want a reverse post order, use reverse iterators from the vector
273  inline rpo_iterator begin() { return Blocks.rbegin(); }
274  inline rpo_iterator end() { return Blocks.rend(); }
275 };
276 
277 } // End llvm namespace
278 
279 #endif
po_ext_iterator< T, SetType > po_ext_end(T G, SetType &S)
bool operator!=(const _Self &x) const
static _Self begin(GraphT G)
ipo_ext_iterator(const ipo_iterator< T, SetType, true > &V)
ipo_ext_iterator(const po_iterator< Inverse< T >, SetType, true > &V)
po_ext_iterator(const po_iterator< T, SetType, true > &V)
ipo_iterator< T > ipo_begin(T G, bool Reverse=false)
po_iterator< T > po_begin(T G)
#define G(x, y, z)
Definition: MD5.cpp:52
#define T
ipo_iterator< T > ipo_end(T G)
#define true
Definition: ConvertUTF.c:65
po_iterator_storage(const po_iterator_storage &S)
static _Self begin(GraphT G, SetType &S)
Default po_iterator_storage implementation with an internal set object.
po_iterator< GraphT, SetType, ExtStorage, GT > _Self
std::vector< NodeType * >::reverse_iterator rpo_iterator
NodeType * operator->() const
bool insertEdge(NodeType *From, NodeType *To)
bool operator==(const _Self &x) const
static _Self end(GraphT G, SetType &S)
bool insertEdge(NodeType *From, NodeType *To)
ipo_ext_iterator< T, SetType > ipo_ext_begin(T G, SetType &S)
super::pointer pointer
po_iterator< T > po_end(T G)
ipo_ext_iterator< T, SetType > ipo_ext_end(T G, SetType &S)
std::reverse_iterator< const_iterator > reverse_iterator
Definition: Path.h:79
po_ext_iterator< T, SetType > po_ext_begin(T G, SetType &S)
ipo_iterator(const po_iterator< Inverse< T >, SetType, External > &V)
static _Self end(GraphT G)
void finishPostorder(NodeType *BB)
pointer operator*() const